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ABSTRACT

Automatic image captioning is a challenging deep learning task involving computer vision to un-

derstand the contents of an image and natural language generation to compose a coherent description

for that image. Image captioning for the English language is well-developed and has high precision,

with some recent work surpassing human-level performance. However, Arabic image captioning work

has been lacking, with few papers published having relatively low-performance results. Researchers at-

tribute this to the Arabic language’s morphological complexity and the to lack of large, robust bench-

mark datasets compared to those available for the English language.

Our proposed framework includes using an improved text preprocessing pipeline incorporating a word

segmenter to alleviate some of the morphological complexity associated with the Arabic language. We

also build neural network architectures which include techniques not previously explored in the Arabic

image captioning literature, such as attentionmechanisms and transformers. Our approach yields better

results over the most recent published work on the subject in Arabic, improving the BLEU-1 score from

33 to 44.3 and the BLEU-4 score from 6 to 15.6.
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CHAPTER 1

ARABIC IMAGECAPTIONING

1.1 Introduction

Image Captioning is the process of describing the contents of an image. Automating this process is a

challenging machine learning problem involving both computer vision and natural language processing.

A model intended to do this needs to recognize different objects, their attributes, relevance, and relation-

ship to one another and compose a coherent natural language sentence to describe them clearly. Image

captioning has a wide range of high-impact applications, such as helping the visually impaired and auto-

matically generating captions for web content for better content indexing and accessibility. It is also the

basis for other tasks such as visual question answering.

Significant progress has been made in deep learning-based image captioning research over the last few

years [12], [19], reaching high accuracy levels, and with more recent research, surpassing human-level per-

formance in some instances [20]. However, Arabic Image Captioning (AIC) progress has been lacking,

with the performance of the latest research [15] still lagging behind English Image Captioning research

from 2015 [44]. El Jundi et al. [15] attribute the lack of progress to the morphologically complex nature

of the Arabic language, and to the lack of large, diverse, and robust benchmark datasets similar to the

ones available for the English language [25]. We use the latest research in AIC by El Jundi et al. [15] as

the baseline to compare our results against. El Jundi et al. implemented an encoder-decoder model [38]

using a pre-trained VGG19 [36] model as the encoder and a customGRU-based [11] decoder with a word

embedding [29] layer. Our proposed approach improves upon El Jundi et al.’s work by: 1) Using an im-

proved tokenization technique to alleviate some of morphological complexity of the Arabic language, 2)

using newer image models such as EfficientNet [41] and MobileNetV2 [35], 3) including an attention

mechanism [6], [27] layer in the decoder model to improve captioning accuracy, and 4) implementing

1



an entirely new model based on the transformers [42] architecture.

The next section briefly explores some of the approaches that researchers have previously used in image

captioning, the datasets they used for training, and the evaluation metrics they used to evaluate their

results. Section 1.3 describes our contributions in more detail.

1.2 Background

1.2.1 EvaluationMetrics

The process of evaluating the output of an image captioning model is somewhat similar to evaluat-

ing machine-translated sentences (i.e., comparing a generated sentence against a reference sentence(s)).

That is why early on, image captioning researchers used metrics such as bilingual evaluation understudy

(BLEU) [32] which estimates accuracy based on n-gram similarities (BLEU-1 being 1-gram similarity,

BLEU-2 is 2-gram, and so on.). The BLEU score is measured on a scale of 0 to 1. It is a common practice

to scale BLEU scores up by 100 (to a scale of 0 to 100) for better readability.

Another machine-translation metric that image captioning researchers use is the Metric for Evaluation

of Translation with Explicit Ordering (METEOR) [7] which takes explicit ordering into account in ad-

dition to n-gram similarity. Similar to BLEU,METOER is also measured on a scale of 0 to 1 but is scaled

up by 100 for better readability.

1.2.2 Datasets

Two data-sets are commonly used by researchers to train and benchmark image captioning models.

The first dataset is the Common Objects in Context (COCO) [25]. COCO contains data for several

computer vision tasks such as object detection, image segmentation, and image captioning. The image

captioning dataset contains 83k training images and 41k testing images. Each image has five different

captions.

The second dataset is Flicker8k [18], which contains 8,092 images with five captions for each image. The

Flicker8k data set is roughly ten times smaller than COCO. An Arabic version of this dataset was pub-
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lished by El Jundi et al. [15]. The captions were automatically translated using Google’sMachine Transla-

tionAPI andmanually validated and rankedbyprofessionalArabic translators and thebest three captions

are kept (out of the original five), which results in a far smaller dataset which was already much smaller

thanwhat is available for other languages. This negatively impacts the quality of the deep learningmodels

trained on this dataset (which generally require very large amounts of data).

1.2.3 Prior Work on Image Captioning with Deep-Learning

We will briefly go over some of the most important papers in the field [3], [12], [15], [20]–[22], [31],

[44], [47] and the datasets [18], [25] and evaluation metrics [7], [32] that authors have used to evaluate

their work. All papers discussed here, along with their scores, languages, and datasets used, are listed in

Table 1.1.

1.2.3.1 English Image Captioning

The first neural-based image captioning paper was published in 2015 by Vinyal et al. [44]. The au-

thors used an encoder-decoder architecture [38] with a convolutional neural network-basedmodel as the

encoder that extracts image features and a recurrent neural network-based model that generates the cap-

tion. This achieved a BLUE-1 of 64.6 on the COCO dataset. Other researches subsequently built upon

this architecture. E.g., in the same year, Xu et al. [47] added an attentionmechanism layer [6], [27]which

allowed the language generating decoder to focus on salient regions of the image to produce the caption.

This approach improved the BLEU-1 score of the previous work to 70.7. In 2018, Anderson et al. [3]

implemented amodel with two attention steps, bottom-up attention that detects objects based on Faster

R-CNN [33] in the image and top-down attention that focuses the most salient objects, this approach

resulted in a BLEU-1 score of 79.8.

Newer papers use the transformer architecture for image captioning. Corina et al. [12] use a meshed-

memory transformer architecture which learns a multi-level representation of the relationships between

image regions to improve captioning accuracy. This approach set the state-of-the-art score on theCOCO

[25] benchmark dataset, with a BLEU-1 score of 80.8. Another notable transformer-based approach is by

Hu et al. [20] which can recognize novel objects not available in most datasets (they focus on more gen-
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eral concepts) by pre-training themodel on large-scale datasetswith abundant tags and then fine-tuning it

on the image/caption pairs. The accuracy score on the COCO dataset didn’t surpass the state-of-the-art

score set by Corina et al. [12]. The authors attribute that to the small number of visual concepts present

in the COCO dataset, thus diminishing the benefit of learning an extensive visual vocabulary that the

pre-training step does in this model.

The current state-of-the-art BLEU-1 score on the COCO dataset in English is produced by the model by

Corina et al. [12] – a score of 80.8 out of 100. In the case of theMETEORmetric, He et al. [20] produced

the highest score at 45.4 out of 100 (versus the Corina et al.’s second best score of 29.2).

1.2.3.2 Arabic Image Captioning

The BLEU scores achieved in the AIC literature are universally lower than those in the English image

captioning literature (due to reasons discussed in subsubsection 1.2.3.4). The earliest paper we found in

the AIC literature was by Vasu [21], [22] who had published two subsequent papers on the subject. The

first one used an encoder-decoder architecture similar toVinyals et al. [44]. Vasu used a pre-trained image

model as the encoder, and a deep belief network (DBN) dbm pre-trained by Restricted Boltzmann Ma-

chines as the decoder. In his second paper, Vasu replaced the DBN-based decoder with an LSTM-based

[17] one. The two approaches achieved BLEU-1 scores of 34.8 and 55.6 respectively, both trained and eval-

uated on two different proprietary datasets built from pairing news articles images with their captions

from sites such as Al-Jazeera News.

Al-Muazini et al.[31] introduced a merge model for generating Arabic captions. The overall architecture

is composed of an LSTM-based linguistic encoding encoder and an image feature extractor. The out-

put of both models then goes into another LSTM model which generates the caption. This approach

achieved a BLEU-1 score of 46 on an unpublishedArabic version of the Flicker8k dataset translated using

crowd-sourcing and machine translation.

The latest AIC research is by El Jundi et al. [15], who also use an encoder-decoder architecture. They

used a pre-trained image model as the encoder and an LSTM-based model as the decoder. One of the

more significant contributions of this paper is publishing a new manually validated dataset based on the
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Flicker8K dataset. This opens the possibility for future researchers to benchmark their work against pre-

vious work, which was not possible before. All the papers cited above (except for El Jundi et al.’s) used a

proprietary, unpublished dataset. El Jundi et al.’s approach achieved a BLEU-1 score of 33 on their Arabic

version of the Flicker8k dataset.

