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ABSTRACT

This paper introduces Para�nitary Learning (PL), a learning framework that asserts the primacy of

scale in the construction of arti�cially intelligent agents. This framework is successfully applied as an

extension of neural networks and is capable of producing competitive results in simple binary classi�cation

tasks. The base neural network implementation of PL employs a special case of Oja’s Rule (called Oja’s

Golden Rule). This special case is then further augmented with two additional mechanisms for improving

e�ciency and stability. Respectively, this involves employing radix economies, a concept drawn from

coding theory, and prediction markets, which cast the models being developed as logical inductors over

the target distribution being learned.
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CHAPTER 1

DISTRIBUTED LEARNING RULES

§ 1.1 Hebbian Learning and Oja’s Rule

Hebbian learning is a distributed learning scheme �rst formulated in 1949 by Donald Hebb [1]. The

motivation in the development of this scheme is to provide an account of neural plasticity, the ability of

the nervous systems to change in response to an input stimulus, as found in biological systems [2]. Similar

in motivation to this thesis, there exist contemporary adaptations that attempt to merge standard signal

processing techniques like least mean square (LMS) with Hebbian learning [3].

The guiding intuition behind the Hebbian formalization is that repeated �rings of neighboring

neurons should be indicative of a strengthening of their relationship, while mismatched �rings should cor-

respond to a weak association. This intuition is captured in the concise conditional expression, “neurons

wire together, if they �re together,” coined by Singer and Löwel in the early 90’s [4].

Formally, the Hebbian learning rule is de�ned as follows:

oj = f(
n∑
i=1

wijxi) (1.1.1)

∆wi = ηxioj (1.1.2)

wi(n+ 1) = wi(n) + ∆wi (1.1.3)
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In the above equations, oj is the output of node j with input stimuli coming from all presynaptic

nodes i. Each node i contributes wij of its activation xi as input to the postsynaptic node j. Given

this aggregate input stimulus, the activation of node j is accounted for by some activation function f .

Assuming that the activation function is linear, as is the case for the original formulation of Hebb’s Rule,

the change in the edge weight, ∆wi, is equal to ηxioj , where η is the selected learning rate.

From this formulation, it is clear that ∆wi ∝ xioj , meaning that edge weights are strengthened

when adjacent (pre- and postsynaptic) neurons are activated [5]. This quality is especially visible when

considering boolean networks where xi, oj ∈ {0, 1}. A visible drawback of this proportional change is

a resultant instability in the network that causes edge weights to increase or decrease at an exponential

rate when there exists a dominant signal in the input stimulus [6]. This dominant signal leads to repeated

activations between the pre- and postsynaptic neurons.

The major drawback of the Hebbian scheme is that it is unstable when presented with inputs that

have a dominant signal. That is, due to the increased associative or dissociative updates provided neighbor-

ing signals, the weights can either grow or decrease exponentially fast, approaching in�nity after repeated

stimulation.

Assume, for example, that there is a dominant input signal xi that is weighted su�ciently to activate

the postsynaptic neuron itself. Consequently, the output of node j is at a minimum proportional to

the input from the presynaptic node i (i.e., oj ∝ xiwi(n), minimally). Following from this observation,

∆wi ∝ xioj ∝ xi(xiwi(n)). So, a lower bound on the edge weight change associated with a dominant

signal can be stated as ∆wi ∝ xi(xiwi(n)) = αx2
iwi(n). Therefore, the following evolution of the edge

weightwi is observed:

2



wi(n+ 1) = wi(n) + ∆w (Step 1)

= wi(n) + αx2
iwi(n) (Step 2)

∝ wi(n)[1 + αx2
i ] (Step 3)

∝ wi(0)[1 + αx2
i ]
n (Step 4)

To accommodate the issue of edge weight instability, alternatives such as Oja’s Rule are employed,

since it uses a normalizing condition to limit the magnitude of edge weights between 0 and 1 [7]. The

derivation of this rule can be seen as a simple modi�cation of Hebb’s Rule that divides the weight update

suggested in the prior scheme by the p-norm of all of the weight updates associated with the target neuron

j. The p-norm of the weight updates is de�ned below:

||∆w||p = (
m∑
k=1

[wk(n) + ηxkoj]
p)

1
p (1.1.4)

The resultant update rule is,

wi(n+ 1) =
wi(n) + ∆wi
||∆w||p

(1.1.5)

The original formulation of this rule used the Euclidean norm, setting p = 2 [7]. The power-series

expansion of this update rule results in the following “simpli�cation” [7]:

wi(n+ 1) =
wi(n)

(
m∑
k=1

wpk(n))
1
p

+ η(
ojxi

(
m∑
k=1

wpk(n))
1
p

−
wi(n)

m∑
k=1

ojxkw
p−1
k (n)

(
m∑
k=1

wpk(n))
(p+1)
p

) +O(η2) (1.1.6)

3



The bene�t of this expansion is two-fold: 1) for a small learning rate, η, O(η2) goes to zero and 2) the

de�nition of oj can allow for a further simpli�cation [7]. In this case, de�ne oj as follows:

oj =
n∑
i=1

wijxi (1.1.7)

This change is a proportional shift to the linear activation function previously considered and not alto-

gether a massive change from the prior de�nition considered in Hebb’s Rule. With the condition that the

presynaptic weights normalize to one, it is possible to reach the �nal derivation of Oja’s Rule. Explicitly,

this normalization condition is:

||∆w||p = (
n∑
i=1

wpi )
1
p = 1 (1.1.8)

Hence, the derivation (note: p = 2):

wi(n+ 1) =
wi(n)

(
m∑
k=1

wpk(n))
1
p

+ η(
ojxi

(
m∑
k=1

wpk(n))
1
p

−
wi(n)

m∑
k=1

ojxkw
p−1
k (n)

(
m∑
k=1

wpk(n))
(p+1)
p

) (Step 1)

=
wi(n)

1
+ η(

ojxi
1
−
wi(n)

m∑
k=1

ojxkw
p−1
k (n)

((
m∑
k=1

wpk(n))
1
p )(p+1))

) (Step 2)

= wi(n) + ηoj(xi −
wi(n)

m∑
k=1

xkwk(n)wp−2
k (n)

1(p+1)
) (Step 3)

= wi(n) + ηoj(xi − wi(n)
m∑
k=1

xkwk(n)w0
k(n)) (Step 4)

= wi(n) + ηoj(xi − wi(n)oj) (Step 5)

Replacing oj with y yields Oja’s Rule:
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wi(n+ 1) = wi(n) + ηy(xi − (wi(n)y)) (1.1.9)

Erik Oja’s original formulation of this rule showed that the weight vector that the applying neuron con-

verges to is the �rst principal component of the input vector.

§ 1.2 Conceptual Prelude to Oja’s Golden Rule

Conceptually, learning schemes such as those considered by Hebbs, Oja, and Sanger (who is cred-

ited with inventing the Generalized Hebbian Algorithm [8]) are concerned with the widely studied phe-

nomenon of self-organization in computing systems. This focus is a continuation of the process started

early on by Turing [9]. Yet, it should be noted that the distributed schemes currently being discussed are

attempts at accounting for patterns of self-organization in a way that is “lighter-weight” in nature than

many of the contemporary alternatives (e.g., Deep Learning).

This characterization of being “light-weight” is not rigorously de�ned here, but it is fundamentally

concerned with the notion of what it means for “copying” to be a granted, or structurally provided, primi-

tive procedure of the logical system being analyzed [10]. This observation is associated with the structural

rules of “weakening” and “strengthening” identi�ed in proof theory [11] and, ultimately, what it means

for there to be “conservation” or “harmony” in a dynamical system [10]. To be explicit, weakening and

strengthening (or contraction) are de�ned explicitly below, followed by a clarifying example of how these

rules may violate what are called “harmony constraints” [12].

A ` B
A,C ` B

(weakening) (1.2.1)
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A,A ` B
A ` B

(strengthening) (1.2.2)

What Equation 1.2.1 is meant to show is that the system transitions from only requiring resource A to yield

some resultB, to also requiring a second resourceC to produce the same result. In this way, the system is

now conditioned upon a larger number of prerequisites to produce the intended productB. The inverse

is considered in the case of strengthening, which migrates the system into a context that requires fewer

resources to produce the same e�ect.

The substructural logic known as Linear Logic [12, 13], developed by Jean-Yves Girard, explicitly

recognizes this modality in the persistence operator (“!”), read “bang”, which allows for the inde�nite

license to use the resource prepended with it (e.g., !Quarter allows for the repeated use of theQuarter

premise). In this way, the resource is bracketed as existing in an exponential modality with respect to the

rest of the system (i.e. it cannot be used up by the linear consequence relations of the system).

