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ABSTRACT

Deep learning-based data analysis techniques have found many uses in biomedical re-

search. Recent expansion of open source databases and computational tools has fostered

distributed and explorative research. Under these conditions, reproducibil- ity and experi-

mental rigor must be ensured. Developing explicit analysis pipelines exposes the scientific

process and yields reproducible results. In this thesis, we look at the case of deep learning-

based data analysis for Parkinsons disease (PD) research. We develop end-to-end pipelines

in two PD-related fields: accelerometer data analysis and neuroimage analysis. First, we

construct a simple yet robust recurrent neural network for classifying motor activity from

accelerometer data alone; this has applications for identifying the mo- tor symptoms of PD.

Next, we propose a novel graph convolutional network architecture for distinguishing PD

patients vs. healthy controls from multimodal neuroimage data. Our pipelines standardize

the data preprocessing and analysis steps, fostering reproducibility and deliberate progres-

sion of their respective fields.

INDEX WORDS: artificial intelligence, data science, healthcare, Parkinson’s disease, deep

learning, long short-term recurrent neural network, graph convolutional

network, accelerometer, neuroimaging, reproducibility
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

This thesis examines the creation and use of data science pipelines as a partial solution to

the reproducibility problem in deep learning-based biomedical research; publishing repro-

ducible work yields open science practices in this domain. Our efforts are aligned with

the Center for Open Science 1 , which states “Show Your Work. Share Your Work. Ad-

vance Science. That’s Open Science.” We define data science to encompass all aspects

of data processing and analysis required for data-centered research. This includes data

cleaning and formatting, model construction and training, and performance evaluation. We

categorize the development of data science pipelines as the delineation of steps taken in

data-centered research.

In Chapter 1, we contextualize the problem of reproducibility in healthcare-related re-

search, discuss the use of deep learning-based methods for modeling biomedical data, and

introduce the data science pipeline. We then reintroduce the problem in the context of

Parkinson’s disease (PD) research, before continuing to Chapters 2 and 3, each of which

designs an end-to-end pipeline for a specific method of deep learning-based PD research.

Through these two experiments, we demonstrate real-world examples of the reproducibility

issue in biomedical research, and provide tangible contributions to the domains on which

they focus. Finally, we include our concluding remarks in Chapter 4.

Data Science in Healthcare

The field of healthcare is described as being “information rich” but “knowledge poor” [1].

Despite the quantity of information, or data, that is available, the complexity of the data,

difficulty of its acquisition, and scrutiny required of insights made from it create significant

1https://cos.io

1

https://cos.io


barriers to successful use of that information. As the prevalence of and accessibility to

biomedical data increases [2, 3], data sets have been made open source, or publicly avail-

able online. Analysis techniques have both advanced in modeling capacity and become

easier to implement thanks to free and user-friendly computer softwares and libraries.

In fact, large corpuses of biomedical data have allowed researchers to borrow from

other fields and make use of rapidly developing deep learning-based techniques [4]. Deep

machine learning (DL) algorithms are a subgroup of machine learning algorithms with

characteristic “deep” architectures. In their simplest form, DL architectures resemble many

iterations of logistic regression. Logistic regression is a classical machine learning algo-

rithm which uses a weight matrix to transform input data. Through multiplication between

the data and the weight matrix, logistic regression transforms the input data such that it

distinctly resembles inputs from one particular class, or grouping. A nonlinear activation

function, the sigmoid function, is applied to the transformed data to encourage the separa-

tion of class groupings [5].

DL algorithms group many such transformations, termed units, side-by-side into a sin-

gle layer, and then stack many of these layers in succession to form “deep” architectures.

Multiple units per layer allow unique transformations and combinations of the inputs to a

given layer, and stacked layers perform hierarchical grouping to isolate underlying patterns

in the data. These algorithms, collectively termed deep neural networks, are particularly

well-suited for the noisy and unstructured nature of biomedical data [3, 6].

In Chapters 2 and 3 of this thesis we will explore in detail two specific deep learning-

based algorithms and examine their use for biomedical research. Specifically, Chapter 2

will discuss the long short-term memory (LSTM) recurrent neural network (RNN), its use

for classifying human motor activity from accelerometer time series data, and why it is

better suited for this data over traditional feed-forward neural networks or vanilla (i.e.,

regular) RNNs. Next, Chapter 3 will introduce the graph convolutional network (GCN)

and graph attention network (GAT) and their use for multi-modal neuroimage data.
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As analysis tools and biomedical data sets on which to use them become increasingly

available through open source practices, research in the field has shifted from tightly con-

trolled, hypothesis-driven experiments to a process more distributed and exploratory in

nature [2]. The ability for data analysts from other fields to apply their skills to health-

care research is beneficial to balancing the “information” vs. “knowledge” scales. More

research increases the chances of medical and technological breakthroughs [3]. There is

great potential in healthcare-related analytics to reduce the cost of healthcare in the U.S.,

which is twice that of many other developed nations [7]. The field also seeks to reduce bias

and human error in diagnosis, and make medical expertise more readily available [1].