1.2.3.3 Image Captioning in Other Languages

Researchers have worked on image captioning for other languages. E.g., Mishra et al. [30] worked on

Hindi image captioningby implementing a similar architecture toXuet al. [47]using an encoder-decoder

architecturewith attention. They explored several attentionmechanism techniques such as spatial, visual,

Bahdanau-style, and Luong-style attention. They achieved the highest score on the Bahdanau-style atten-

tion (67.0 BLEU-1 on a Hindi version of the COCO dataset).

Working on on Chinese image captioning, Lu et al. [26] used an architecture similar to to Xu et al., with

the primary difference being the use of bidirectional LSTMs [17]. This approach achieved a BLEU-1

score of 78.5 on the AI Challenger Dataset [46], a Chinese dataset that which like COCO contains data

for several computer vision tasks including image captioning.

1.2.3.4 Low BLEU scores in AIC

Table 1.1 contains a comparison of image captioning in different languages. Looking at the table, we

can we can clearly see that AIC models (except for Vasu’s [21], [22] which works on root words only)

produce significantly lower scores than their English, Hindi, and Chinese counterparts. Agreeing with

El Jundi et al., we believe that this is mainly due to the morphological complexity of the Arabic language;

a single Arabic word typically has several attached attachedmorphemes (as illustrated in Figure 2.12)mak-

ing the sentences have a much lower number of words thanmost languages and thus making error penal-

ties much higher in n-gram similarity-based metrics such as BLEU. Another (perhaps even more impor-

tant) reason is lack of a high-quality benchmark dataset that is as robust and extensive as what’s available

for other languages such as the COCO dataset [25]. The BLEU score bias in Arabic is discussed in detail

in a paper by Bouamor et al. [9] where they verify the bias by comparing BLEU scores against human

judgment scores.
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Table 1.1: Summary of prior work on deep learning-based image captioning
Paper Language Year Dataset BLEU-1 BLEU-4 METEOR

Vinyals et al. [44] EN 2015 COCO 64.6 24.6 23.7
Xu et al [47] EN 2015 COCO 70.7 25.0 23.9

Anderson et al. [3] EN 2018 COCO 79.8 36.3 27.7
Corina et al. [12] EN 2020 COCO 80.8 39.1 29.2
He et al. [20] EN 2021 COCO - 34.9 45.4

Mishra et al. [30] HI 2021 Hindi COCO 65.9 21.0 -
Lu et al. [26] ZH 2021 AI Challenger [46] 78.5 47.8 41.5
Vasu [21] AR 2017 News Articles 1 34.8 - -
Vasu [22] AR 2018 Flicker8k 2 65.8 22.3 20.09
Vasu [22] AR 2018 News Articles 3 55.6 18.9 18.01

Al-Muzaini et al. [31] AR 2018 Flicker8k 4 46 8 -
El-Jundi et al. [15] AR 2020 Flicker8k 5 33 6 -

Our Approach (Transformers) AR 2021 Flicker8k 5 44.3 15.7 34.3

1.3 Our Contribution

There are four main contributions that we introduced to improve upon previous AIC work.

1. We improve preprocessing by incorporating theAraBERT segmenter [4]. This step alleviates some

of themorphological complexity of the Arabic language, specifically where the sameword appears

in multiple forms (e.g., definite vs. indefinite, masculine vs. feminine, conjunct vs. non-conjunct,

etc.). This step reduced the number of unique tokens in the dataset’s vocabulary from 10,396

tokens to 5,208.
110,000 manually translated images from ImageNet and 100,00 images from Al Jazeera website which paired article titles

with featured images.
2Unpublished manually translated version of the Flicker8k dataset.
3405,000 images fromMiddle Eastern news websites, pairing articles titles with featured images.
4A subset of the original dataset that includes 150 manually translated captions and 2111 captions translated using Google

Translator.
5All images from the original dataset are used, eachof the 5 captions are automatically translated and rankedbyprofessional

translators, only the top 3 captions are kept.
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2. We replace the VGG19 encoder with newer pre-trained models such as EfficientNet [41] for bet-

ter accuracy (80.1% classification accuracy versus VGG16’s 71.3%) andMobileNetV2 [35] for faster

performance (20.51 ms/image versus VGG16’s 151.52 ms/image)6.

3. We add an attention mechanism layer [6], [27] in the decoder which provides a context vector

along with the feature map produced by the encoder. The additional context vector allows the

RNN-based decoder to focus on specific regions of the image for each word, thus improving the

caption’s accuracy. Adding an Bahdanau-style [6] attentionmechanism layer to the previous work

by El Jundi et al. improved BLEU-1 score from 33 to 35.3 and BLEU-4 score from 6 to 7.8.

4. We implement an entirely new model based on the transformers [42] architecture.

The transformer-based model was our best performing model in terms of captions accuracy, which

improved results over El Jundi et al.’smethodon theArabic Flicker8k datasetwith aBLEU-1 andBLEU-4

score of 44.3 and 15.6 (compared to El Jundi et al.’s 33 and 6 on the same training/testing split).

1.4 Outline of the Thesis

Chapter 2 introduces additional background information on the prior work in image captioning, in-

cluding the building blocks that go into creating the models such as Convolutions Neural Networks,

Recurrent Neural Networks, Attention, and Transformers, as well as providing more details on the eval-

uation metrics and datasets that we used in our experiments. Chapter 3 desribes the data preprocessing

pipeline and the implementation of our AIC models. Chapter 4 describes the training and experimen-

tation setup, and analyzes the results of the experiments, providing information on captioning accuracy

and runtime. Chapter 5 concludes our work and makes suggestions on how these experiments could be

extended and discusses potential alternative methods for AIC. .

6Tested on an Jetson TX1 board. Source: Bianco et al. [8]
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CHAPTER 2

BACKGROUND

We will go over the building blocks that go into building neural network-based image captioning

models, the datasets used in training, the evaluation metrics used for evaluation, and prior work in this

field in English, Arabic, and other languages.

2.1 Neural Network Architectures

Deep learning-based image captioning techniques require the use of many different neural network-

based components and architectures. This section introduces the basic building blocks for neural net-

works and discusses more complex architectures (e.g., Convolutional Neural Networks, Recurrent Neu-

ral Networks, AttentionMechanisms, Transformers) that will be used in our work later on.

2.1.1 Feedforward Neural Networks

Feedforward neural networks, also called Multi-Layer Perceptrons, are the most basic form of deep

learningmodels. The Feedforward network’s goal is to approximate some function f that maps an input

x to an output y. Feedforward networks are built using artificial neurons or perceptions. Feedforward

neural networks are built by placing one ormore perceptrons (also called neural units) in parallel to form

a single layer and stacking multiple layers to form the network. Feedforward networks consist of an in-

put layer which takes in the input data x, and an output layer which produces the output ŷ, and one of

more layers in between called the hidden layers. Data flows forward (hence the name) from the input

layer through the network, where the output of each layer becomes the input of the following layer until

reaching the output layer and producing the output. Figure 2.1 illustrates an example of a simple feedfor-
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ward network.

Figure 2.1: An example of Multi-Layer Perceptron with a single hidden layer. Image Source: d2l.ai [48]

A single perceptron calculates the weighted sums of the input(s) and passes the sum through an ac-

tivation function. Equation 2.1 shows the equation of a perceptron where xi is the ith input andWi is

the corresponding weight, and σ is the activation functionwhich introduces non-linear properties to the

network allowing the perceptron to perform more complex operations. operations. Generally, the acti-

vation function is differentiable, which is crucial to updating weights based on backpropagation of error

[34].

ŷ = σ(
n∑

i=0

Wi ∗ xi) (2.1)

Some of the activation functions often used in deep learning are the Hyperbolic Tangent function

(Equation 2.3), Rectified Linear Unit (Equation 2.2), and Softmax function (Equation 2.4).

ReLU(x) = max(0, x) (2.2)

tanh(x) =
ex − e−x

ex + e−x
(2.3)

9



Softmax(x⃗)i =
exi∑K
j=1 x

zj
(2.4)

2.1.2 Convolutional Neural Networks

In deep learning, convolutional neural networks (CNNs) are used to extract image features automat-

ically. The layers of these networks are composed of convolutions instead of regular perceptions. These

convolutions are two-dimensional tensors (also called kernels or filters) that learn to recognize different

features in the image; shallower layers learn to recognize low-level features such as edges while deeper lay-

ers learn to recognize more high-level features such as faces and other objects (in practice, deeper filters

typically learn more abstract features that are not immediately comprehensible by humans). In classifica-

tion tasks, the output of the convolutions is passed to a classifier (a feedforward network).

CNNs take in an image in a tensor format as input, where the elements of the tensor represent pixel

values. The kernels (i.e., filters) slides over the input image, multiplying regions of the image with the

values of the filter in an element-wise multiplication and then summing the values of the output matrix.