To help clarify, consider an example where aQuarter is needed to purchase aCoke from a vending

machine. In most contexts, I will only have a pocketful of change (that is, a �nite amount of change) to

transact with the environment to obtain my desired result. Imagine that I have 8 quarters, then it means

that the operating context contains 8Quarter premises to obtain 1Coke and 3Quarters (i.e., the cost

of a Coke is 5 Quarters). If weakening or strengthening is invoked, then it disturbs the harmony or

conservation of the available resources that are ever available in the system.

8Quarter ` Coke, 3Quarter
7Quarter ` Coke, 3Quarter

(strengthening) (1.2.3)

In the strengthening case considered above, somehow 7 quarters are able to achieve the same result as

8 quarters. This violates the harmony of the system (i.e., the quarter has spontaneously dematerialized

6



from the system), because Cokes decidedly cost 5 quarters. Through explicitly recognizing the e�ects of

weakening and strengthening, which are often taken for granted in logical systems, Linear Logic attempts

to better model the “physics” or transactional nature of an environment that operates deterministically

(e.g., We cannot create or destroy matter without transacting some amount of energy). The use of the

exponential modal operator allows for these concerns to be ignored.

Putting these simple examples aside, the exponential modality (“!”) is implicit in the de�nition of

formally de�ned functions and data types [14], because these are constructs that may be invoked indef-

initely as generic constructs, while instances of these objects are ephemeral in nature. The issue with

generic constructs, however, is that - in the context of formalisms - there is nothing required to maintain

them relative to the system. The generic structure of the integer, for example, can be de�ned in Linear

Logic similarly to how integers are de�ned in λ-Calculus [15], but the de�nition of what it means to be

an integer is, itself, not maintained (intrinsically) by the system. Clift does a reasonable job at de�ning

Turing Machines in Linear Logic [16], but it falls short of supporting the exponential modality.

The concern of this de�nitional externalism is that the reliance upon exponential objects (those

not intrinsic to the system) allows the leak of an inde�nite number of possible assumptions/resources

into/out of the system being analyzed. In this way, the exponential modality obfuscates or makes tacit calls

to strengthening and weakening operations. The conceptual risk of this behavior is that the mathematical

objects being employed in performing some operation (such as a machine learning algorithm) is tacitly

reliant upon an intractable/in�nite number of resources in its de�nition.

As a last example of the point that is being suggested, consider the procedure of backpropagation.

Backpropagation requires the persistence of error from the output layer back through the layers of the

graph. This setup, therefore, makes error a global construct accessible to the nodes of the graph. Yet,

this framing begs the question of how this error is de�ned, where it is de�ned (at what layer), and the

7



mechanism by which it persists backwards. It is only through the application of contextually external

operations on the system that it is able to retroactively assign error to the nodes of any given layer, but

this assignment is an external (exponential (“!”)) process in itself. The fact that this process is assigned

an exponential modality means that we believe there to exist a process that could be de�ned intrinsically

(linearly) to the system that would provide this functionality. However, the merit of such existence claims

is generally on very shaky grounds - usually the validity of proofs making existence claims have to rely

upon the observation of an instance of such a phenomenon in the �rst place [17].

In short, it is generally argued that this assumption or permissiveness of exponential processes into

the logical context being considered is just part of the act of abstraction being performed. This defense

is understandable, but if the existence claim being made is taken seriously and such an intrinsic process

does not exist (i.e., there is no such constructible instance given the available time or resources), then

the coherence of the search or systems being suggested is lost. Further, any systems built upon these

incoherent logical systems would themselves be incoherent. That is, they admit contradiction into their

context and, hence, can (incoherently) yield any conclusion. To steal a couple of lines from the famed

Austrian philosopher Ludwig Wittgenstein, the concern is a development of a system of abstraction where

“language is on holiday” and the structures of it have the e�ect of “wheels spinning idly” [18].

Finally, as a disclaimer, this conceptual framing is simply meant as a broad overview of the concerns

motivating this project, which is not primarily theoretical in nature. The conceptual “light-weightedness”

of Hebb’s and Oja’s rules is a result of their ability to bypass the dependency of certain global structures

(e.g., error).

8



§ 1.3 Oja’s Golden Rule

The disposition that the prior section is meant to re�ect is a reservation with overly abstract systems.

The consequence of this reservation is a bias toward mathematically simple and distributed learning

schemes that attempt to recursively construct the desired behavior, while closely adhering to the physical

analog being employed (i.e., non-arti�cial neural networks).

Accordingly, the derivation of what will be called Oja’s Golden Rule is less a derivation than a

continued simpli�cation of the abstract objects being employed. Simply being copied from above, Oja’s

Rule is:

wi(n+ 1) = wi(n) + ηy(xi − (wi(n)y)) (1.3.1)

The reason that this “copied” equation is relabeled from Equation 1.1.9 to Equation 1.3.1 is that this copied

version is tacitly being modi�ed in a way that makes it di�erent from the original. Namely, the change is

a contextual break on the assumption that |η| << 1 employed above to enable the removal ofO(η2) in

the power expansion above. This migration is not mathematically rigorous, but is being granted to allow

for a conceptual simpli�cation in the structure being evaluated.

As such, what is really being considered is a doppelgänger of Oja’s Rule, where α is not constrained

by the learning rate constraint and distinct from the derivation provided above yielding Equation 1.1.9:

wi(n+ 1) = wi(n) + αy(xi − (wi(n)y)) (1.3.2)

9



Accordingly the �rst simpli�cation is that the learning rate,α, will be set to 1, which is a simpli�cation

only allowed through the creation of the assumption breaking doppelgänger equation above. This yields:

wi(n+ 1) = wi(n) + y(xi − (wi(n)y)) (1.3.3)

However, it should be stated that the creation of this doppelgänger should not be all that contentious,

because there is no explicit limitation on the learning rate encoded into the system. Without such a

limitation, any implementation of Oja’s Rule (Equation 1.1.9) that does not explicitly limit the learning

rate is implicitly using Equation 1.3.2. Of course, it is not mathematically rigorous, but all that is being

sought currently is a simple, distributed learning rule and, so, concerns for absolute rigor are being tabled

to enable this exploratory process.

The conceptual reason for assigning α = 1 is that if the neuron is to be taken as the fundamental

unit of learning, then any adjustment that it makes is deterministically pre�gured (e.g., A neuron never

half learns nor does the weather 0.05 rain when it is in fact raining). In the conceptual program being

suggested, it is necessary for these machinations (learning rate, etc.) to be made intrinsic to the systems

themselves. Such a large learning rate may be concerning, because it appears prima facie indicative of

broad oscillations in the hypothesis space. However, as will be shown, the resultant learning rule will

mitigate these concerns to some extent.

The second simpli�cation is likely to be even more contentious, because it suggests the forced equality

of the weight and presynaptic activation vectors, i.e. wi(n) = xi (for xi at time n). To those used

to the distinction of node activations and edge weights, this suggestion appears incredibly strange and,

potentially, incoherent. The response to this concern is to point out the “unharmonious” nature of this

distinction. This defense asks the question, “Shouldn’t the activation of a node correspond identically

10



with the edge activations that it produces?”. That is, treating neurons as functions being able to tolerate

any stimulus (they are total functions) and inhabiting a vector space (as a consequence of their weighted

output edges) is a form of dissonance from the guiding analogy of biological neural networks, because the

activation of some set of neurons can lead to an in�nite number of consequent activations in subsequent

layers. For those concerned only with the expressiveness and power of neural networks, this concern or

complaint of dissonance is not problematic. Yet, if what is of primary concern is the ability to reason about

the objects (such as concerns with producing conceptual black boxes), this distinction is problematic.

Since the latter concern is a motivation of this paper (see section 1.2), this suggestion is taken seriously

here. It is, however, recognized that this concern is a minority position with respect to most contemporary

work.

The equality,wi(n) = xi, means the activation of a presynaptic neuron only ever yields an in�uence

ofwi(n) to the target neurons. What this identity is meant to impress is that the “activation” of a neuron

should not be interpreted as a value itself, but operationally as the system’s intrinsic ability to persist or

dissipate an incoming source signal. Conceptually, this behavior should be understood as each neuron

constructing a relative and local concept of value (more on this below, see chapter 3 section 2). Allowing

this equality, the following equation results:

wi(n+ 1) = wi(n) + y(xi − (wi(n)y)) (Step 1)

= wi(n) + y(wi(n)− (wi(n)y)) (Step 2)

= wi(n)(1 + y(1− y)) (Step 3)

= −wi(n)(y2 − y − 1) (Step 4)

De�ne the Golden Ratio equation, (y), as follows:

11



φ(y) = −(y2 − y − 1) (1.3.4)

Finally, it is possible to de�ne Oja’s (doppelgänger) Golden Rule:

wi(n+ 1) = φ(y)wi(n) (1.3.5)

The intuitive useful qualities/strengths of this learning rule can be observed by graphing the components

of this rule and simulating the long-term behavior of implementing neurons. This analysis is done brie�y

in the next few paragraphs.