Reproducibility in Healthcare Analytics

Peng 2015 explains reproducibility as “the ability to recompute data analytic results, given

an observed data set and knowledge of the data analysis pipeline” [8]. Reproducibility is

distinct from replicability, which is the ability to obtain the same results with different data

and/or methodologies. Replicability is often difficult to achieve in biomedical research due

to the resources required to compile data and perform experiments. As such, reproducibility

is an alternate, albeit minimal, standard for assessing a study’s claims [9].

In her Reproducibility PI Manifesto, Barba 2012 pledges eight principles for upholding

reproducibility as a PI. They are as follows: “I will teach my graduate students about

reproducibility,” “All our research code (and writing) is under version control,” “We will

always carry out verification and validation,” “For main results in a paper, we will share

data, plotting script and figure under CC-BY,” “We will upload the preprint to arXiv at the

time of submission of a paper,” “We will release code at the time of submission of a paper,”

“We will add a ‘Reproducibility’ declaration at the end of each paper,” and “I will keep

an up-to-date web presence” [10]. These action statements utilize trusted open science

partners to ensure reproducibility. Some of them may take time to incorporate into a lab’s
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standard procedure, but the contribution to the advancement of science makes them worth

the effort.

A central focus of open science, reproducibility is paramount to the progression of

scientific research; it cultivates confidence in results [11] and paves the way for future

research by allowing minor tweaks to and continuations of previous work [8, 2]. Still, re-

producibility has long been a major issue in biomedical research. A 2012 Nature report

found “widespread deficiencies” in descriptions of experimental design, such as the omis-

sion of settings used for potentially bias introducing parameters [12]. The journal Science

echoed similar concern in 2014, announcing its addition of statisticians to its reviewer panel

in response to irreproducible statistical findings in domain-specific papers [11].

The complexity of the systems being modeled is a particular challenge to reproducibil-

ity in biomedical research [11]. Reporting, and even knowing, all of the details of an

experiment is a cumbersome task. Biomedical data often requires many steps before it is

prepared for analysis, and it can be difficult to know which steps need reporting. Confi-

dentiality also poses a challenge. Biomedical data is often subject to stringent regulation;

making it fully public often requires a concerted effort to remove all sensitive and identify-

ing information and obtain official approval for release. Many data sets remain proprietary

or restricted from dissemination, hindering replication of a study which uses such data.

We discussed in the previous section the benefits of making data and analysis tools

open source: publicly available resources accelerate the progress of biomedical research

by allowing researchers who lack the means to collect data or the knowledge to construct

their own studies to enter the field. However, if not utilized and reported correctly, open

source resources can work against open science, exacerbating the reproducibility issue.

Quick implementation allows for iterative tweaking of procedural steps and documentation

may suffer. Open science also encourages design flexibility by providing an easy way

to tweak previous studies and combine ideas. Increases in the number of researchers in a

field and experiment flexibility have been shown to contribute to false positives in scientific
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research [13]. Many of the researchers entering biomedical analytics lack the training to

publish reproducible experiments [8, 14]. Combined with the increased burden on journal

reviewers to catch mistakes [8] — especially when statistics is not their domain of expertise

[11] — and coupled with existing bias in published research for positive novel results,

this issue results in more false positives and non-reproducible experiments entering the

literature.

Many reports which analyze biomedical data — e.g., a study which uses deep learning

to identify lung cancer in chest x-rays — focus on the application of a novel algorithm to

outperform results obtained by a previous study which used a different algorithm. Often,

experimental details are informally reported, if reported at all [14]. We found this to be

particularly prevalent in papers applying novel deep learning algorithms to biomedical do-

mains. Since the main point of such reports is often to compare results with algorithms from

other areas of machine learning, such as support vector machines or logistic regression, the

comparison of results tends to be the focus, and experimental details are neglected. We

found that model hyperparameter and architecture choices often lack explanation or justifi-

cation. While there have been reports designed to edify the design of specific deep learning

algorithms (e.g., recurrent neural networks for text classification [15] and Restricted Boltz-

mann Machines [16]), most other reports are exploratory in nature, and there is a lack of

groundwork to develop evidence-based guidance of their decisions. Without the inclusion

of experimental details or discussion of decisions made, the field cannot incorporate new

discoveries in a deliberate fashion.