The process continues over the whole input tensor by passing the kernel over image regions from left to

right and top to bottom. This process produces a featuremap tensor that is used as input to deeper layers

in the network.

In image captioning tasks, a convolutional neural network is typically used as the decoder in the

encoder-decoder models (more details on this architecture are discussed in subsection 2.1.5). Image cap-

tioning researchers often use pre-trained imagemodels (e.g., VGG16 by Simonyan et al. [36] ) to save time

and resource on training image models from scratch.

Wewill be using newer imagemodels in ourmodel’s decoder, likeMobileNetV2 by Sandler et al. [35],

which uses bottleneck layers (layers with 1x1 kernels) [40] to reduce the number of channels in features

maps with inverted residual connections [16]. Another model that we will use is EfficientNet-B2 by Tan

et al., which carefully tuning the network’s depth (the number of layers in the network), width (the num-

ber of kernels and each layer and their sizes), and resolution (the resolution of the input image), as well
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as using similar techniques as MobileNetV2 to optimize size and performance [41].

MobileNetV2 delivers comparable results to VGG16 while being 2% the size, while EfficientNet-B2

provides accuracy on parwithmore complexmodels such as InceptionResNetV2 [39]while still being far

more efficient. Table 2.1 breaks down the image models discussed in this section and compares them in

terms of accuracy and size. Accuracy score is reported inTop-N format,meaning that themodel’s output

is considered ”correct” when the correct class is within topN probabilities produced by the model.

Table 2.1: Comparison of different image models trained on ImageNet [13] in terms of model size and
accuracy. Data Source: keras.io [10]

Model Size Top-1 Accuracy Top-5 Accuracy
VGG16 [36] 528 MB 71.3% 90.1%

MobileNetV2 [35] 14 MB 71.3% 90.1%
InceptionResNetV2 [39] 215 MB 80.3% 95.3%

EfficientNetB2 [41] 36 MB 80.1% 94.9%

2.1.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs), first introduced byMichael I. Jordan [23] in 1979, are a special

type of neural network that includes a hidden internal state that serves as a memory. RNNs are used in

sequence-based tasks where the input or the output (or both) are a sequence (e.g. words in a sentence

or data in a time series). Equation 2.5 show how RNNs work where t is the current time step, xt is the

input at time step t, ht is the hidden state value at time step t, yt the output for t, W , U and b are the

parameters’ weights, and σh, σy are the activation functions.

ht = σh(Whxt + Uhht−1 + bh)

yt = σh(Wyht + by)
(2.5)

There are some problems with vanilla RNNs, such as being unable to learn long-term dependencies

(remembering earlier time steps in longer sequences) and, more importantly, the problem of vanishing

and exploding gradients [17] while training when the gradients that are calculated during backpropa-

gation (also called backpropagation through time in RNNs [45]), where gradients are calculated back
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through the time steps, the values either gets infinitesimally small to the point that the weight stop being

updated (vanishing gradients), or exponentially large to the point that the weights overflow (exploding

gradients).

2.1.3.1 Long Short-TermMemory

Introduced by Hochreiter & Schmidhuber in 1997 [17], LSTMs is a variation on RNN that allows

the network to learn long-term dependencies by introducing a cell state and special gates that allows ”for-

getting” unimportant parts of the sequence and retain information significant to the desired output. Fig-

ure 2.2 and Equation 2.6 how the output and cell state are calculated within an LSTM cell where t is the

current time step, i is the input gate, f is the forget gate, o is the output gate, c̃ is the memory cell value

candidate, and c is the cell value, x is the input, andH is the hidden state value. W,U, b are the trainable

parameters.

Figure 2.2: The internals of a Long Short-TermMemory cell. Image Source: d2l.ai [48]
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it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf )

ot = σ(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = ft ∗ ct−1 + it ∗ c̃t

(2.6)

2.1.3.2 Gated Recurrent Units

Developed by Chung et al. in 2014 [11], gated recurrent units (GRUs) are also a special variant of

RNNs that, similar to LSTMs, implement internal gates to control the flow of sequence data. However,

unlike LSTMs, GRUs do not maintain an internal cell state. Instead, it relies only on the hidden state to

maintain a memory of earlier parts of the sequence. It also uses only two gates (reset and update gates)

instead of LSTM’s three gates (input, forget, and output). Figure 2.3 and Equation 2.7 how the output

and cell state are calculated within an LSTM cell where t is the current time step, r is the reset gate, z is

the update gate, ĥ is the hidden state candidate, andh is the hidden state value,x is the input, and.W,U, b

are the trainable parameters.

The advantage ofGRU’s simpler implementation is having fewer parametersmaking the network smaller

in size and faster to train and execute while maintaining the benefits of learning long-term dependencies

and reducing the effects of vanishing and exploding gradients.

This simplified implementation is notwithout its drawbacks, where it can struggle in datasets with longer

sequences where LSTMs would typically produce more accurate results.

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

h̃t = tanh(Whxt + Uh(rt ∗ ht−1) + bh)

ht = (1− zt) ∗ ht−1 + zt ∗ ĥt

(2.7)
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Figure 2.3: The internals of a Gated Recurrent Unit cell. Image Source: d2l.ai [48]

2.1.4 Word Embeddings

Word embeddings refer to the representation of words as vectors. In embedding space, words that

are close together typically have a similar meaning. There are several algorithms that compute the word

embeddings, such as the Bag of Words and Skip Grams models introduced by Mikolov et al. [28], [29].

These models are trained on massive text corpora to find a vector representing each word such that the

cosine similarity between the vectors indicates the level of semantic similarity between the words they

represent.

Word embeddings are often used in deep learning tasks that involve natural language to provide a more

robust representation of words that encodes the words’ meaning and the association between different

words.

2.1.5 Encoder-Decoder Architecture

The encoder-decoder architecture is a neural network architecture originally introduced for the ma-

chine translation task by Sutskever et al. [38]. The main goal of the model is to handle variable-length

inputs and outputs by encoding the input into an intermediary representation in a fixed-sized vector
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which is then used by the decoder to generate the output.

Figure 2.4: Ahigh-level diagramof the encoder-decoder architecturewhere both the encoder anddecoder
are neural networks. Image Source: d2l.ai [48]

Inmachine translation, both the encoder and decoder are RNN-basedmodels that deal with sequen-

tial inputs and outputs of variable size (i.e., sentences). However, in image captioning, the encoder is

replaced with a CNN-based model that extracts high-level image features. The intermediary representa-

tion, in this case, is a vector representation of the image’s features which the RNN-based decoder uses to

generate a sequence of words that describes the input image.

2.1.6 Attention

Attention in neural networks is first introduced in the context ofmachine translation byBahdanau et

al. [6] and Luong et al. [27] to solve an issue in encoder-decodermodels usingRNN-basedmodels where

the decoder cannot process long input sequences since only the last hidden state is used as the input to the

decoder. Attentionmechanisms offer a solution to this problem by calculating alignment scores between

the encoder’s output state (i.e. the representation of the input sentence in machine translation) and the

decoder’s hidden state in the current time-step. The produced alignment score represents how much

each word in the input sequence is important to the word that’s currently being generated. The align-

ment score is passed through a softmax function producing a vector with values between 0 and 1 which is

then multiplied by the original input from the encoder to create a context vector where important parts

of the input retain most of their original values and less important parts are now closer to 0. The context

vector is then used by the following RNN layer instead of the original input from the encoder.

Attention is also used in image captioning where the input is an image instead of a sentence and the

encoder is a CNN-based imagemodel instead of anRNN-based languagemodel. The alignment score in
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image captioning models is calculated between image regions and the word being generated. Figure 2.10

describes in high-level how attention works in image captioning models.

There are mainly two methods to calculate the alignment score: The Bahdanau-style, also known is

additive attention which is the most widely used in image captioning due to its more complex structure

which allows it to learn better representations [6]. And Luong-style, which offers three different scoring

techniques. Bahadanu attention is described in Equation 2.8 and the three Luong attention techniques

are described in Equation 2.9 whereW,Wc,Wd,We are learnable parameters (weights), he the the input

from the encoder, and hd is the decoder’s hidden state.

score = Wctanh(Wdhd +Wehe) (2.8)

dot = hehd

general = W (hehd)

concat = Wtanh(Wc(he + hd)

(2.9)

2.1.7 Transformers

The transformer architecture introduced byVaswani et al. in 2017 aims to replace the recurrent based

techniques in sequence modeling tasks such as machine translation by making extensive use of attention

mechanisms. Transformers use a scoring technique similar to the Luong-style dot product attention de-

scribed in Equation 2.9 with the addition of a scaling factor which is 1√
dk

length of the key vector (i.e.,

the hidden state). However, what gives the transformer architecture is the introduction of a concepts

in attention called Multi-head Attention, where instead of performing a single attention function, the

inputs of the attention are passed through h linear layers (h being the number of attention heads) in

parallel, learning h different representations of the inputs and attending to them separately producing

h attention scores. The scores are then concatenated and passed through a final linear layer. Multi-head

attention allows the model to jointly attend to information from different representation subspaces at
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different positions.