With the activation-weighting identity de�ned above, wi(n) = xi, it is necessary to update the

equation, y, de�ning the aggregate stimulus/activation a�ecting a neuron:

y = oj =
n∑
i=1

wij (1.3.6)

Since y is only a function of the aggregation of input weights to a neuron, it makes the update rule

(Equation 1.3.5) only dependent upon the edge weights connected to the postsynaptic neuron j. Since all

incoming edges,wij , to node j will be updated by the scalar yielded by φ(y), then it must be the case that

the sum of the edges to node j also changes by φ(y). Hence, it is possible to characterize the aggregate

behavior of the input weights under some dominant signal. Accordingly, the following aggregate weight

update rule can be de�ned:

y(n+ 1) = φ(y(n))y(n) (1.3.7)
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Of interest, then, is the long-term, aggregate behavior of the input edge weights to a given neuron following

repeated application of the update rule. The desired behavior is for the associated graph to reach a stable

point as training progresses. Figure 1.3.1, below, helps characterize this behavior.

Figure 1.3.1: Graph of the aggregate behavior (Equation 1.3.7) of the incoming edge weights to a neuron.
The x-axis contains the input stimulus values and the y-axis reports the consequent aggregate weight value
(Equation 1.3.6) given the same stimulus. This graph shows that both inputs of 0 and 1 are stable (i.e.
y(n + 1) = 1, if y(n) = 1 and y(n + 1) = 0, if y(n) = 0). The green coloring is meant to indicate
regions where the behavior of the graph does not oscillate and the red coloring is meant to indicate unstable
regions. The red, dotted lines denote the identity equations y = x and x = 1, respectively.

The stablest region of the update rule is between the roots of the update polynomial, which occur

at−φ−1 and φ, where φ is de�ned:

φ = GoldenRatio =
1 +
√

5

2
≈ 1.618... (1.3.8)

Technically, the update rule is stable along a slightly wider domain that is, roughly, (−1.18, 1.87), but the

smaller domain [−φ−1, φ] will be opted for in the work completed here. The reason for this choice is that

the slightly broader domain results in oscillations in the node’s long-term behavior, while [−φ−1, φ] has
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no such problems. However, any values greater than 1.87 or smaller than−1.18 are decidedly unstable

and will result in unbounded weight growth and oscillatory behavior. This unbounded behavior occurs

because for y ≥ 1.87 or y ≤ −1.18, growth is monotonic over an even number of updates (i.e. |y(n +

2)| ≥ |y(n)|).

Restricting the input domain to [−φ−1, φ] avoids the pitfalls of such unstable behavior. Further,

it produces convenient long-term output behavior that can be described in the terms used in dynamical

systems. Dynamical systems attempt to understand rule-based state transitions such that xn+1 = f(xn)

[19]. This state transition function is already provided by Equation 1.3.7, but what is of particular interest

are the speci�c attractors and basins of attraction a�ecting system convergence in the long run.

Surprisingly, the system restricted on the domain [−φ−1, φ] contains two basins of attraction with

distinct attractors. Basins of attraction are regions of a domain space that uniquely evolve to a given

attractor, points in the weights space that neighboring points (the basin of attraction) asymptotically

approach [20, 21]. In the case of Oja’s Golden Rule, the long-term behavior produces a dynamical and

restricted form of the Heaviside step function.
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Figure 1.3.2: The long-term behavior of graph shifts input into a weighting scheme that roughly mirrors
the step-function over a restricted domain. In this way, the system has an intrinsic activation pattern that
does not have to be explicitly de�ned as the Heaviside. The blue lines represent the attractor that the
corresponding input evolves to in the long run.

However, as should be evident, this reliance upon neurons that have a �nite input domain is not without

its issues. Of particular concern is how out-of-bounds input should be handled. This concern motivates

the content of the following section.
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CHAPTER 2

RADIX ECONOMY

§ 2.1 Finding the Optimal Radix Economy

As indicated in the prior section, the designation of neurons as operators in a dynamical system with

�xed basins of attraction and input constraints (e.g. x ∈ [−φ−1, φ]) leads to a slight problem with respect

to implementation. Particularly, these constraints lead to neural operators and, hence, the neural network

that they de�ne as incompletely covering the input space. For example, what if the input stimulus to

a node is 2? Surely this input may be meaningful with respect to the machine learning problem being

evaluated and cannot simply be ignored. The solution that will be explored in managing this “coverage”

problem will involve dynamic network topologies that self-organize into more comprehensive coverage

states.

The algorithm being suggested here is by no means the only scheme for dynamically constructing

network topologies. An early example of this sort of strategy is cascade correlation, which iteratively added

hidden nodes to identify undetected features in an otherwise �xed graph [22]. This area of research has

broadly become known as automated machine learning (AutoML) and pitches itself as a potential solution

in overcoming the many barriers to entry in applying AI technologies (e.g., monetary cost, technical

expertise, etc.) [23].

The idea being pursued is to allow neurons processing the input signal to “divide” to manage currently

uncovered regions in the input space of the target distribution being modeled. In this way, the input
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domain of a given network is not a �xed structure in the neural architecture being trained. Importantly,

this dynamic input domain has the e�ect of removing the arbitrary domain of (−∞,∞) that generally

characterizes deep neural networks. Rather, the domain is inde�nite in shape and grows only as large as is

logically necessary to manage the input signal.

As an abstract mechanism, this operation of neural cell division is all well and �ne, but how should

this strategy be implemented? And, what is the criterion being applied to evaluate whether the pursued

strategy is reasonable or e�cacious? To answer these questions, it is helpful to adopt some tools from

coding theory. Of particular interest to this strategy, is the concept of radix economies.

The radix of a system numeric simply refers to its base (e.g., binary systems are radix 2, hexadecimal

systems are radix 16, etc.) [24]. Radix economies are concerned with the development of the most econom-

ical codings or representations of a given problem. Historically, this area of coding theory has suggested

that base-3, or ternary, systems are more economical than binary systems. The simple reason that base-3

systems are considered (near) optimal is that Euler’s number is generally considered the true optimal radix

and 3 is simply the closest rounded integer value [25]. But, due to the inability to easily represent three

logical states early on in the area of computation, binary implementations have since won-out [26].

These concepts are conducive to managing the problem being faced: Given an input stimulus of

unknown magnitude, what is the most economical means of representing it? Coding theory’s answer is

the optimal value for Equation 2.1.3a below,

time(b,N) = blogb(N) + 1c, N ≥ 1 (2.1.1)

space(b) = b (2.1.2)

17



E(b,N) = time(b,N) · space(b) (2.1.3a)

whereN represents the signal magnitude being represented and b is the base of the system. As indicated,

it is helpful to think of Equation 2.1.3a as being an optimization of two components: 1) time and 2) space.

In this way, the economy is a measure of time-space complexity.

This time and space breakdown is helpful because it provides an analog to written digits (this analogy

does extend to other physical systems as well, but the act of written digits is accessible). Given some value

N and a base b, it would require the hypothetical transcriber capable of writing 1 symbol per unit of time,

time(b,N) units of time to complete the task. In this way, it is helpful to think of each symbol as a

decision process that is able to reduce the uncertainty in N . Hence, the repeated application of such

procedures reduces the uncertainty exponentially. Accordingly, space(b) or just b, is the property that

de�nes the amount of uncertainty reduced by such hypothetical processes.

In this setup, the optimal radix economy would then be the radix that best covers the domain of

interest. Hence, it is the radix value, Ω, with the best average (time-space) economy over the value-domain

being represented (e.g., R, N, etc.).

Explicitly:

Ω = arg min
b ∈ R

∞∑
N=1

E(b,N) (2.1.4)

The subsequent goal is to �nd Ω. Luckily, this value has been demonstrated by Stanley Hurst in his

analysis of multi-valued logics [27]. The proof is as follows, but it uses a variation of the radix economy

formula.