We discuss these issues in Chapters 2 and 3, and propose remedying strategies. For

example, in Chapter 2 we optimize our LSTM network over an expansive hyperparameter

search space to unify disjoint implementation choices made in literature. In Chapter 3, we

provide an in-depth explanation of our neuroimage preprocessing pipeline and we examine

the choices we made when constructing our novel GCN architecture. We provide our code
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for both experiments 2 3 . Finally, we include a minimum of six categories of information in

the contents of our report, which are outlined later in this chapter and can be remembered

by the acronym “PRIMAD”.

Biomedical data is typically complex: tricky procedures are often required to obtain it,

noise and individual differences introduce variance, metadata and contextual information

often accompany a given measurement. There are caveats to its use that researchers from

other fields may not be trained to handle [8, 14]. For example, data analysts may neglect

the fact that biomedical data sets are often quite small and collected from a single study.

Findings from these data sets may not generalize well, and this should be reported as a

limitation of the results. Explicitly stating a study’s limitations increases the benefits of its

findings and inspires future work [12]. While the ability for deep learning researchers and

data analysts to apply their skills to biomedical research is beneficial to the field overall,

steps must be taken to ensure the gap between the two specialties is bridged as seamlessly

as possible. In this way, reproducibility in biomedical research is essential to enabling trust

in analyses [8] [14].

The Data Science Pipeline

Finding errors in one’s work is primarily the responsiblity of the researcher [8]. Docu-

mentation is a chance for an author to review and repair mistakes in his or her code [14].

Going further, the development of trusted reproducible processing pipelines fosters delib-

erate methodologies that can be reused and revised [8]. This practice is particularly useful

in highly technical areas, such as functional connectomics research, which aims to find

functional networks of brain regions. Researchers in this field are working to compile a

central data processing platform through which to conduct their research and share their

results [17].
2https://github.com/xtianmcd/accelstm
3https://github.com/xtianmcd/GCNeuro
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Although producing user-friendly generalizable code may exceed the limited resources

allotted to a research project, there are a few incentives for spending the extra time. The

journal Biostatistics uses tags on their papers such as “R” to denote reproducible work, and

“D” and “C” if the authors provide the data or code, respectively [9]. Sharing code and data

seems particularly applicable to open science, where sites such as GitHub 4 and Bitbucket

5 allow reproducible work to be shared and used with ease. Additionally, Freire, Fuhr, and

Rauber 2016 argue that when a study’s methods can be reproduced, that study benefits from

“increased impact, recognition, and citation rates” [14]. These small measures offer some

recognition and encouragement for the extra steps required for reproducible work.

As a general rule of thumb, an independent researcher should be able to repeat the

analysis solely from details included in the paper [18]. We categorize the delineation of

steps taken in data-centered research as the development of data science pipelines for a

particular domain. In 2016, an international group of computer science and domain experts

gathered to discuss reproducibility in data-oriented “e-science”, i.e., they discussed open

science. They teamed together to generate the following message for journal editors and

conference chairs:

Transparency, openness, and reproducibility are vital features of science. Sci-

entists embrace these features as disciplinary norms and values, and it follows

that they should be integrated into daily research activities. These practices

give confidence in the work; help research as a whole to be conducted at a

higher standard and be undertaken more efficiently; provide verifiability and

falsifiability; and encourage a community of mutual cooperation. They also

lead to a valuable form of paper, namely, reports on evaluation and reproduc-

tion of prior work. Outcomes that others can build upon and use for their own

research, whether a theoretical construct or a reproducible experimental result,

form a foundation on which science can progress. . . .
4https://github.com
5https://bitbucket.org
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[14]. The authors also report a set of key variables to include in any report, which we use

as guidance in developing our data science pipelines. Each of these variables are key points

which contribute to the results of a study, and are points of modification for inspiring future

research.

The set of variables can be remembered as PRIMAD. “P” relates to the platform and ex-

ecution environment, including the hardware and software stack. “R” refers to the research

objectives. “I” represents the implementation, or code, which should be made available

whenever possible. “M” stands for the methods used, such as specific algorithms. “A”

are the actors, the authors of the study. “D” is the data, including the raw input data that

is analyzed and the parameter settings used in analysis tested throughout the experiment.

By reporting each of these variables within published research papers, authors create a re-

producible data science pipeline. By identifying these variables in other studies, we can

measure the robustness of results and the reproducibility of methods.

An Application to Parkinson’s Disease

The issue of reproducibility first arose in our lab during participation in an online challenge

aimed at Parkinson’s disease (PD) research. Affecting more than 1% of the United States

population over the age of 60, Parkinson’s disease (PD) is the second-most prevalent age-

related neurodegenerative disease following Alzheimer’s disease [19]. PD diagnosis has

traditionally relied on clinical assessments with some degree of subjectivity [20], often

missing early-stage PD altogether [21]. Benchmarks for delineating PD progression or

differentiating between similar conditions are lacking [22, 23]. As such, many efforts have

emerged to identify quantitatively rigorous methods through which to distinguish PD.