Figure 2.5: Visualizing theMulti-Head Attention which consists of h attention layers running in parallel.

Image Source: Vaswani et al. [42]

Since the architecture does not make use of recurrence, it needs a different approach to provide infor-

mation about the relative or absolutes position of tokens in the sequence, and it does so by using Position

Encoding, which is an embedding layer that calculates embeddings for each position in the sequence in-

stead of each words.

Using the concepts described above, Vaswani et al. propose an encoder-decoder model for machine

translation. The encoder starts by calculating the word embeddings and positional encoding of the in-

put sentences. The results are concatenated and passed to the first layer of a stack of 6 identical layers.

Each layer consists of two sub-layers, a multi-head attention layer and a feedforward layer. With residual

connection [16] around each of themulti-head attention and feedforward layers followed by layer normal-

ization [5]. The linear layers in the Multi-head attention and the feedforward layer are of size 512 units.
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The decoder is also composed of a stack of 6 identical layers. In addition to the two sub-layers in each

encoder layer, the decoder inserts a third sub-layer, which performsmulti-head attention over the output

of the encoder stack. Similar to the encoder, residual connections around each of the sub-layers are used,

followed by layer normalization [42]. The output of the final layer in the decoder stacked is passed to

a feedforward layer with a softmax activation function which produces a probability distribution over

the words in the vocabulary. Similar to the encoder, the linear layers in theMulti-head attention and the

feedforward layer are of size 512 units, while the final feedforward layer is of size n units where n is the

number of words in the vocabulary. In addition to the output of the encoder and similar to the hidden

state in RNN-based decoders, the Transformer decoder takes in the previous outputs of the decoder as

input, passing them through a word embedding and positional encoding layer and concatenating them

before entering the decoder stack. The encoder-decoder model is visualized in Figure 3.6 where N = 6
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Figure 2.6: The Transformer model architecture by Vaswani et al. [42]
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2.2 Prior Image CaptioningWork

2.2.1 EvaluationMetrics

The process of evaluating the output of an image captioning model is somewhat similar to evaluat-

ing machine-translated sentences (i.e., comparing a generated sentence against a reference sentence(s)).

That is why early on, image captioning researchers usedmetrics such as Bilingual EvaluationUnderstudy

(BLEU) score [32] which estimates accuracy based on cumulative n-gram precision (n-grams being con-

tinuous sequences of nwords). BLEU-1 being 1-gram precision which matches single words occurrences

between the hypothesis sentence and reference sentences, and BLEU-2 being the cumulative precision of

1-grams and 2-grams. Figure 2.14 shows the BLEU 1-4 scores for sentences in English and Arabic

Another machine-translation metric that image captioning researchers use is the Metric for Evalua-

tion of Translation with Explicit Ordering (METEOR) [7] which takes explicit ordering into account

in addition to n-gram similarity. These metrics are language-agnostic and are used by image captioning

researchers working on most languages

Newer metrics specialized in image captioning such as Consensus-based Image Description Evalua-

tion (CIDEr) [43] and Semantic Propositional Image Caption Evaluation (SPICE) [2] provide a more

robust evaluation. CIDEr and SPICE are used in newer research, but are not used in AIC literature due

to not generalizing well to the Arabic language.

2.2.2 Datasets

Image captioning researchersmostly use two datasets to train and benchmark image captioningmod-

els.

The first dataset is the Common Objects in Context (COCO) [25], COCO contains data for several

computer vision tasks such as object detection, image segmentation, and image captioning. The image

captioning dataset contains 83k training images and 41k testing images. Each image has five different

captions.
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Figure 2.7: An example of an image and its five captions from COCO dataset

There is an Arabic version of the dataset translated automatically using GoogleMachine Translation

API. However, the Arabic dataset is not manually validated, and in our exploration of a randomly sam-

pled subset of 150 captions, we found that 46% of the translations have some grammatical and semantic

errors to completely unintelligible translations. Table 2.2 breaks down the results in more detail.

Table 2.2: The results from our manual evaluation of a random sample of 150 captions from the Arabic
COCO dataset.

Score Value Score Meaning Frequency Percentage
5 The caption is accurate 135 54%
4 The caption has minor grammatical/semantic errors 77 30.8%
3 The caption has major grammatical/semantic errors 28 11.2%
2 The caption is barley understandable 9 3.6%
1 The caption is unintelligible 1 0.4%

Another popular dataset is the Flicker8k dataset [18], this data set contains 8,092 images with five

captions for each image which results in 40,460 unique captions (compared to COCO’s 413,195 unique

captions). An Arabic version of this dataset was published by El Jundi et al., which contains machine-

translated captionsmanually validatedbyArabic translators. Only the best three captions are kept instead

of the original five.
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Figure 2.8: An example of an image and its five captions from Flicker8k dataset

COCO is the preferable dataset due to its large size, allowing it to cover more visual concepts and

scenarios. All English image captioning papers mentioned in the previous section use COCO.However,

it is not trivial to manually translate or validate themachine-translated version of the COCOdataset due

to its large size; that is why it is yet to be used by AIC researchers. Instead, researchers have used some

version of the Flicker8K [15], [22], [31].

2.2.3 English Image Captioning

Deep learning based image captioning research started to gain momentumwith the paper by Vinyals

et al. [44] in 2015, this paper was the first neural network based approach for image captioning. The

authors proposed an end-to-end system based on the encoder-decoder architecture [38] that was already

in use in the machine translation field. The authors used a CNN-based decoder that serves as a feature

extractor and an RNN encoder that serves as natural language generator to compose the caption. The

end-to-end networkworks by passing an image to the encoder that extracts features from the images. The

image features are then passed to the RNN decoder which generates a sequence of words that forms the

predicted caption. This approach improves upon the previous state-of-the-art scores on many datasets

(e.g., improving the BLEU-1 score on the Pascal dataset from 25 to 59 and setting the state-of-the-art

BLEU-1 for the COCO dataset at 64.6).
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Figure 2.9: High-level viewof the Encoder-DecoderArchitecture forNeural ImageCaptioning byVinyal
et al.

In the same year, Xu et al. were working on a model with similar architecture to Vinyal et al.’s with

the addition of an attention layer on top of the RNN-based decoder. Attention mechanisms previously

were used in encoder-decoder-based machine translation tasks [6]. The addition of the attention mecha-

nism provides additional context to the decoder by identifying specific regions in the image feature maps

that contains salient objects to help the decoder focus on relevant details while composing the caption

sequence. Figure 2.10 shows a high-level illustration of this approach. This approachmade some improve-

ment over the previous state-of-the-art score set by Vinyal et al. [44], increasing BLEU-1 score from 64.6

to 70.7 andMETEOR score from 23.7 to 23.8 on the COCO dataset.

In 2018, Anderson et al. [3] introduced an image captioning model that used two steps of attention,

bottom-up and top-down. The bottom-up attention used an object detection model called Faster R-

CNN [33] to detect objects and salient regions in the image, Figure 2.11 shows the output of this step

in comparison with the uniform feature map grid that regular CNN models produce. The top-down

attention step focuses on the regions/objects that best correlate with every step of the sequence that is
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Figure 2.10: Overview of Neural Image Captioning with Attention architecture by Xu et al. Step 3 and
4 show how the attention mechanism works.

being generated. This approach made significant improvements to the previous state-of-the-art score set

by Xu et al., improving the BLEU-1 score from 70.7 to 79.8 and METEOR score from 23.9 to 27.7 on

the COCO dataset.

Corina et al. published a paper in 2020 [12] which introduced an image captioning model that lever-

aged the recent advancement in Transformers [42] that had gained a lot of momentum in sequence mod-

eling tasks after its introduction in 2017. The transformer-based architecture improves both the image

encoding and the language generation steps. It learns a multi-level representation of the relationships

between image regions integrating learned apriori knowledge and uses a mesh-like connectivity at the de-

coding stage to exploit low- and high-level features. This approach sets the current state-of-the-art on

most benchmark scores, with a BLEU-1 score of 80.8 and aMETEOR score of 39.1.

In late 2020, Hu et al. [20] surpassed human-level performance in Image Captioning tasks. The

model is also based on the Transformer architecture, but its strength lies in its ability to recognize and
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Figure 2.11: Left: Uniform image feature grid produced by the CNN-decoder that is typically used by
attentionmechanisms. Right: The output produced by the bottom-up attention step used byAnderson
et al [3]. which enabled attention to be calculated at the level of objects and other salient regions of the
image.

caption novel objects that are not seen in the image/caption pairs provided by the captioning datasets;

this is achieved by pre-training the model on large-scale datasets with abundant tags. The model is pre-

trained solely on the image-tag pairs. After pre-training, the model is fine-tuned on the image captioning

dataset.