E(b,N) = b logb(N), N ≥ 1 (2.1.3b)
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For largeN , this variant is approximately equal to Equation 2.1.3a. The proof for the optimality of Ω =

e ≈ 2.718..., under Equation 2.1.3b) is as follows [27]:

E(b,N) = b logb(N), b > 0 (Step 1)

= b
ln(N)

ln(b)
= ln(N)

b

ln(b)
(Step 2)

d

db
E(b,N) =

d

db
ln(N)

b

ln(b)
(Step 3)

E ′(b,N) = ln(N)(
1

ln(b)
− (

b

(ln(b))2

1

b
)) (Step 4)

= ln(N)(
ln(b)− 1

(ln(b))2
) (Step 5)

= ln(N)
1− 1

(1)2
= 0, when b = e (Step 6)

E ′(b,N) < 0, when b < e (Step 7)

E ′(b,N) > 0, when b > e

b = e is the global minimum ofE(b,N) (Step 8)

Since, b = e is the global minimum ofE(b,N), it is clear that Ω = e. The proof above is convincing,

but is the use of the variant radix economy formula, Equation 2.1.3b, as unassuming as it seems? In this

variant, the space representation stays the same, but the time component does change considerably.

This shift allows for quanta of time that are decimal in value. This change in representation may not be

problematic in all systems, but if time is understood as the number of discrete (and possibly parallelized)

processes needed to produce the representation then there may be trouble on the horizon. For example,
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this suggestion of a fractional timemaps to a set of numerical systems that may include fractional places

(e.g., What is meant by a fractional tens, hundreds, etc. place?). What this criticism is meant to portend

is that a fractional time element implies the ability to allocate resources in a way that exactly matches the

resource requirements of N and, hence, the result of the above proof is not strictly independent of N

as it �rst seemed. An analogy of this criticism would be the ability to always provision virtual machines

in a cloud environment which have the exact resource requirements for the processes being managed (i.e.

The only way to know the exact resource requirements for an arbitrary inputN , would be to have already

knownN a priori).

Therefore, it can safely be said that - for at least some systems - Equation 2.1.3a is the proper character-

ization of economy and not Equation 2.1.3b when having to manage arbitrary inputsN . The following

question presents itself: Is the Ω characterized by Equation Equation 2.1.3a (let’s call it Ωa) the same as

the Ω just previously found (let’s call it Ωb)?

This question is not as easily resolved through analytic means (due to the discontinuities caused by

the �oor function) and requires a more empirically founded analysis:

Figure 2.1.1: The above graph illustrates the empirically identi�ed optimal radix value, Ω, (blue line) given
the associated limit n. The top and bottom horizontal lines (Euler’s number (orange) and φ2 (green))
represent bases that are equidistant from the asymptotically de�ned optimal radix (purple line).
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The above �gure asymptotically identi�es Ωa a the midpoint between b = e and b = φ2, such that:

Ωa =
e+ φ2

2
(2.1.5)

This result is clearly unexpected, but the belief that will be pursued is that Ωa is an artifact of a more

fundamental tension between the management of discrete and continuous input domains. Fundamental

to this discussion (as visible in phenomena like the Fibonacci series) is the observation that the Golden

Ratio is a point of symmetry between additive and multiplicative processes:

φ0 + φ1 = φ · φ = φ2 (2.1.6)

φ2 + φ3 = φ2 · φ2 = φ4 = (φ2 · Eqn.2.1.6) (2.1.7)

The importance of this symmetry is that it allows for an additive procedure for producing multiplicative

changes, which in turn allows for exponential scaling (this point will be addressed further below in section

2, which covers implementation).

Now, leveraging some of the prior work from chapter 1 section 3, it has been shown that operators

of the dynamical system de�ned to adjust their incoming edge weights with Equation 1.3.5 (Oja’s Golden

Rule) will in the long-run, provided graph convergence, lead to a system that has drifted to a position where

aggregate edge behavior, y, can be characterized as one of the two identi�ed attractors (i.e., y ∈ {0, 1}).

The result of this convergence, however, meets exactly the tacit assumption at work in Equation 2.1.3b, i.e.

the trained graph leads to an encoding where the possible inputsN provided from the input distribution

are memoized relative to the capacity of the processing unit, the neuron. In this way, if it is assumed that

the implemented learning scheme’s neurons are radix φ2, then a trained and converged graph will lead to
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an encoding that meets the conditions of Equation 2.1.3b and, hence, could be re-encoded with b = e. The

aggregate economy of the system, however, will be proportional to Ωa and the optimal economy achieved.

That is, for the optimal economy to be achieved, it is necessary for two distinct encodings, e1 and e2, to

be produced with bases b1 = φ2 and b2 = e, respectively. The average economy of such behavior, then,

is Ωa (the descriptive value of the tension between discrete and continuous representations). With this

setup in mind, the next section addresses implementation of this encoding.

§ 2.2 Division, Relativization, and other Implementation Questions

This section brie�y discusses some of the nuances encountered in implementing this algorithm. Of

primary importance to the foregoing discussion is the implementation of division. Figure 2.2.1 below

indicates the growth strategy of any given neuron, j. Assume that neuron j has a capacity of φ2, this as-

sumption is arbitrary and j could have any non-zero externally de�ned capacity. Finally, for any aggregated

input y = oj /∈ [−φ−1, φ], “divide” the neuron according to the following scheme:

- Division Rule 1. Create a node j′ with incoming and outgoing edges to all of the same nodes as
node j. Further, each of these edges should be weighted such thatwij = wij′ for incoming edges
andwjk = wj′k for outgoing edges.

- Division Rule 2. For each incoming edge weights wij , scale it down by a factor of φ−2, such that
wij(n+ 1) = φ−2wij(n) . Further, for each incoming edge weightswij′ , scale it down by a factor
of φ−1, such thatwij′(n+ 1) = φ−1wij′(n).

- Division Rule 3. Lastly, increase the outgoing edge weights for j′, by scaling up by a factor of φ,
such thatwj′k(n+ 1) = φwj′k(n).

These reweightings are likely confusing with respect to traditional network architectures and it brings up

a point that has only indirectly been addressed thus far. The point being, each of the neurons develops its

own relative (intrinsic) notion of value. That is, each neuron de�nes its own identity value (i.e., the value
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1), which determines how it behaves with respect to input stimuli. Explicitly, for a node j, the value for

unity is a relatively de�ned object dependent on its outgoing edge weights:

(internal) 1j =
m∑
k=1

|wjk| (external) (2.2.1)

Accordingly, the input to any neuron, y = oj , is a quantity relative to 1j . Hence,

yj =

n∑
i=1

wij

m∑
k=1

|wjk|
(2.2.2)

This relativization does not change any of the conclusions made thus far, but it does change how

Oja’s Golden Rule, Equation 1.3.5, should be looked at. This reinterpretation means that Equation 1.3.5

operates across scale and is not an explicitly �xed construct across distinct neurons i, j, and k.

Figure 2.2.1: Each of the lines represent possible instantiations of Equation 1.3.5 under the relativizing
conditions Equation 2.2.1 and 2.2.2.

With this additional context provided, the scaling suggested in the de�ned division scheme is more

tractable. Scaling the input weights for j and j′ by φ−2 and φ−1, respectively, (Division Rule 2) causes the
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system to maintain the magnitude of the input signal. This consequence is visible through an application

of Equation 2.1.6: φ−2 + φ−1 = φ0 = 1 = (φ−2 · Eqn.2.1.6).

Furthermore, the scaling up of j′ by a factor of φ (Division Rule 3), leads to the expected increase in

graph capacity. Again, by application of Equation 2.1.6, 1j + φj = φ2
j . Hence, the capacity of the system

moves from 1j at time n to φ2
j at time n+ 1. This growth is indicated in the �gure below.

Figure 2.2.2: The division strategy of the graph implementing Oja’s Golden Rule with an optimal radix
encoding. The maximal growth rate of the graph is φ2 as is evident by the exponentially growing capacity
indicated above.

An additional constraint is added to improve the encoder’s stability. Namely, a hyperparameter, π,

is added to denote the division refractory period. This refractory period indicates the number of inputs

that must occur between cell divisions. After division occurs and the cells enter the refractory period,

they cannot divide again until π inputs (time-cycles) have passed, but they are still able to propagate input

signals during this time.

With the outline of division provided, there remain a few housekeeping items necessary to wrap-up

implementation as a topic. The �rst of these points covers signal propagation. The basins of attraction

are visible in Equation 1.3.7, but it is reasonable to prevent signal propagation unless a certain activation

threshold is met. Since the attractors for any given neuron are 0 and 1j , it makes sense to base this activation
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threshold to the active attractor 1j . Let there exist some bias, βj , (de�ned as a hyperparameter), such that

the neuron is activated only if yj ≥ 1j − βj , otherwise it does not contribute to the activations of nodes

in the subsequent layer.