Titled the Parkinson’s Disease Digital Biomarker DREAM Challenge, the task of the

online challenge was to develop a data analysis model capable of predicting the presence

of PD from accelerometer data. Accelerometer data measures motion along the x-, y-, and

z-axes over time, producing triaxial time series data. Given the characteristic motor symp-

8



toms of PD, and the increased prevalence of smartphones and wearable devices that contain

accelerometers, the use of accelerometer data in PD diagnosis is an attractive research en-

deavor [6, 24].

Early studies seeking to classify so-called human activity recognition (HAR) tasks from

accelerometer data used classical machine learning algorithms such as support vector ma-

chines and logistic regression [25]. While these methods often performed quite well, they

required intensive preprocessing of data into de-noised hand-crafted features before use.

Researchers began investigating recurrent neural networks (RNNs) as an alternative, given

their reported success for capturing temporal dependencies in text data [15].

Given these efforts, we turned to the literature to explore the use of RNNs for modeling

accelerometer data. We found that in trying to replicate the methods used by many of the

published studies in literature, many implementation details were missing or lacking expla-

nation. The lack of traceable and justifiable experiment design choices led us to conduct

our own experiment aimed at filling some of these gaps. Unfortunately, the PD-related

accelerometer data from the online challenge had not been released for use outside the

challenge, so we used a publicly available HAR accelerometer data set instead. We hope

to see our efforts applied to the accelerometer data upon its release, to compare our simple

LSTM-based pipeline with the leading results of the online challenge.

In Developing a Start-to-Finish Pipeline for Accelerometer-Based Activity Recognition

Using Long Short-Term Memory Recurrent Neural Networks, outlined in Chapter 2 of this

thesis, we first introduce the problem, expanding upon the discussion in the preceding

paragraphs. In the Background section, we outline the feed forward neural network, the

recurrent neural network, and the long short-term memory cell; we examine the differ-

ences between them and situations when one may be preferred over the others. Next, we

performed a review of literature related to the use of LSTM RNNs for HAR tasks in the

Related Works section. We compiled the various implementation choices made, the gaps

needing to be addressed, and the shortcomings that might be improved upon.

9



We used this investigation to guide our subsequent delineation of a data science pipeline

for this domain. Our pipeline, outlined in the Experimental Setup section, performs very

little preprocessing and utilizes a very simple LSTM architecture, optimizing its hyperpa-

rameters to fit the task. This way, we isolate the LSTM cell’s ability to classify accelerom-

eter data and provide a baseline for more complex models and processing pipelines.

Paying close attention to decisions made during preprocessing and performance eval-

uation, we sought to prevent statistical errors found in the literature and improve the ro-

bustness of our results. We utilized the tree-structured Parzen estimator (TPE) Bayesian

optimization algorithm to conduct an expansive hyperparameter search over all hyperpa-

rameters tested in literature. This guided the construction of our final LSTM model which

we trained and tested on six-class HAR accelerometer data. The report in Chapter 2 demon-

strates the efficacy of our simple LSTM-based pipeline by performing comparably with

benchmark studies, as we show in the Results section and discuss in the Discussion sec-

tion.

Our experiences using accelerometer data led us to examine another data modality use-

ful for PD research. As a neurodegenerative disease, PD etiology originates in the brain

[26]. Abnormalities in the production of dopamine result in downstream affects through-

out the brain and subsequently throughout the body (e.g., the motor symptoms targeted by

accelerometer-based PD research). Researchers are hopeful that characterizing the neuro-

physiology of PD will aid in early detection and subtyping of the disease [21]. As such,

neuroimage research has caught the interest of many PD researchers.

In Chapter 3 of this thesis, we discuss our work developing a pipeline for multi-modal

deep learning-based neuroimage analysis for PD research; the work is titled Developing a

Graph Convolution-Based Analysis Pipeline for Multi-Modal Neuroimage Data: An Ap-

plication to Parkinson’s Disease. The first step in our report is to introduce neuroimage

analysis for PD, explain why deep learning-based methods are justified, and show how

such efforts have evolved over time. The Introduction and Related Works sections accom-
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plish these goals. We continue to the Discussion of the Preprocessing Pipeline section.

Neuroimage data is particularly complex and noisy, and requires extensive preprocessing

before it can be used. The preprocessing steps are highly technical and insufficiently de-

fined in many previous works; decisions made during preprocessing can greatly affect the

outcome of analysis [27, 28]. Furthermore, while various neuroimaging modalities capture

unique aspects of a patient’s neurophysiological state, the means of combining multiple

modalities for composite analysis are poorly defined in literature, preventing reproduction

of existing studies. We seek to foster reproducibility and save time for others conducting

similar research by explicitly stating the steps we use and discussing any major difficulties

or nuances found.