The score on the COCO dataset didn’t surpass the state-of-the-art score set by Corina et al. [12]. The

authors attribute that to the small number of visual concepts present in the COCO dataset, thus dimin-

ishing the benefit of learning an extensive visual vocabulary that the pre-training step does in this model.

2.2.4 Arabic Image Captioning (AIC)

AIC research is yet to produce results on parwith the English counterparts; this is due to themorpho-

logically complex nature of the Arabic language that is illustrated in Figure 2.12, but more importantly,

due to the lack of standardized and high-quality benchmark datasets such as the ones available for the

English language.
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Figure 2.12: A word that illustrates the morphological complexity in Arabic and how it translates to En-
glish.

The first attempt at neural-based image captioning in Arabic was in 2017 by Jindal Vasu [21]. Vasu

worked on composing captioning using root words only instead of full words to avoid themorphological

complexity of theArabic language. He used a pre-trainedmodel to extract image features, then passed the

features to a deep belief network pre-trained byRestricted BoltzmannMachines to predict different root

words associated with the image fragments and extract the most appropriate words for the image. And

finally, the words are arranged to form a sentence using dependency tree relation. Vasu used manually

translated ImageNet class names (10,000 images) and images associatedwithnews articles fromAl-Jazeera

news website (100,000 images), creating a total of 110,000 images, 80,000 used for training and 30,000

used for testing. The BLEU-1 score reported on this on the dataset is 34.8.

A year later in 2018, Vasu [22] updated his work to use an LSTM instead of a deep belief network,

but his work was still limited to using root words. Vasu used two different datasets for this paper. The

first one is the Flicker8k dataset with manually written captions. However, the exact number of images

used, and number of captions written for each image isn’t mentioned. We will assume that the entire

dataset is used and one caption per image is written instead of the original five captions per image). The

second dataset is 405,000 images gathered frommiddle eastern news websites, pairing article images and

titles. This updated approach reported a BLEU-1 score of 65.8 on the Flicker8k dataset and 55.6 on the
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middle eastern news websites dataset. The BLEU-1 score did improve the previous results (from 34.8 to

65.8/55.6), but these results were reported on entirely different datasets so the exact amount of improve-

ment cannot be measured.

In 2018, Al-Muzaini et al. [31] proposed an image captioning model that uses a merge model for gen-

erating Arabic captions. The overall architecture is composed of an LSTM-based model that encodes

linguistic sequences and a CNN-based image model that extracts image features. The outputs of both

these models is concatenated into the decoder that composes the caption. The authors created a dataset

using 1,166 image (5 captions each, totaling 5,830 captions), 150 images from Flicker8k translated manu-

ally and 2,111 translated automatically suingGoogle translator (also 5 captions each, totaling 750 and 10,555

captions respectively). 2,400 images were used for training, 411 for validation, and 616 for testing. This

approach reported a BLEU-1 score of 46, which is the highest reported BLEU-1 score inAIC for complete

sentences (non-root word-only approaches). However, neither the code nor the datasets are published,

making it impossible to verify the results or test othermodels against this approachusing the samedataset.

Figure 2.13: High-level overview of the merge model architecture proposed by Al-Muazini [31]

In 2020, El Jundi et al.[15] used an encoder-decoder architecture similar to the one introduced by

Vinyal et al. [44]. They used a pre-trained VGG19 [36] model as the CNNdecoder and a custom LSTM-

based decoder. The dataset used for this work is a version of the Flicker8k dataset translated usingGoogle

Machine Translation API. The translated captions are then validated and ranked by professional Arabic

translators, and only the top-3 captions out of the overall 5 captions are kept in the dataset. 7,292 out of

the 8,092 images were used for training and the remaining 800 images were used for testing. The pro-
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posed model achieved a BLEU-1 score of 33 on that dataset.

On paper, the state-of-the-art score in AIC (for non-root word only approaches) is ElMuazini et al.’s

BLEU-1 score of 46 and BLEU-4 score of 8 (tied with El Jundi et al’s score). [31]. However, the scores

reported in the papers discussed above are not a reliable source of identifying the current state-of-the-art

as all papers (except for El Jundi et al.’s) used a different dataset that isn’t publicly available for other

researchers to benchmark against. However, El Jundi et al. open-sourced their dataset as well as their

source code, which means their work is reproducible and it can serve as a benchmark for future research.

2.2.5 Other Languages

Researchers have worked on image captioning for other languages. Mishra et al. [30] worked on

Hindi image captioningby implementing a similar architecture toXuet al. [47]using an encoder-decoder

architecture with attention. Mishra et al. explored many attention mechanisms such as spatial, visual,

Bahdanau-style, and Luong-style attention. They achieved the highest score on the Bahdanau-style at-

tention (67.0 BLEU-1 on a Hindi version of the COCO dataset).

Lu et al. [26] worked onChinese image captioning. Lu et al. also used a similar architecture to Xu et

al., with the difference of using a bidirectional LSTM. This approach achieved a BLEU-1 score of 78.5 on

the AI Challenger Dataset [46], a Chinese dataset that, like COCO, contains data for several computer

vision tasks including image captioning.

2.2.6 Discussing the Relatively Low BLEU Scores of AIC

Looking at Table 1.1 we can clearly see that AIC models produce significantly lower score than their

English, Hindi, and Chinese counterparts. Researchers [9], [15], [31] have attributed this the morpho-

logical complexity of the Arabic language; a single Arabic word typically have several attached attached

articles (as illustrated in Figure 2.12)making the sentences have amuch lower number of words thanmost

language and thusmaking errorpenaltiesmuchhigher inn-gramsimilarity-basedmetrics likeBLEU.This

issue also explains why the results by Vasu [21], [22] which dealt with root words only have more compa-
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rable scores to other languages. Figure 2.14 shows an example of two sentences in Arabic and English

where the only difference between the sentences is using a different gender pronoun. The bias of the

BLEU score in Arabic is discussed in a paper by Bouamor et al. [9] where they verify the bias by com-

paring BLEU scores against human judgment scores as well as introducing a new metric that provides

partial credits for stem and morphological matching of hypothesis and reference words. We also exper-

imented with training the same model once on the Arabic Flicker8k dataset and once on the original

English Flicker8k dataset, the results are discussed later in section 4.4.

Figure 2.14: An example to illustrate how similar mistakes produce significantly lower BLEU scores in
Arabic captions versus English captions.

Another reason for lower scores in AIC is the smaller size of data available for AIC research. The

best available resource for AIC is El Jundi et al.’s Arabic Flicker8k dataset which contains an overall 8,092

images and 24,276 captions (3 captions per image) with no dedicated test/validation dataset. TheCOCO

dataset on the other hand has 82,783 images 413,915 captions (5 captions per image) in the training dataset
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with dedicated datasets for testing and validation. AnArabicCOCOdataset does exist but it is translated

using Google’s Machine Translation API and is not manually validated, our analysis of a sub-sample of

the dataset (results broken down in detail in Table 2.2) showed that only around half of the captions are

accurate while the rest range from having minor grammatically mistakes to being barley understandable

rending the dataset unusable in research.
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CHAPTER 3

METHODOLOGY

3.1 Data Preprocessing

Before building and training themodel, we need to prepare the dataset for consumptionby the neural

network. We will be using the Arabic Flicker8k dataset published by El Jundi et al. [15] which is based

on the English Flicker8k [18] dataset. This dataset consists of 8,092 images with three captions for each

image, totaling 24,276 unique image-caption pairs with a total vocabulary size of 11,384 unique tokens.

Figure 3.1 shows a couple of samples from the dataset along with the original English captions.

Figure 3.1: Samples from the Arabic Flicker8k dataset and the original English captions [15], [18]
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3.1.1 Image Preprocessing

The dataset’s images are in RGB format (there is no alpha channel) and come in different sizes. Since

we are working with pre-trained image models, we will follow the same preprocessing steps that the mod-

els use since the model structure is already defined. The preprocessing steps are shown below.

1. Resize the images into one fixed size tensors of shape (224, 224, 3). Elements in the tensor repre-

sent pixel values of the image. The color channels are always three since we are working with RGB

images.

2. Pixel values are scaled between -1 and 1. This step is required because itwas part of the preprocessing

steps for data used to train both EfficientNet [41] andMobileNetV2 [35].

3. We then pass the resulting tensors through the pre-trained CNN models [35], [41] to extract the

feature maps, and we cache them on disk. This step saves us time during training since the model

is pre-trained and the weights won’t be updated during training, so we do this step once instead of

having to do it in every epoch.

3.1.2 Text Preprocessing

Text preprocessing is required to convert thewords sequenceswith varying sizes into a uniform tensor

that a neural network can consume. The following are the preprocessing steps taken (the first three are

specific to the Arabic language, the rest are general steps applied to text preprocessing in neural network

tasks).