With node activations addressed, it is clear that the graph has a preference for persisting positive signals

and dampening negative ones. To address this bias, the idea of node polarity is introduced. If a node is

positively polarized, then it operates in the manner so far discussed. If a node is negatively polarized, then it

simply means that they obey a learning rule similar to Equation 1.3.5, but re�ected across the line y = −x

and have an inverted activation scheme: yj ≤ −1j + βj .

As a �nal item, since the experimental goal being pursued here is binary classi�cation (see below), the

output layer consists of a single node using the standard logistic activation function. Like the other nodes,

the output node depends upon yj , but since it does not have any outgoing edges it is uncertain how 1j

should be de�ned. It is clear, however, that this value will have to be externally de�ned. For simplicity,

this value is �xed such that 1j = C , where C is an arbitrarily chosen integer of su�cient magnitude

(to approximate the Golden Ratio). The edge weights coming into the output node are trained using

backpropagation. Since the backpropagation algorithm is only being applied at the output node, the

concerns of global (“exponential”) context data raised in chapter 1 section 2 are not problematic.
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CHAPTER 3

EXPERIMENT

§ 3.1 Technology

The technology this project is implemented is the Python programming language. The primary

libraries used include Sci-Kit Learn (sklearn), Pandas, Matplotlib, and Plotly, and NumPy. Sci-Kit Learn

contains APIs for generating example data. Plotly provides objects for clean data visualization.

Due to the dynamic nature of the neural network topologies considered, Tensor�ow and PyTorch

were not considered as viable packages for graph de�nition. Accordingly, all graph data structures are

implemented manually. If interested, then please contact me to get access to the code used in this paper;

this involved developing a custom network architecture which was not a trivial task in itself.
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Figure 3.2.1: The binary class datasets being evaluated. They are linearly separable (top), moons (middle),
and circular (bottom).

§ 3.2 Data

The data set for this project is generated via Sci-kit learn’s “datasets” library. The data consists of

three binary classi�cation data sets: 1) linearly separable clusters, 2) moon-shaped clusters, and 3) a circular

cluster surrounded by a cloud of points. The linearly separable cluster has a small noise transform applied

to it that amounts to a uniform perturbation between 0 and 0.1. The moon-shaped data set has a slightly

larger amount of uniform noise added (between 0 and 0.3). The circular cluster surrounded by points of

the opposite class has a uniform perturbation bounded by 0.2 and a scale factor of 0.5 between the inner

and outer circles.

Each of the three data sets contains 2500 records de�ned by an x, y coordinate and the associate class

label,L ∈ {0, 1}. The data is divided such that 80% of the data (2000 records) are used for training and

20% are used for testing (500 records). Furthermore, due to the fact that all nodes in the architecture being

evaluated here are entirely binary, it is necessary to preprocess the x, y coordinates of each of the inputs
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and convert it into its binary representation. After each coordinate value is cast into a 32-bit representation,

corresponding to 32 binary input nodes per variable. This conversion is only required for the graphs being

developed in this paper and the raw x, y coordinate values are used by the comparison classi�ers described

in the next section.

§ 3.3 Experiment

Since a lot of the work discussed so far is very theoretical in nature and untested in any formal ca-

pacity, the experiment being suggested here is a very simple one focused on assessing the viability of this

methodology and identifying particularly troubling bottlenecks in performance. As such, the goal of this

experiment is to develop several simple ensemble learners: A voting ensemble and four stacked ensembles.

Each of the base-learners in these ensembles is a network trained using the newly smithed Oja’s Golden

Rule learning algorithm. The performance of these ensembles will then be compared to a broad selection

of classi�ers, including: K-Nearest Neighbors, Linear SVC, Radial Basis Function SVC, Gaussian Pro-

cess Classi�er, Random Forests, Multi-layer Perceptron, AdaBoost Classi�er, Naive Bayes Classi�er, and

Logistic Regression. A full analysis of each of these classi�ers is out of the scope of this paper, but a listing

of the con�gurations used are provided in the appendix.

The experimental setup, then, is fairly simple. For each of the binary classi�cation data sets (linearly

separable, moon, and circle), each of the above comparison classi�ers is trained on the 2000 designated

training samples and evaluated on the 500 remaining test records. The experimental setup for the ensemble

classi�ers is a little more involved.
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§ 3.3.1 Voting Classi�er

For the voting ensemble, 25 encoders are generated for each of the data sets. Each of these encoders

uses the entirety of the training set. These encoders are graphs that contain an input layer, a single and

dynamic hidden layer, and an output layer consisting of a single, �xed node with a logistic activation

function. Using a decision threshold of 0.5, the testing data is evaluated by each of the voting members.

The majority class is the predicted class of the ensemble learner.

§ 3.3.2 Stacked, Re-encoded Classi�er

Since the motivation of this architecture is to develop a model that e�ciently encodes the source

signal, the stacked, re-encoded classi�er attempts to utilize the dense knowledge representation in the

hidden-layer suggested in the foregoing discussion. In this way, this classi�er is similar to autoencoders in

that the �nal layers are peeled away and the �nal encoding layer is used as a compact representation of the

input data.

Accordingly, since the dense encoding is going to comprise the feature set for the meta-learner (which

is just a logistic regressor), a 10-fold cross-validation type of strategy is used. However, since every single

training instance for the meta-learner needs the encoding provided by each of the base-learners, it is not

possible to perform training in isolation as is usual for stacked learning schemes. That is, it is not possible

to train the learner on all of the in-fold samples and produce the out-of-fold samples as the “unbiased”

input for the meta-learner. So, what is done as an alternative strategy is 10-fold cross-validation such that

every fold is encoded by the trained encoder, but the fold left out of training does provide some “unbiased”

input to reach the meta-learner.

Once all of the 10 base-learners are trained, all of the training samples are passed through them and the

activations they cause in the hidden layer are recorded. These activations are the re-encoding provided by
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the base-learning graphs and the features used by the meta-learner. Before training the meta-learner, how-

ever, the new binary feature set is ranked using the composite ranking formed by averaging the rankings

produced via the features χ2 and mutual information statistics. This ranking serves as a feature selection

mechanism to reduce possibly redundant encodings produced in the ensemble. The top 32, 16, 8, and 4

feature sets are used as inputs to a logistic regressor for �nal classi�cation.

§ 3.4 Results

The performance of the comparison and ensemble classi�ers is provided in the below table:

Table 3.4.1: The summary of the ensemble and comparison classi�er performance on the three data sets
being evaluated.

Algorithm Linear Moon Circle Average
Gaussian Process Classi�er 0.9860 0.9300 0.9000 0.9387
Radial Basis Function SVC 0.9860 0.9300 0.8980 0.9380
AdaBoost Classi�er 0.9800 0.9220 0.8940 0.9320
Multi-layer Perceptron 0.9800 0.9180 0.8920 0.9300
Random Forests 0.9820 0.9160 0.8840 0.9273
K-Nearest Neighbors 0.9860 0.9120 0.8600 0.9193
Naive Bayes Classi�er 0.9720 0.8720 0.8940 0.9127
Stacked Ensemble (Top 32 Feat. - 32 bit) 0.9740 0.9120 0.8060 0.8973
Stacked Ensemble (Top 16 Feat. - 16 bit) 0.9720 0.8760 0.7600 0.8693
Stacked Ensemble (Top 8 Feat. - 8bit) 0.9580 0.8740 0.7640 0.8653
Stacked Ensemble (Top 4 Feat. - 4 bit) 0.8760 0.8300 0.7640 0.8233
Voting Ensemble 0.9340 0.8280 0.6500 0.8040
Linear SVC 0.9760 0.8740 0.5340 0.7947
Logistic Regression 0.9800 0.8780 0.4660 0.7747
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Of the ensembles, the re-encoded, stacked classi�er using 32 features (32 bits) performed the best,

achieving an average accuracy of 89.73% across all data sets. This, unsurprisingly, outperformed linear

methods such as Linear SVC and Linear Regression, while only narrowly less performant than the other

comparison classi�ers ( 0.5% - 4% di�erence in average performance). The most striking divergence in

performance clearly occurs in the data set of circularly arranged classes. It is clear that this methodology is

unable to manage non-linearities in a robust capacity. The 32-bit stacked ensemble achieved 81 accuracy

and the worst (voting) 65%. This issue is likely resolvable if network depth were to be increased.

Performance on the data set containing moon-shaped class distributions is similar to the top-performing

classi�er (91.20% vs. 93.00%). Further, it is impressive that the 4-bit ensemble yielded an 82.33% average

accuracy. This point is made, because dense encodings of the input distributions are the motivation of

the discussion on radix economies.