Our analysis is based on previous works, which utilize the graph convolutional network

(GCN) as a means for defining multimodal neuroimage data in a common data space. We

construct a novel GCN architecture and train it to predict the presence of PD vs. healthy

controls. The Methods section delineates the specific model implementations we used and

outlines the experiment through which we demonstrated the efficacy of our pipeline.

The following chapters contain our published experiments to develop data science

pipelines for two PD-related data analysis domains. Both of our experiments were some-

what exploratory in nature and were part of the learning process. In each experiment, we

discuss the underlying math and previous research behind the techniques employed therein.

In identifying missing details in other works, we do not seek to diminish the results of those

experiments, but rather enhance their findings by facilitating reproduction and unification

of methods in the field. We hope that our discussions and findings are useful for researchers

in these fields and are helpful in improving reproducibility in biomedical data analysis. Our

discussions are continued in the final chapter of this thesis.
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CHAPTER 2

DEVELOPING A START-TO-FINISH PIPELINE FOR

ACCELEROMETER-BASED ACTIVITY RECOGNITION USING LONG

SHORT-TERM MEMORY RECURRENT NEURAL NETWORKS

1

1McDaniel, C.L. and S. Quinn. 2018. Proceedings of the 17th Python in Science Conference (SciPy 2018)
31-40. Reprinted here with permission of the publisher.
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Abstract

Increased prevalence of smartphones and wearable devices has facilitated the collection of

triaxial accelerometer data for numerous Human Activity Recognition (HAR) tasks. Con-

currently, advances in the theory and implementation of long short-term memory (LSTM)

recurrent neural networks (RNNs) has made it possible to process this data in its raw form,

enabling on-device online analysis. In this two-part experiment, we have first amassed the

results from thirty studies and reported their methods and key findings in a meta-analysis

style review. We then used these findings to guide our development of a start-to-finish data

analysis pipeline, which we implemented on a commonly used open-source data set in a

proof of concept fashion. The pipeline addresses the large disparities in model hyperpa-

rameter settings and ensures the avoidance of potential sources of data leakage that were

identified in the literature. Our pipeline uses a heuristic-based algorithm to tune a baseline

LSTM model over an expansive hyperparameter search space and trains the model on stan-

dardized windowed accelerometer signals alone. We find that we outperform other baseline

models trained on this data and are able to compete with benchmark results from complex

models trained on higher-dimensional data.

Introduction

Human Activity Recognition (HAR) is a time series classification problem in which a clas-

sifier attempts to discern distinguishable features from movement-capturing on-body sen-

sors [29]. The most common sensor for HAR tasks is the accelerometer, which measures

high-frequency (30-200Hz) triaxial time series recordings, often containing noise, impre-

cision, missing data, and long periods of inactivity between meaningful segments [30, 31,

32]. Consequently, attempts to use traditional classifiers typically require significant pre-

processing and technical engineering of hand crafted features from raw data, resulting in a

barrier to entry for the field and making online and on-device data processing impractical

[33, 34, 35, 30, 32].
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The limitations of classical methods in this domain have been alleviated by concur-

rent theoretical and practical advancements in artificial neural networks (ANNs), which are

more suited for complex non-linear data. While convolutional neural networks (CNNs) are

attractive for their automated feature extraction capabilities during convolution and pooling

operations[36, 37, 38, 39, 40, 33, 32, 35], recurrent neural networks (RNNs) are specifically

designed to extract information from time series data due to the recurrent nature of their

data processing and weight updating operations [41]. Furthermore, whereas earlier im-

plementations of RNNs experienced problems when processing longer time series (tens to

hundreds of time steps), the incorporation of a multi-gated memory cell in long short-term

memory recurrent neural networks (LSTMs) [42] along with other regularization schemes

helped alleviate these issues.

As RNN usage continues, numerous studies have emerged to address various aspects

of understanding and implementing these complex models, namely regarding the vast ar-

chitectural and hyperparameter combinations that are possible [43, 44, 45, 15, 46]. Unfor-

tunately, these pioneering studies tend to focus on tasks other than HAR, leaving the time

series classification tasks of HAR without domain-specific architecture guidance.