1. Normalize Arabic words by replacing letter variants with the original form (e.g., convert آ” أ ”إ to
.”ا”

2. Remove diacritics.

3. Segment words to alleviate some of the morphological complexity using the AraBERT segmenter

[4], this is discussed in more detail in subsubsection 3.1.2.1

4. Remove punctuation.

5. Add ”<start> ” to the beginning of each sentence. This will be used as the seed to kick start the

recurrent word generation model (the decoder).
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6. Add ” <end>” to the end of the sentence. The decoder will produce this token to signal that the

sentence has ended thus triggering the generation loop to be stopped.

7. Tokenizing the words by assigning a unique index number for each word, creating a vector or

integer for each caption.

8. Unifying the caption vectors’ length to a maximum of 20 tokens, cutting off captions that are

longer, and padding the captions that are shorter with zeros. The decision to use a cut-off of 20

tokens (24 tokens in AraBERT variants due to segmentation which leads to more tokens per sen-

tence.) is based on analyzing the dataset captions where the length of the sequences has a mean

of 10.8, a median of 10, and a standard deviation of 4.2. Figure 3.2 show a histogram of sequence

lengths in the dataset.

The output of the preprocessing steps is a Tensor of shape (C, S), where C is the number of captions

and S is the maximum caption length in the dataset.

Figure 3.2: Histogram of sentence length in the Arabic Flicker8k Dataset.

3.1.2.1 AraBERT Segmenter

AraBERT [4] is amulti-purpose languagemodel developed byAntoun et al. and based on the BERT

model [14]. AraBERT provides several NLP tools, including an Arabic word segmenter. The segmenter
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uses the Farasa segmenter [1] under the hood while using AraBERT to identify the root/non-root words

and apply a special pre/post-fixed symbol for the segmented articles, which allows users to re-attach the

segments to the original word. This feature is handy since our model would output segmented words,

and having these pre/post-fixed symbols allows us to put the sentence together and produce a complete

sentence. Figure 3.3 shows a couple of example of the sentences before and after applying the AraBERT

segmenter.

Figure 3.3: Example of sentences before and after passing through theAraBERTsegmenter, the additional

”+” sign represents where the segment was cut off which allows us to de-segment the sentence later.

Using this technique reduced the number of tokens in the vocabulary from 10,396 to 5,208 tokens.

This is largely due to three articles. The definite article ال” ” (equivalent to the in English)which inArabic
is attached to the word, somost words appear in the vocabulary twice in the definite and indefinite forms.

Another one is the ” ة ” article which is the feminine article in Arabic is applied tomost words when used

with a female subject or object. And finally, the ” و ” article (equivalent to and in English). This article is
attached to the word that comes after it. Figure 3.4 shows the top 10 most frequent tokens in the dataset

before and after applying the AraBERT segmenter.
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Figure 3.4: The top 10 frequently appearing words in the dataset before (Top) and after (Bottom) apply-

ing the AraBERT Segmenter.

3.2 Models Definition

All of our proposed models use an encoder-decoder architecture [38] similar to previous work (El

Jundi et al., and Xu et al. [15], [47]). We propose three different model architectures. These models are

summarized below and discussed in detail in upcoming sections:

• LSTMModel: MobileNetV2 [35] pre-trained on ImageNet is used as the encoder, and an LSTM-

based model with an attention layer [6] is used as the decoder.

• GRU Model: MobileNetV2 [35] pre-trained on ImageNet is used as the encoder, and a GRU-

based model with an attention layer [6] is used as the decoder.

• Transformers Model: EffeceintNet [41] pre-trained on ImageNet is used as the encoder, and a

Transformers-based model is used as the decoder.

The GRU and LSTM-based models withMobileNetV2 are designed to deliver good accuracy while

maintaining a lightweight model with fast performance. In contrast, the Transformers-based models fo-

cus on delivering captions with state-of-the-art accuracy while having significantly slower running time

and largermodel size. All models are built with theKeras framework [10] using sub-classing, which offers

granular control over the model architecture and dataflow.
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3.2.1 LSTMBasedModel

Our first model is an encoder-decoder model that uses a MobileNetV2-based encoder [35] and an

LSTM-based decoder [17] and consists of the following layers:

1. Encoder: This part of the network runs once when the generation starts. It takes in an image and

produces a vector of size 256 that describes that image.

1.1. The input image of size 224x224x3 (which is the default input size for our pre-trainedmodel)

goes through a MobileNetV2 [35] model with no top (i.e., no classification/fully connected

layers, only the convolutional layers) pre-trained on the ImageNet [13] dataset, the model

extracts image features from the image and produces an image map.

1.2. The image features pass through a feed-forward layer with a ReLU activation function, the

layer is trainable and consists of 256 units and produce

2. Decoder: This part of the network runs recursively for each generated word. It starts with the

token ”<start>” and ends when the token ”<end>” is produced or when the maximum sequence

length (20) is reached.

2.1. A word embedding [29] layer with an embedding dimension of 256 (i.e., each word is repre-

sented in a vector of length equal to 256) takes the previously producedword as input (when

first starting generation it takes in the ”<start>” token).

2.2. A Bahdanau-style Attention layer [6] with a size of 512 units, the attention layer takes in the

image embeddings produced by the decoder concatenated with the current hidden state of

theRNN-based layer (theLSTMlayer in this case) and calculates a score for the image regions

between zero and one based on how relevant the region is to the current hidden state. The

attention scores are thenmultiplied by the image features vector produced by the decoder to

create a context vector.

2.3. The context vector and theoutput of theword embeddings layer are concatenated andpassed

to an LSTM layer of size 512 recurrent unit.
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2.4. The output of the LSTM then goes through a Fully Connected layer of size 512 and ReLU

activation function. This layer uses Dropout with a drop rate of 0.5. Dropout randomly

turns off the layer’s units (i.e., make their output equal to zero) with a probability equal to

the drop rate.

2.5. Finally, the output layer is a feed forward layerwith a number of units equal to the vocabulary

size (8,000) with a softmax activation function. The output of this layer is a probability dis-

tribution of all words in the vocabulary, and the word with the highest probability is chosen

as the output of this iteration of the recurrent decoder.

Figure 3.5: The Architecture of our LSTM-based model.

3.2.2 GRU BasedModel

This model is almost identical to the previousmodel discussed in subsection 3.2.1, the only difference

is replacing the LSTM layer described in item 2.3 with aGRU layer of equal size. GRUs aremore efficient

and smaller in size than LSTMs because they have one less gate and thus fewer parameters [11]. The

difference between them is discussed inmore detail in subsection 2.1.3. We experiment with replacing the

LSTM layer with a GRU to evaluate if the accuracy difference between them (if any) is worth the extra

complexity and performance drawbacks.

37



Figure 3.6: Our transformer model, a modified version of the original transformer model developed by

Vaswani et al. [42]
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3.2.3 Transformers BasedModel

This model uses the EfficientNet-B2 [41] model pre-trained on ImageNet [13] as the feature extrac-

tor, and uses a modified version of the encoder-decoder transformer architecture proposed originally by

Vaswani et al. [42] anddiscussed indetail in subsection 2.1.7. Themodifications includemodifying the de-

coder that would take in the featuremap output from the EfficientNet-B2 instead of taking in a sequence

of words. The transformer encoder uses a Fully Connected layer of size 512 units and ReLU activation

function (similar to the image embeddings layer our GRU/LSTM based models) followed by a Multi-

Head Attention layer with six attention heads, and finally, a Layer Normalization [5] layer that applies

a transformation that maintains the mean activation of the previous layer within each sample close to 0

and the activation standard deviation close to 1. Layer Normalization is a technique commonly used in

transformers architecture to reduce the effects of the variance in distribution between different training

samples, which causes the network to take longer to converge.

The decoder uses a similar architecture to the one introduced by Vaswani et al. [42] using six attention

heads in eachMulti-Head Attention sub-layer with the addition of a Dropout [37] layer with a drop rate

of 0.1 for the inputs of the firstMulti-Head Attention layer. Another Dropout layer is applied to the out-

puts of the third and final Multi-Head Attention sub-layer. Both the encoder and decoder use a single

transformer layer instead of the stack of six layers used by Vaswani et al.

3.3 Conclusion

Of the threemodel architectures discussed, the first two (using anMobileNetV2-based encoder and a

LSTM/GRU-based decoder) are similar to previous AICmodels such as the one introduced by El Jundi

et al. [15] with the addition of a more modern image model and an attentionmechanism layer. The third

model is an entirely newmodel basedon theTransformers architecture. Aswill be seen in thenext chapter,

the Transformer-based model generates the best results in terms of captioning accuracy. In contrast, the

LSTM/GRU-based models generate relatively lower quality captions but do so significantly faster than

the transformer-based model.
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CHAPTER 4

EXPERIMENTS SETUP ANDANALYSIS

4.1 Experiments Setup

To train the models introduced in chapter 3, Categorical Cross Entropy is used as the loss function,

and the Adam optimizer [24] is used for updating the network’s weights. The following values are used

for the optimizer’s parameters.: α = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e−7. Here, α is the learn-

ing rate, β1 and β2 are the exponential decay rate for the first and second moment estimates, and ϵ is a

constant value that prevents the denominator in the weight update formula from becoming zero. The

complete Adam algorithm by Kingma et al. [24] is described in Figure 5.1.