A visualization is provided below to show the classi�cations made by the ensembles discussed here.
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§ 3.5 Discussion

As is clear, the weak-learners developed in this paper can successfully be used to produce reasonable

prediction functions. The overall performance is not that impressive and further work needs to be em-

ployed to understand the scalability of this scheme; but, as the debut of this methodology, the observed

performance does indicate the promise of future improvements. As was stated, the main goal at the outset

of this paper is not to develop the best learning scheme possible, but to develop a learning scheme that

can reasonably piggy-back o� of an economically self-organizing system.

This analysis was incredibly helpful in elucidating the current limitations of this architecture and

providing a foundation of what adjustments to implementation need to be made. Some possibilities for

future work can be enumerated as follows:

- Increased Network Depth. The ability to create deep networks was programmed, but they ex-
hibited some oscillatory behavior and instability. These negative e�ects would lead to failures in
convergence and continued layer growth. However, it is likely the only means by which non-linear
distributions will be successfully modeled.

- Over Reliance on Initial Conditions. Due to the fact the hidden layer grows, the initial weights
of the graph heavily determine the later success of the encoder. This determinism can cause the
encoder to become “stuck” in predicting a single output value.

- Convergence Conditions and the need for an Annealing Mechanism. The network, even
after performing well on many batches consecutively, can be guided into performing poorly after
encountering some bad inputs. It appears that this behavior is due to the on-line nature of the
graph and the lack of parameters for adjusting learning rate dynamically. This leads to performance
metrics (accuracy, etc.) oscillating during training. It would be helpful to provide some stabilizing
mechanisms to later iterations.

- Coverage. The notion of “coverage” is not heavily considered in the discussion above, but the
graphs developed here are not considered total functions. That is, they may not yield any result
for a provided input. This behavior is intentional and is hoped to help produce “specialization” in
ensemble methods, where some input is deliberately ignored by models to optimize performance
in subsections of the input space. This topic needs to be �eshed out in more detail.

However, in light of these potential new avenues of study, this architecture is not without its drawbacks:
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- No External Libraries. There is no available external framework or code library implementing
this learning scheme and, hence, it all needs to be coded manually.

- Narrow Domain/Little Related Work. Most of the guiding work for this project belongs to
coding theory, which is not necessarily immediately translatable into machine learning friendly
concepts. Further, with deep learning entrenched in its fairly rigid form, there is little popular work
accessible. For example, cascade correlation is pretty much lost to the ages.

- Input Binarization. The need to convert real-valued inputs into their binary forms leads to a
dimensional explosion that is going to be problematic for most contemporary, or “big-data centric”,
problems.

- Hyperparameter Introduction. As indicated in Section 2, one of the peripheral intents of this
project was to reduce the number of hyperparameters that needed to be externally de�ned by the
user. The hope was that this would reduce technical knowledge in implementing dynamic schemes
such as this one (AutoML), while also leading to a more intrinsically self-reliant structure. There
was mild-success in this initiative, but it also introduced new hyperparameters (e.g., division refrac-
tory period, activation bias, etc.).

In spite of these problems and the wanting results, this project was an invigorating and stimulating un-

dertaking aimed at blending an e�cient representation of signal data with a learning scheme.
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Figure 3.4.2: Visualization of the classi�cation made by each of the ensemble methods. The top row is
the ground truth being predicted. The coloring indicates the classi�cation type: True Negative (Blue),
True Positive (Red), False Negative (Green), and False Positive (Yellow).
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CHAPTER 4

PREDICTION MARKET

§ 4.1 Introduction and Conceptual Distinctions

As alluded to earlier, the learners being trained become unstable as the training procedure contin-

ues. Instability, in this context, refers to a tendency of the models to either produce output values or

develop edge weights of an increasingly large and unbounded magnitude. The hypothesized reason for

this undesirable property is that a scaled quantity (e.g. the integer value output by a given model) is being

employed to estimate an unscaled value (e.g. the probability that a given training instance belongs to a

certain target class). Accordingly, since the logistic activation function only asymptotically approaches

the probabilities of 0 or 1, even a fairly well-performing model will always be corrected to produce larger

and larger (integer) activations to better approximate the labeled training examples. The intent of this

section will be to develop (but not implement) a possible solution to this problem.

In a typical machine learning context, labeling with these “extreme” probability values is not prob-

lematic, but it proves to be of consequence in this setting. One potential solution to reduce the in�uence

of this asymptotic pull is to provide an assignment of labels not drawn strictly from the set of “extreme”

probability values. The general idea of this solution being that intermediate probability values are able

to be produced by the models being developed and, hence, the scale creep found by exclusively pursuing

asymptotic values is attenuated. Of course, the immediate question then becomes how to employ such a

non-extreme labeling scheme when provided only the true target classes.
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An approach for easing the asymptotic pressure that is being placed on the learning process may be

made available by making a slight adjustment to how the “0” or “1” labels should be interpreted and,

hence, used in training. If “0” or “1” are not taken to function as extreme “attractors” of the models

being developed, but are simply taken to denote a domain of possible probability values, then a signi�cant

loosening of the constraints imposed on a model has occurred. For example, with this reframing in place, it

is possible to interpret a training instancexwith label “0” as belonging to the domainD0 = [0, 0.5), while

any instance y with label “1” belongs to the domainD1 = (0.5, 1]. This interpretation is unsurprising

and what is generally denoted when given a classi�er decision boundary of 0.5. The next question becomes

how such a (re)assignment can be made.

A naive strategy for accomplishing this task is to simply identify all instancesxi with label “0” with a ran-

dom variable ri ∈ [0, 0.5) and all instances xj with label “1” with a random variable rj ∈ (0.5, 1].While

being able to provide classi�cation pressure (i.e. instances with label “1” are pushed to have an average

labeling/probability assignment greater than instances labeled with “0”). However, this approach has the

clear disadvantage of being unable to assign similar probabilities to instances, xi and xk that may be close

in the input space since there is no relation between ri and rk. To remedy this issue, it is apt to turn to

some theoretical work completed by the Machine Intelligence Research Institute of UCLA.

The general idea being introduced by this prior work is the development of a hypothetical commu-

nity of “mathematicians,” where each mathematician is tasked with assigning the likelihood that a given

statement φ belonging to a formal languageL is true (e.g., the probability that the statement “1 + 1 = 2”

is true in Peano arithmetic). In this way, the group of “mathematicians” functions to provide a valuation

for every possible statement in the language L. This valuation sets up the potential for a “marketplace”

where shares for the various statements ofL can be bought and sold at the prevailing market price (i.e. the

prevailing belief that a given statement is true/false). In tandem with this valuation process, there exists a
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deductive procedure that operates according to the rules, consequence relations, and prior facts discovered

by the market about L. This deductive procedure proves the truth (1) or falsity (0) of a �nite number

of statements currently being traded on the market during each trading period Ti. For those traders that

have netted shares for a given statement, the deductive procedure presents itself as a “probability collapse”

to 0 or 1, where the market’s error is the di�erence between the prevailing market prices (prior to collapse),

at which shares were bought and sold, and the collapsed price (0 or 1).

This event can be thought of as the termination of a futures contract. These sorts of contracts are

widely invested in by large organizations in an attempt to reduce future �nancial uncertainty. For example,

an airline may purchase F amount of jet fuel at an agreed upon price one year from the current date; this

behavior allows for entities to hedge their risks. If the market price of jet fuel is dramatically higher a year

from contract start, then the airline successfully mitigated a cost. If the market price of jet fuel is lower,

then they incurred an undue cost. Good and poor investments are expected, but if an entity is able to

perform well enough (i.e. averaging the market performance), then it is able to assess its future resource

constraints reliably and has successfully reduced its uncertainty. The goal then is to cast a typical machine

learning problem into a prediction market.

§ 4.2 Formulation

Garrabrant et al. de�neL as the language of propositional logic and S to be the set of all well-formed

sentences inL (e.g. (φ∧ψ) −→ β) (Garrabrant et al.). Yet, since the current project is not concerned with

any particular formalism,L and S are de�ned more loosely.
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De�nition 4.2.1: LetD be any bounded distribution mapping from the d-dimensional real-space into

the binary space {0, 1}, denoted B, i.e. Rd −→ B. The “bounded” condition is meant to indicate that

there exists a bounding condition U : Qd such that for all instances x :< x1, ..., xd > drawn from the

provided distributionD, |xi| ≤ Ui. Further, let allUi ≥ 1. The purpose of this condition is to guarantee

a uniform level of precision in description across all instances x being considered. Note that this uniform

level of description is a signi�cant break from the case presented by Garrabrant et al., which allows for

any logical statement (as part of the inductive de�nition of well-formed formulae), regardless of its rank,

to be considered. The purpose of this note is to highlight a di�erence between the types of description

being employed. Logical description permits statements of any rank to be evaluated while the distributive

description being used in this application uses a �xed descriptive “rank” or precision. However, what

contributes to the �xed description may be of any order, but this aspect is abstracted out by the descriptive

limitations (e.g. all the sort of noise that in�uence a distribution, but are not explicitly recognized in the

description of problem instances).