In a meta-analysis style overview of the use of LSTM RNNs for HAR experiments

across 30 reports (discussed below), we found a general lack of consensus regarding the

various model architectures and hyperparameters used. Often, a given pair of experiments

explored largely or entirely non-overlapping ranges for a single hyperparameter. Key archi-

tectural and procedural details are often not included in the reports, making reproducibility

impossible. The analysis pipelines employed often lack detail; sources of data leakage,

where information from the testing data is exposed to the model during training, appear to

be overlooked in certain cases. Without clear justifications for model implementations and

deliberate, reproducible data analysis pipelines, objective model comparisons and infer-

ences from results cannot be made. For these reasons, the current report seeks to summa-

rize the previous implementations of LSTMs for HAR research available in literature and
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outline a structured data analysis pipeline for this domain. We implement a truncated ver-

sion of our pipeline, optimizing a baseline LSTM over an expansive hyperparameter search

space, and obtain results on par with benchmark studies. We suspect that our efforts will

encourage scientific rigor in the field going forward and initiate more granular exploration

of the field as we understand these powerful data analysis tools within this domain.

Background

This section is intended to give the reader a digestible introduction to ANNs, RNNs, and

the LSTM cell. The networks will be discussed as they relate to multi-class classification

problems as is the task in HAR.

Artificial Neural Networks. The first ANN architecture was proposed by Drs. War-

ren McCulloch and Walter Pitts in 1943 as a means to emulate the cumulative semantic

functioning of groups of neurons via propositional logic [47, 48]. Frank Rosenblatt subse-

quently developed the Perceptron in 1957 [49]. This ANN variation carries out its step-wise

operations via mathematical constructs known as linear threshold units (LTUs). The LTU

operates by aggregating multiple weighted inputs and feeding this summation u through an

activation function f(u) or step function step(u), generating an interpretable output ỹ (e.g.

0 or 1) [48].

ỹ = f(u)

= f(w · x)

where · is the dot product operation from vector calculus. x is a single instance of the

training data, containing values for all n attributes of the data. As such, w is also of length

n, and the entire training data set for all m instances is a matrix X of dimensions m by n

(i.e., m x n).
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A 2-layer ANN can be found in Figure 2. Each attribute in instance xi represents a

node in the perceptron’s input layer, which simply provides the raw data to the output layer

- where the LTU resides. To represent k target classes, k LTU nodes are included in the

output layer, each corresponding to a single class in y. Each LTU’s prediction ỹ indicates

the predicted probability that the training instance belongs to the corresponding class. The

LTU output with the largest value - max(ỹ) - is taken as the overall predicted class for

the instance of the data being analyzed. Taken over the entire data set, each LTU has a

prediction vector ỹk length m and the entire output layer produces a prediction matrix Ỹ

with dimensions m x k. Additionally, each LTU contains its own weight vector wk of

length n (i.e., a fully-connected network), resulting in a weight matrix W of dimensions n

x k.

ANNs often contain complex architectures with multiple layers, which allow for non-

linear transformations of the data and increase the flexibility and robustness of the model.

If we look at a simple three-layer neural network (see Figure 2 B), we see input and output

layers as described above, as well as a layer in the middle, termed a hidden layer. This

layer acts much like the output layer, except that its outputs z for each training instance

are fed into the output layer, which then generates predictions ỹ from z alone. The com-

plete processing of all instances of the dataset, or all instances of a portion of the dataset

called a mini-batch, through the input layer, the hidden layer, and the output layer marks

the completion of a single forward pass.

For the model to improve, the outputs generated by this forward pass must be evaluated

and the model updated in an attempt to improve the model’s predictive power on the data.

An error term (e.g., sum of squared error (sse)) is calculated by comparing individual pre-

dictions ỹk to corresponding ground truth target values in yk. Thus, an error matrix E is

generated containing error terms over all k classes for all m training instances. This error

matrix is used as an indicator for how to adjust the weight matrix in the output layer so

as to yield more accurate predictions, and the corrections made to the output layer give an
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Figure 2.1: A. A two-layer network and associated dimensions of the components. B. A
three-layer network showing a single data instance xi being fed in as input.

indication of how to adjust the weights in the hidden layer. This process of carrying the

error backward from the output layer through the hidden layer(s) is known as backpropa-

gation. One forward pass and subsequent backpropagation makes up a single epoch, and

the training process consists of many epochs repeated in succession to iteratively improve

the model.

The iterative improvements to the model are known as optimization, and many methods

exist to carry this process out. The common example is stochastic gradient descent (SGD),

which calculates the gradient of the error - effectively the steepness of E’s location as it

“descends” toward lower error - and adjusts the weight matrices at each layer in a direction

opposite this gradient. The change to be applied to the weight matrices is mediated via a

learning rate η [50].
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E = Y − f(XW )

Optimization:

minW‖E‖F

hsseW =
1

2

k−1∑
c=0

(yc − f(X · wc)) · (yc − f(X · wc))

∂hsse

∂wk
= X ∗ [f ′(X · wk) ∗ ek] ∗ η

= −X ∗ δk ∗ η

where f(...) represents the activation function, minW represents the objective function

of minimizing with respect to W , and ‖E‖F stands for the Frobenius norm on the error

matrix E. hsseW represents the halved (for mathematical convenience) sum of squared

error, calculated for all k nodes in the output layer. f ′(...) represents the derivative of the

activation function over the term in the parentheses.