The LSTM and GRU-based models are trained over 20 epochs; training over 20 epochs causes the

testing loss to increase, which indicates that the model is overfitting the training data. The Transformers-

basedmodel is trained over 30 epochs due to its significantly more complex architecture and higher num-

ber of trainable parameters. The model starts to improve slowly after the 25th epoch, but there are no

signs of overfitting, so training for more epochs might be beneficial but is very time-consuming. Both

models are trained using mini-batching with batch size of 64.

The three models described in the previous chapter were trained on the Flicker8k dataset, using 90%

of the images (7,281 images) for training and 10% (810 images) for testing. The results below are reported

on the testing dataset unless stated otherwise. We also trained the best-performing model using 4-fold

cross-validation to ensure that the results are stable. The results are discussed in the following sections.
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4.2 Accuracy Analysis

The transformer-based model achieved the best results on the BLEU metric, while the LSTM and

GRU models achieved lower scores that are fairly similar. The models trained on data which included

using AraBERT segmenter consistently produced better results. Figure 4.1 show a comparison of the

BLEU-1 andBLEU-4 scores achievedbyourmodels. Figure 4.2 compares theBLEU-1 results evaluatedon

the training an testing data which showsminimal overfitting due to the use of dropout layers throughout

our models. The primary results are given below

• The LSTM-based model achieved a BLEU-1 and BLEU-4 score of 38.3 and 8.2 with the AraBERT

segmenter, and 35.1 and 8 without the AraBERT segmenter.

• The GRU-based model achieved a BLEU-1 and BLEU-4 score of 37.6 and 7.9 with the AraBERT

segmenter, and 35.3 and 7.8 without the AraBERT segmenter.

• The Transformer-based model achieved a BLEU-1 and BLEU-4 score of 44.3 and 15.7 with the

AraBERT segmenter, and 42.7 and 15.2 without the AraBERT segmenter.

All of our models exceed the previous scores set set by El Jundi et al. [15] on the Arabic Flicker8k

dataset with the same training/testing split. The scores reported by El Jundi et al. were a BLEU-1 score of

33 and BLEU-4 score of 6. Table 4.1 breaks down the scores of the previous work along with our models.

Table 4.1: BLEU score comparison of our models and previous work.
Model BLEU-1 BLEU-4
El Jundi et al. [15] 33 6
Ours: Transformers + AraBERT 44.3 15.7
Ours: Transformers 42.7 15.2
Ours: LSTM +AraBERT 38.3 8.2
Ours: LSTM 35.1 8
Ours: GRU + AraBERT 37.6 7.9
Ours: GRU 35.3 7.8

In order to make sure that the results are stable, we performed 4-fold cross validation on the best per-

forming model (Transformer + AraBERT segmentation). The average of the folds was a BLEU-1 score
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Figure 4.1: BLEU Scores of our models on the Arabic Flicker8k Dataset.

of 43.8 and a BLEU-4 score of 15.3. Table 4.2 breaks down the cross validation results per fold.

Captions generated using the transformers-based architecture are mostly accurate, with some cap-

tions having minor and sometimes major grammatical errors, and the occasional entirely unrelated cap-

tions. Figure 4.3 shows a histogram of BLEU-1 score of the validation dataset, with most of the captions

producing BLEU-1 scores between 20-60, with some captions having a score between 80 and 100.

Table 4.2: The results of the 4-fold cross-validation on our Transformers + AraBERT Segmenter model.
Fold BLEU-1 BLEU-4
Fold 1 44.3 15.7
Fold 2 43.1 15.3
Fold 3 44.9 15.4
Fold 4 42.8 14.9
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Figure 4.2: BLEU-1 scores of our models for the training and testing set.

4.3 Performance Analysis

Captioning speed is one of the aspects that we focused on while building our models. The RNN-

based models are significantly faster in captioning speed and model size compared to the transformers-

based models, with the GRU-based model being slightly faster than the LSTM-based one. Table 4.4

breaks down the speed and size of each of our models. The models that incorporate AraBERT segmen-

tation have smaller sizes due to using a smaller vocabulary (5,000 tokens instead of 8,000), which affects

the number of parameters in both the embedding layer and the final output layer.

The speed difference between transformers-based models and RNN-based models is significant and

becomes evenmore significant when themodel is used in lower-end devices such asmobile phones. If the

models were to be used in lower-end devices we recommend using a client-server architecture where the
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Figure 4.3: Histogram of the BLEU-1 scores of captions produced by the Transformer-based model.

Table 4.3: Breakdown of number of epochs to converge and time per epoch for each model.
Model Epochs to Converge Time per Epoch 1

Transformers + AraBERT 37 1040 seconds
Transformers 35 1110 seconds
LSTM+AraBERT 20 215 seconds
LSTM 20 227 seconds
GRU + AraBERT 19 203 seconds
GRU 20 210 seconds

client (i.e. themobile device) runs one of theRNN-basedmodels to provide captionswhen there’s nonet-

work connection of high network latency, and a server that uses a high-endGPU to run the transformers-

based model and provide higher quality captions to the lower-end device via an RESTAPI (Application

Programmable Interface).
1Reporting the average speed of captioning the entire testing set (810 images) on a workstation with the following specifi-

cations: Intel i7 5960K CPU, Nvidia RTX 2080 TI GPU, 64GBDDR4 RAM, and 2TBHDD.
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Table 4.4: Model size and captioning speed comparison between our models.
Model Size Speed 2

Transformers + AraBERT 390MB 1.22 second/image
Transformers 426MB 1.1 second/image
LSTM+AraBERT 48.7 MB 0.16 second/image
LSTM 50.8 MB 0.14 second/image
GRU + AraBERT 49.3 MB 0.15 second/image
GRU 48.2 MB 0.14 second/image

4.4 Training on the English Flicker8k Dataset

As discussed in subsection 2.2.6, the BLEU scores of Arabic image captioning work, including ours,

is still low compared to English alternatives. In order to verify whether the score gap is caused by the

morphological complexity of Arabic and the lower quantity of data (3 captions per image instead of 5

captions in the Flicker8k dataset), we trained the same Transformer-based model on the original English

version of the Flicker8k dataset using the same training parameters and the number of epochs. Themodel

produced a BLEU-1 score of 83.7 and a BLEU-4 score of 27.9, indicating that the low scores are due to

the training data and the complex nature of the Arabic language and not due to the model architecture

or the training setup. We also experimented with artificially reducing the English training data to match

the size of theArabic data by using only three captions per image instead of five. The experiment resulted

in a reduced BLEU score, with a BLEU-1 score of 73.2 and BLEU-4 score of 25.6.
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Figure 4.4: Examples of captions generated by the Transformer-based model with AraBERT segmenta-
tion, grouped by manual rating.
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CHAPTER 5

CONCLUSION

In this work, we presented three model architectures for Arabic image captioning: an LSTM-based

model, a GRU-based model, and a Transformer-based model. The Transformer-based model produced

the most accurate captions while the LSTM/GRU-based models yielded faster performance while still

producing relatively good captions. We also investigated and implemented a new preprocessing tech-

nique that alleviates some of the morphological complexity that is inherit in Arabic language by using a

word segmenter as part of preprocessing pipeline. Our proposed image captioning models incorporated

techniques that were not previously explored in Arabic image captioning such as attention mechanism

and transformers in the natural language generator. These enhancements yielded better results overmost

of recent works done on AIC, improving BLEU-1 score from 33 to 44.3 and BLEU-4 score from 6 to 15.6.

All of our experiments produced better BLEU scores than the previous work on the Arabic Flicker8k

dataset by El Jundi et al [15].

5.1 Future Research Directions

Possible avenues for further research include improving the transformer-based model by exploring

more complex architectures, and spendingmore timeon tuning the hyper-parameters. More importantly,

AIC researches desperately need a solid benchmark dataset such as the COCOdataset. While the Arabic

Flicker8k dataset allowed us to perform this research and achieve comparatively good results, it is more

than an order of magnitude smaller than the COCO dataset, thus covering a much smaller number of

visual concepts and scenarios. And while the machine translated captions are manually ranked and only

the best three captions are kept in the data, there are still someminor errors. Amanually translatedArabic

COCOdataset is a significant undertaking butwill open the doors formuch higher quality AIC research
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that can produce better results and allow researchers to better compare their work to that of others in the

research community.