De�nition 4.2.2: Let b be the selected base/radix by which the distributionD is going to be encoded.

De�nition 4.2.3: Let l be the �nite, maximum precision (the number of “bits”) by which the input values

of the distributionD should be considered. This precision will exclude, for example, irrational numbers

from being represented with complete �delity, but it will allow for an arbitrary precision.

For the purposes of this application,

l = blogb(arg max(U)) + 1c+ p, where p is simply a non-negative, integer precision constant. One can

think of p as the constant that allows for arbitrarily selected decimal precision (since the log component

only guarantees integer precision).
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De�nition 4.2.4: LetDl be the encoding of the provided distributionD with radix b and max precision

of l. This encoding is e�ectively a rationalization ofD (i.e. R −→ Q), since all encodings are relative to a

power of b.

Provided that b = 2, Dl is a mapping: BlXd −→ B. Note that this mapping is a formalization of the

binarization considered previously when applying Oja’s Golden Rule above.

De�nition 4.2.5: Let S be the set of l-precise statements drawn from the encoded distributionDl. Let

φ denote a single l-precise statement from S.

De�nition 4.2.6 (Valuation): Let a valuation be any function V : S −→ [0, 1]. We refer to V(φ) as the

value of φ according to V. A valuation is called rational if its image is in Q (Garrabrant et al.).

De�nition 4.2.7 (Pricing): Let a pricing be any function P : S −→ Q∩ [0, 1]. Garrabrant et al. refer to

pricings as computable valuations, because of the inherent limitation in precision in computing systems

(e.g. 32-bit or 64-bit representation of π). In this way, computability is equated with rational descriptions.

De�nition 4.2.8 (Market): A market P = (P1,P2, ...) is a computable sequence of pricings Pi : S −→

Q ∩ [0, 1] (Garrabrant et al.).

De�nition 4.2.9 (Belief State): Let a belief state be any computable rational valuation P : S −→

Q ∩ [0, 1] with �nite support, where P(φ) is interpreted as the probability of φ (where P(φ) = 0 for all

but �nitely many φ) (Garrabrant et al.).
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De�nition 4.2.10 (Computable Belief Sequence): A computable belief sequence P = (P1,P2, ...)

is a computable sequence of belief states, interpreted as a reasoner’s explicit beliefs about the instances φ

drawn from the distributionD as they are re�ned over time.

For a given computable belief sequence, the subscripts in the belief states denote the time at which

the belief state was held by a given reasoner. Hence, all belief states in the considered belief sequence

were those held by a single reasoner. As will be expressed later, one may think of Pi as a vector of output

probabilities produced by a single model for each φ in S (or other batch S ′). In this way, the weights and

output of this continually trained model (between times 1, 2, ...) represent a hashing of the prior belief

states. That is, a trained model can be thought of as a block-chained hashing of the reasoner’s prior belief

states (P1,P2, ...).

De�nition 4.2.11 (Maturation Process): A maturation processM : N+ −→ Fin(S) is a computable

nested sequenceM1 ⊆M2 ⊆M3. . . of �nite sets of instances fromD. Here, the domain N+ indicates

the point in time at which the maturation process is operating and Fin(S) is meant to denote the space

of all �nite subsets of instances drawn fromD. For example, at time 0 the number of “matured” instances

is the empty set,M0 = {}. The subsequent period may be characterized asM0 = {φ10, ψ5}, where φ10

and ψ5 represent arbitrarily selected “matured” instances. Going with the “futures” analogy suggested

above, one can think of the matured instances as contracts that have reached their end date. Though not

discussed here, the maturation process is the distributional analog to the “Deductive Process” employed

by Garrabrant et al. to manage the “probability collapse” mapping predicted probabilities to logical

certainties (i.e. C : [0, 1] −→ {0, 1}). In the implementation that will be characterized, however, the

“collapse” function is of a slightly di�erent nature, C : [0, 1] −→ [0, 1]. M∞ = ∪nMn and represents
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the terminal maturation of the distribution (i.e. all of the instances of the distribution, or sampling, have

matured) (Garrabrant et al.).

De�nitions 4.2.6 to 4.2.11 borrow heavily from Garrabrant et al.’s de�nitions (some being nearly verbatim).

The above de�nitions are enough for the work rendered in this paper, but an extension is still in

development and mentioned here as future work to be completed. The reasoners and markets considered

so far are not as re�ned as they should be to de�ne a proper market where shares can be bought or sold.

Rather, the market posed so far is an egalitarian ensemble where reasoner belief states reach an equilibrium

of aggregate con�dence with respect to any given φ in S. The intended bene�t of this ensemble is to help

attenuate trader growth. Notwithstanding this intended function, a remaining issue is that there is no

explicit quanti�cation of shares being bought/sold or pro�ts made/lost with respect to instances and

their later maturation, givenM . Accordingly, there is no interface for “budgeting” resources and, hence,

there is no selective pressure limiting reasoner participation in the market space (i.e. A �rm on Wall

Street is only likely to be a signi�cant player and be awarded a lot of investment capital if it performs

well on average). This pressure is on par with the selective pressure used to foster candidate solutions in

evolutionary algorithms. A more complete strategy would attempt to harness this selective pressure to

eliminate bad reasoners with the intent of improving the market’s overall predictive quality.

To better allow for such mechanisms to be installed, additional de�nitions are needed. These de�ni-

tions are largely on par with the following constructs from Garrabrant et al.’s work: Valuation Feature,

Price Feature, Expressible Feature, Trading Strategy, Trader, Firm, and Budget. The Valuation Feature,

Price Feature, and Expressible Feature constructs operate to convert reasoner belief into expressions de-

noting the number of shares a given trader will purchase/sell for someφ. The trading strategy of a reasoner

represents the overall purchase/sell schedule that a given reasoner is going to execute on a given day. Fur-
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ther, a trading strategy can be thought of as an a�ne combination TS = c+ ξ1φ1 + ...+ ξkφk, where

ξ is the number of shares and φ represents the prevailing market price (Garrabrant et al.). A trader is a

reasoner with a sequence of trading strategies for each day n. A �rm is a collection of traders and a budget

is a resource constraint limiting the volume of interactions (purchases/sales) that a �rm/trader may make.

§ 4.3 (A Characterization of) Implementation

Given the toy classi�cation problems considered above, we have distributionsDlinear,Dmoon, and

Dcircle, which have successfully been converted into binary mappings of the form BlXd −→ B. For the

time being, refer to any of these de�ned distributions asDtest and consider the co-domain, B, not as a

class assignment, but as the result/outcome of an o�ered futures contract with a �xed valuation of 0.5

for any given instance φ. If one is only ever able to do as well as chance against a market where failure

is as dominant as success, then average performance would be centered around 0.5. The idea of this

interpretation of class labelings being that the models are competing against (making a contract with) a

reasoner of only change/average ability. The labeling of an instance as “1,” then, indicates that the futures

contract terminates with a market valuation greater than 0.5 (vice versa for instances labeled a “0”). Lastly,

with respect to the data set, the distributions referred to byDtest are known to be bounded and l is set to

32 (i.e. the 32-bit representation).

Reasoners in this prediction market correspond to a truncated version of the models using Oja’s

Golden Rule. This truncation is associated with their use of the logistic equation for activation and back-

propagation. As discussed previously, the logistic function only asymptotically approaches the extreme

probability values and, hence, continually produces values of a larger magnitude to approximate them.

To reduce this magnitude creep, the following changes are made to the learning scheme:
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De�nition 4.3.1 (Reasoner): De�ne a reasoner, T , as any function S −→ N which is equivalent to

Bl −→ N, given thatD has been encoded. The integer output, o, from a given model is referred to as its

activation.

De�nition 4.3.2 (Market Cap): De�ne the market cap as follows: κ = arg max
T ∈ Γ, φ ∈ S

Ti(φj), where Γ is

the set of all reasoners trading on the market.