Looking at our three-layer neural network depicted in Figure 2, a single epoch would

proceed as follows:

1. Conduct a forward pass, compute ỹ and compare with y to generate the error term:

zh = f1(ah
· x)

ỹk = f2(bk · z)
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ek = yk − ỹk

2. Backpropagate the error regarding the correction needed for ỹ.

3. Backpropagate the correction to the hidden layer.

4. Update weight matrices A and B via δy and δz:

bhk = bhk − zhδyk ∗ η

= bhk −
∂hsse

∂bhk
∗ η

ajh = ajh − xjδzh ∗ η

= ajh −
∂hsse

∂ajh
∗ η

sse is commonly used as the error term for regression problems, whereas squared error

or cross entropy is typical for classification problems.

cross entropy = −
m∑
i=1

k∑
c=1

yic ∗ log(fc(xi))

The high flexibility of neural networks increases the chances of overfitting, and there

are various ways to avoid this. Early stopping is a technique that monitors the change in

performance on a validation set (subset of the training set) and stops training once improve-

ment slows sufficiently. Weight decay helps counter large updates to the weights during

backpropagation and slowly shrinks the weights toward zero in proportion to their relative

sizes. Similarly, the dropout technique “forgets” a specified proportion of the outputs from

a layer’s neurons by not passing those values on to the next layer. Standardizing the input
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is important, as it encourages all inputs to be treated equally during the forward pass by

scaling and mitigating outliers’ effects [48, 50].

Other hyperparameters tend to affect training efficiency and effectiveness and tend to

differ with different datasets and types of data. Hammerla, et. al. found learning rate η

to be an important hyperparameter in terms of its effect on performance [51]. Too small a

learning rate and the model will exhibit slow convergence during training, while too large

a value will lead to wild oscillations during optimization [50]. Hammerla, et. al. also

find the number of units per layer n to be important, and Miller adds that too many hidden

units is better than too few, leading to sparse layers of weight matrices versus restricting

flexibility of the model, respectively. Bias helps account for irreducible error in the data

and is implemeneted via a node whose inputs are always 1’s (top node in the input layer of

Figure 2 A). Reimers and Gurevych emphasize the importance of weight initialization for

model performance in their survey of the importance of hyperparameter tuning for using

LSTMs for language modeling [44]. Jozefowicz, et. al. cite the initialization of the forget

gate bias to 1 as a major factor in LSTM performance [52].

Recurrent Neural Networks (RNNs). The recurrent neuron, developed by Drs. Ronald

Williams and David Zipser in 1989 [41], is extremely useful in training a model on se-

quence data. Recurrent neurons address temporal dependencies along the temporal di-

mension of time series data by sending their outputs both forward to the next layer and

“backward throught time,” looping the neuron’s output back to itself as input paired with

new input from the previous time step. Thus, a component of the input to the neuron is an

accumulation of activated inputs from each previous time step. Figure 2 depicts a recur-

rent neuron as part of a recurrent layer. Recurrent layers are placed between input layers

and output layers and can be used in succession with densely connected and convolutional

layers.

Instead of a single weight vector as in ANN neurons, RNN neurons have two sets of

weights, one (wx) for the new inputs xt and one (wy) for the outputs of the previous time
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Figure 2.2: The recurrent neuron from three perspectives. A. A single recurrent neuron,
taking input from X, aggregating this input over all timesteps in a summative fashion and
passing the summation through an activation function at each timestep. B. The same neuron
unrolled through time, making it resemble a multilayer network with a single neuron at
each layer. C. A recurrent layer containing five recurrent nodes, each of which processes
the entire dataset X through all time point.
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step y(t−1), yielding matrices Wx and Wy when taken over the entire layer. The portion of

the neuron which retains a running record of the previous time steps is the memory cell or

just the cell [48].

Outputs of the recurrent layer:

y(t) = φ(Wx · x(t) +Wy · Y(t−1) + b)

where φ is the activation function and b is the bias vector of length n (the number of

neurons).

The hidden state, or the state, of the cell (h(t)) is the information that is kept in memory

over time.

To train these neurons, we “unroll” them after a complete forward pass to reveal a

chain of linked cells the length of time steps t in a single input. We then apply standard

backpropagation to these links, calling the process backpropagation through time (BPTT).