5.2 Alternative Approach to AIC

Another approach to AIC would be to use an English captioning model along with a translation

model. This seems like a reasonable approach given the higher quality data and richer research available

in the English image captioning field. It would, however, have the following problems:

• Images provide richer information that the Arabic translation model would lose when working

only with English text (i.e., a picture is worth a thousand words).

• Captioning errors and translation errors would compound, potentially producing a much higher

error.

• Runtime would significantly increase since we are doing two operations, captioning and translat-

ing, making it more difficult to run the model on lower resource devices such as mobile phones.

While this approach is yet to be explored, if we consider Google Translator to be one of the best

Arabic translationmodels currently available, then the results that we explored on this translation service

by examining the Arabic COCO dataset in subsection 2.2.2 (which used Google’s Machine Translation

API to translate the original English captions) showed a significant rate of error, leading us to believe that

this approach will not produce the best results with the currently available resources.
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APPENDIX

1. Models Definition

The code snippets below describes themodel definitions using the sub-classingmethod in Keras [10].
The complete codebase is available at:
https://github.com/SniperDW/Transformer-Based-Arabic-Image-Captioning

1.1 LSTM/GRUModel

1 import tensorflow as tf
2
3 embedding_dims = 256
4 units = 512
5 vocab_size = 8000 # 5000 for AraBERT
6 rnn_type = "lstm" # lstm | gru
7
8 class Encoder(keras.Model):
9 def __init__(self):
10 super(Encoder, self).__init__()
11 self.fc = tf.keras.layers.Dense(embedding_dim , activation='relu')
12
13 def call(self, x):
14 return self.fc(x)
15
16 class Deocder(tf.keras.Model):
17 def __init__(self):
18 super(Deocder, self).__init__()
19
20 self.units = units
21
22 # Bahadanu Style Attention Mechanism
23 self.u_attn = tf.keras.layers.Dense(units)
24 self.w_attn = tf.keras.layers.Dense(units)
25 self.v_attn = tf.keras.layers.Dense(1)
26
27 self.embedding = tf.keras.layers.Embedding(vocab_size , embedding_dim)
28
29 self.rnn = tf.keras.layers.GRU(self.units,
30 return_sequences=True,
31 return_state=True) if rnn_type == "gru"

else tf.keras.layers.LSTM(self.units,
32 return_sequences=True,
33 return_state=True)
34
35 self.fc1 = tf.keras.layers.Dense(self.units)
36 self.dropout = tf.keras.layers.Dropout(0.5)
37 self.fc2 = tf.keras.layers.Dense(vocab_size)
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38
39
40
41
42 def call(self, x, features, hidden):
43
44 hidden_with_time_axis = tf.expand_dims(hidden, 1)
45
46 score = self.v_attn(tf.nn.tanh(self.u_attn(features) + self.w_attn(

hidden_with_time_axis)))
47 context_vector = attention_weights * features
48 context_vector = tf.reduce_sum(context_vector , axis=1)
49
50 x = self.embedding(x)
51
52 x = tf.concat([tf.expand_dims(context_vector , 1), x], axis=-1)
53
54 output, state = self.rnn(x)
55 x = self.fc1(output)
56 x = tf.reshape(x, (-1, x.shape[2]))
57 x = self.dropout(x)
58 x = self.fc2(x)
59 return x, state, attention_weights
60
61 def reset_state(self, batch_size):
62 return tf.zeros((batch_size , self.units))

1.2 Transformers Model

1 import tensorflow as tf
2
3 sequence_length = 20
4 vocab_size = 8000 # 5000 for AraBERT
5 embed_dim = 512
6 num_heads = 8
7 units = 512
8
9 class PositionalEmbedding(tf.keras.layers.Layer):
10 def __init__(self, sequence_length , vocab_size , embed_dim , **kwargs):
11 super().__init__(**kwargs)
12 self.token_embeddings = tf.keras.layers.Embedding(
13 input_dim=vocab_size , output_dim=embed_dim
14 )
15 self.position_embeddings = tf.keras.layers.Embedding(
16 input_dim=sequence_length , output_dim=embed_dim
17 )
18 self.sequence_length = sequence_length
19 self.vocab_size = vocab_size
20 self.embed_dim = embed_dim
21
22 def call(self, inputs):
23 length = tf.shape(inputs)[-1]
24 positions = tf.range(start=0, limit=length, delta=1)
25 embedded_tokens = self.token_embeddings(inputs)
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26 embedded_positions = self.position_embeddings(positions)
27 return embedded_tokens + embedded_positions
28
29 def compute_mask(self, inputs, mask=None):
30 return tf.math.not_equal(inputs, 0)
31
32
33 class TransformerEncoderBlock(tf.keras.layers.Layer):
34 def __init__(self, embed_dim , units, num_heads , **kwargs):
35 super().__init__(**kwargs)
36 self.embed_dim = embed_dim
37 self.units = units
38 self.num_heads = num_heads
39 self.attention = tf.keras.layers.MultiHeadAttention(
40 num_heads=num_heads , key_dim=embed_dim
41 )
42 self.dense_proj = tf.keras.layers.Dense(embed_dim , activation="relu")
43 self.layernorm_1 = tf.keras.layers.LayerNormalization()
44
45 def call(self, inputs, training, mask=None):
46 inputs = self.dense_proj(inputs)
47 attention_output = self.attention(
48 query=inputs, value=inputs, key=inputs, attention_mask=None
49 )
50 proj_input = self.layernorm_1(inputs + attention_output)
51 return proj_input
52
53 class TransformerDecoderBlock(tf.keras.layers.Layer):
54 def __init__(self, embed_dim , units, num_heads , **kwargs):
55 super().__init__(**kwargs)
56 self.embed_dim = embed_dim
57 self.units = units
58 self.num_heads = num_heads
59 self.attention_1 = tf.keras.layers.MultiHeadAttention(
60 num_heads=num_heads , key_dim=embed_dim
61 )
62 self.attention_2 = tf.keras.layers.MultiHeadAttention(
63 num_heads=num_heads , key_dim=embed_dim
64 )
65 self.dense_proj = keras.Sequential(
66 [tf.keras.layers.Dense(units, activation="relu"), tf.keras.layers.

Dense(embed_dim)]
67 )
68 self.layernorm_1 = tf.keras.layers.LayerNormalization()
69 self.layernorm_2 = tf.keras.layers.LayerNormalization()
70 self.layernorm_3 = tf.keras.layers.LayerNormalization()
71
72 self.embedding = PositionalEmbedding(
73 embed_dim=EMBED_DIM , sequence_length=SEQ_LENGTH , vocab_size=

VOCAB_SIZE
74 )
75 self.out = tf.keras.layers.Dense(VOCAB_SIZE)
76 self.dropout_1 = tf.keras.layers.Dropout(0.1)
77 self.dropout_2 = tf.keras.layers.Dropout(0.5)
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78 self.supports_masking = True
79
80 def call(self, inputs, encoder_outputs , training, mask=None):
81 inputs = self.embedding(inputs)
82 causal_mask = self.get_causal_attention_mask(inputs)
83 inputs = self.dropout_1(inputs, training=training)
84
85 if mask is not None:
86 padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
87 combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
88 combined_mask = tf.minimum(combined_mask , causal_mask)
89
90 attention_output_1 = self.attention_1(
91 query=inputs, value=inputs, key=inputs, attention_mask=

combined_mask
92 )
93 out_1 = self.layernorm_1(inputs + attention_output_1)
94
95 attention_output_2 = self.attention_2(
96 query=out_1,
97 value=encoder_outputs ,
98 key=encoder_outputs ,
99 attention_mask=padding_mask ,
100 )
101 out_2 = self.layernorm_2(out_1 + attention_output_2)
102
103 proj_output = self.dense_proj(out_2)
104 proj_out = self.layernorm_3(out_2 + proj_output)
105 proj_out = self.dropout_2(proj_out , training=training)
106
107 preds = self.out(proj_out)
108 return preds
109
110 def get_causal_attention_mask(self, inputs):
111 input_shape = tf.shape(inputs)
112 batch_size , sequence_length = input_shape[0], input_shape[1]
113 i = tf.range(sequence_length)[:, tf.newaxis]
114 j = tf.range(sequence_length)
115 mask = tf.cast(i >= j, dtype="int32")
116 mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
117 mult = tf.concat(
118 [tf.expand_dims(batch_size , -1), tf.constant([1, 1], dtype=tf.

int32)],
119 axis=0,
120 )
121 return tf.tile(mask, mult)
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2. AdamOptimizer

Figure 5.1: The algorithmof theAdamoptimizer as it appears the paper byKingma et al. [24]. TheAdam
optimizer uses an adaptive learning rate for each parameter andmaintains an exponentially decaying aver-
age of past gradients. These techniques allowmodels using theAdamoptimizer to convergemore quickly
during training.
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