De�nition 4.3.3 (Market Relative Activation): De�ne market relative activation to be a function

ρ : N −→ Q ∩ [0, 1]. For the purpose of this implementation, equation 4.3.1 is used:

ρ(o, κ) =
o

κ
(4.3.1)

De�nition 4.3.4 (Probabilistic Market Relative Activation): De�ne probabilistic market relative

activation to be a mapping p : Q ∩ [0, 1] −→ Q ∩ [0, 1]. For the purposes of this implementation,

equation 4.3.2 is used:

α(x) = p(x) =
1

1 + e−tan(π
2
x)
, where x = ρ(o, κ) (4.3.2)

As a note, Equation 4.3.2 is considered as a function into the rationals because it is a computed value with

�nite precision, while the function itself belongs to the real space. Accordingly, the reasoner, along with

equations 4.3.1 and 4.3.2, is a function from S −→ Q ∩ [0, 1]. With this function provided, a pricing

(De�nition 4.2.7) for any given instance can be made (via a reasonerT ). Also, the tangent function is used

in the exponent as a means for the relative activations to exponentially approach the extreme probability

values as they approach−1 or 1.
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De�nition 4.3.5 (Selection Process): Let S ′ be a maturation process called a selection process, such

that S ′ : N+ −→ Fin(S) is a computable nested sequence S ′1 ⊆ S ′2 ⊆ S ′3... of �nite sets of instances

fromD. This process is called a “selection process,” because it identi�es a �nite set of instances fromD

(or S) that are available for training, valuation, and/or trading. Informally, it means that at any time n

there exist |S ′n| records recognized in some capacity by the market. One can think of |S ′n| as the size of

the present market and its history, while allψ /∈ S ′n are simply instances that have not been introduced to

the market yet (e.g. shares for Starbucks or Apple were not capable of being traded before the companies

existed).

Further, let µ be a positive integer, referred to in this context as the selection rate, where S ′k+1 =

S ′k ∪ ∆k and |∆k| = µ. For each φi ∈ |∆k| it must be the case that φi /∈ S ′k for some randomly and

uniquely chosen i ∈ N+.

De�nition 4.3.6 (Future Maturation Process): Let F be a maturation process called a future matu-

ration process, such that F : N+ −→ Fin(S) is a computable nested sequence F1 ⊆ F2 ⊆ F3... of

�nite sets of instances fromD. Further, let it be the case that Fn ⊆ S ′n−1 and F0 = {}.

In the case being considered, this means that the future maturation process is one that selects instances

from the target distribution that have already been selected via the concurrent selection process. The

constraint being made explicit in this subset relation is that future contracts can only be made (and come

to mature) with respect to publicly traded objects (i.e. those already selected to be on the market).

Further, let µ be a positive integer, referred to in this context as the future maturation rate (distinct

from the selection rate above), such that Fk+1 = Fk ∪∆k and |∆k| ≤ µ. For each φi ∈ |∆k| it must be

the case that φi /∈ Fk, φi ∈ S ′k, and φi /∈ S ′k+1 for some randomly and uniquely chosen i ∈ N+. As a
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note to avoid any confusion, the ∆k sets referred to in the selection and future maturation processes are

distinct sets local to each of the processes.

Let Γ = (T1, T2, ..., Ti, ...) be a set of reasoners available to us,S ′0 be initialized to a random sampling

of instances, and F0 be assigned the empty set. Accordingly, for all traders Ti ∈ Γ and all φj ∈ S ′0, it

is possible to produce |Γ|X|S ′0| pricings Pij = Ti(φj). With j �xed, de�ne the market price for φj as

follows:

If φj /∈ Fn, then Pj = α(Π(φj)) = α( 1
κ|Γ|

|Γ|∑
i=1

Ti(φj)),

Ifφj ∈ Fn andφj /∈ Fk (k < n) andD(φj) = ”1” andα(Π(φj)) > 0.5 thenPj = rand(α(Π(φj)), 1),
If φj ∈ Fn and φj /∈ Fk (k < n) andD(φj) = ”1” and α(Π(φj)) ≤ 0.5 then Pj = rand(0.5, 1),
Ifφj ∈ Fn andφj /∈ Fk (k < n) andD(φj) = ”0” andα(Π(φj)) ≤ 0.5 thenPj = rand(0, α(Π(φj))),
If φj ∈ Fn and φj /∈ Fk (k < n) andD(φj) = ”0” and α(Π(φj)) > 0.5 then Pj = rand(0, 0.5)

where rand(lower, upper) indicates that a random value x is drawn such that x ∈ Q ∩ [0, 1] and

lower ≤ x ≤ upper. Additionally,D(ψ) indicates the labeling provided by the target distribution for a

given instance ψ. As a result, Pj will be �xed or bound to a value following its inclusion into the matured

futures set F . Since, as previously discussed, it is a design choice to interpret the labels provided byD as

the completion of a futures contract centered at 0.5, it becomes necessary to de�ne the terminal pricing,

Pj , explicitly.

In the cases where the market agrees with the futures contract (i.e.,D(φj) = ”1” andα(Π(φj)) > 0.5

orD(φj) = ”0” andα(Π(φj)) ≤ 0.5), market con�dence is favored. Here, “market con�dence” is meant

to indicate the market’s proximity to one of the extreme probability values (0 or 1). In cases where the

market is incorrect, corrective pressure is applied by �xing all future pricings of φj to a value that matches

the distributional label. As a result of all of this work, a computable sequence P = (P1,P2, ...,Pj, ...) for
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each φj ∈ S ′0 has been created and, by De�nition 4.2.8, a market is instantiated. By successively iterating

the selection and future maturation processes, a new market, Pn, can be generated.

Now, the reader may have noticed that this process is still incomplete and will lead to a fairly unexciting

pricing progression over time. That is, as de�ned, Pki = Pk+1
i across all time steps. The reason for this

market stagnancy is that nothing has yet been said about when model/reasoner training takes place. For

brevity, a formal presentation of this step will be avoided, but training is taken to occur following the

assignment of all Pnj given a selected and matured set, S ′n and Fn. That is, during the evaluation of Pnj ,

all reasoners Ti are considered to be �xed (i.e., weights, etc.). Once the pricing assignment Pnj is de�ned,

however, a training period follows in which all the instances in S ′n are used (though evaluated randomly)

for training. In this way, S ′n can be thought of as the instances of a training epoch at time n.

Finally, since the modi�ed and market relative activation function (Equation 4.3.2) is a modi�ed form

of the logistic function, the resultant update rule is easily derived (where α(x) is the modi�ed activation

function, Equation 4.3.2).

∆wij =
π

2
(Pj − α(x))α(x)(1− α(x))sec2(

π

2
x) (4.3.3)

§ 4.4 Conclusion and Preliminary Results

Some preliminary results of this scheme have been collected and they will be discussed in general here.

Unfortunately, the hypothesis that the asymptotic approach to the extreme probability values, 0 and 1,

appears to have only provided a partial answer in diagnosing the source of instability in graph growth/size.

The insu�ciency of this approach to manage the problem, however, lends credence to another potential
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source. Namely, this potential alternative source of instability may be a consequence of the fact that

activation values are centered at 0, which represents a predicted probability of 0.5 in the market space.

Since activation values are centered at 0, the inhibitory (negative integers) and excitatory (positive integers)

signals may produce the same composite (net result/sum) in an in�nite number of ways. For example,

−100 + 200 = 100, −101 + 201 = 100, −1001 + 1101 = 100, etc. As a result, a more promising

solution to the problem being confronted would likely acknowledge the net magnitude of the output

stimulus explicitly. Such an approach may be eliminative or bounding in nature, or it could map instances

like "−100 + 200 = 100" and "−1001 + 1101 = 100" to di�erent values.

Further, it may very well be the case that some of the missing market features (such as the explicit

limitation of resource consumption through a reasoner/�rm "budget") could provide some relief. For

example, if both "−100 + 200 = 100" and "−1000 + 1100 = 100" are allowed to retain the same

interpretation (i.e. probability value), but the second of the two requires 7 times (= 2100
300

) the amount of

"energy" to produce the same result, while the market "return" for correct predictions is �xed (and, possibly,

signi�cantly less than 2100), then activations with a large net magnitude would be selected against. While

it is unlikely that such a scheme is capable of resolving the stability problem alone, it presents itself as an

additional mechanism favoring economical resource usage.

In any case, the performance (accuracy) of the models is largely retained and the use of non-extreme,

market equilibrium values in training helps prevent individual models from becoming trivial prediction

functions (predicting all 0s or 1s). It will be the subject of future work to better manage graph stability

and characterize what a successful "market-ensemble" looks like.
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CHAPTER 5

CONCLUSION

The present work successfully introduced a new learning paradigm called Para�nitary Learning, which

is capable of e�ciently adapting and growing a network structure to manage target input stimuli. Though

 there exist some outstanding features and issues that remain to be resolved (e.g. stability, market shares/

resources, etc.), the results are promising and it is believed that future work will improve upon the

 shortcomings of the current scheme. Thank you for your time.
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