This works relatively well for very short time series, but once the number of time steps in-

creases to tens or hundreds of time steps, the network essentially becomes very deep during

BPTT and problems arise such as very slow training and exploding and vanishing gradients

[48]. Various hyperparameter and regularization schemes exist to alleviate exploding/van-

ishing gradients, including gradient clipping [53], batch normalization, dropout, and the

long short-term memory (LSTM) cell originally developed by Sepp Hochreiter and Jurgen

Schmidhuber in 1997 [42].

Long Short-Term Memory (LSTM) RNNs. The LSTM cell achieves faster training and

better long-term memory than vanilla RNN neurons by maintaining two state vectors, the

short-term state h(t) and the long-term state c(t), mediated by a series of inner gates, layers,

and other functions. These added features allow the cell to process the time series in a

deliberate manner, recognizing meaningful input to store long-term and later extract when

needed, and forget unimportant information or that which is no longer needed [48].
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Figure 2.3: The inner mechanisms of an LSTM cell. From outside the cell, information
flows similarly as with a vanilla recurrent cell, except that the state now exists as two parts,
one for long-term memory (c(t)) and the other for short-term memory (h(t)). Inside the cell,
four different sub-layers and associated gates are revealed.

As can be seen in Figure 2, when the forward pass advances by one time step, the

new time step’s input enters the LSTM cell and is copied and fed into four independent

fully-connected layers (each with its own weight matrix and bias vector), along with the

short-term state from the previous time step, h(t−1). The main layer is g(t), which processes

the inputs via tanh activation function. In the basic recurrent cell, this is sent straight to the

output; in the LSTM cell, part of this is incorporated in the long-term memory as decided

by the input gate. The input gate also takes input from another layer, i(t), which processes

the inputs via the sigmoid activation function σ (as do the next two layers). The third layer,

f(t), processes the inputs, combines them with c(t−1), and passes this combination through

a forget gate which drops a portion of the information therein. Finally, the fourth fully-

connected layer o(t) processes the inputs and passes them through the output gate along

with a copy of the updated long-term state c(t) after its additions from f(t), deletions by the

forget gate, further additions from the filtered g(t)-i(t) combination and a final pass through
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a tanh activation function. The information that remains after passing through the output

gate continues on as the short-term state h(t).

i(t) = σ(W )xi · x(t) +Whi · h(t−1) + bi

f(t) = σ(W )xf · x(t) +Whf · h(t−1) + bf

o(t) = σ(W )xo · x(t) +Who · h(t−1) + bo

g(t) = σ(W )xg · x(t) +Whg · h(t−1) + bg

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t)

y(t) = h(t) = o(t) ⊗ tanh(c(t))

where ⊗ represents element-wise multiplication [48].

Related Works

The following section outlines the nuanced hyperparameter combinations used by 30 stud-

ies available in literature in a meta-analysis style survey. Published works as well as pre-

published and academic research projects were included so as to gain insight into the state-

of-the-art methodologies at all levels and increase the volume of works available for review.

It should be noted that the following summaries are not necessarily entirely exhaustive re-

garding the specifications listed. Additionally, many reports did not include explicit details

of many aspects of their research.
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The survey of previous experiments in this field provided blueprints for constructing an

adequate search space of hyperparameters. We have held our commentary on the findings

of this meta-study until the Discussion section.

Experimental Setup. Across the 30 studies, each used a unique implementation of

LSTMs for the research conducted therein. Data sets used include the OPPORTUNITY Ac-

tivity Recognition dataset [32, 54, 33, 55, 56, 57], UCI HAR dataset [58, 55], PAMAP2 [32,

59, 57, 60], Skoda [32, 57], WISDM [61, 58], and various study-specific and/or internally-

collected datasets [62]. Activity classes include Activities of Daily Life (ADL; e.g., open-

ing a drawer, climbing stairs, walking, or sitting down), smoking [63], cross-country skiing

[37], eating [64], nighttime scratching [65], driving [66], and so on.

Data analysis pipelines employed include cross validation [67], repeating trials [68],

and various train-validation-test splitting procedures [36, 69, 70]. Most studies used the

Python programming language and implemented LSTMs via third-party libraries such as

Theano Lasagne, RNNLib, and Keras with TensorFlow.

Preprocessing. Some reports kept preprocessing to a minimum, e.g., linear interpola-

tion to fill missing values [32], per-channel normalization [32, 70], and standardization [61,

55]. Zhao, et. al. standardized the data to have 0.5 standard deviation [55] as opposed to

the typical unit standard deviation, citing Wiesler, et. al. as supporting this nuance for deep

learning implementations [71].

More advanced noise reduction strategies include kernel smoothing [33], removing the

gravity component [65], applying a low-pass filter [67], removing the initial and last 0.5

seconds [70]. Moreau, et. al. grouped together segments of data from different axes,

tracking the dominant direction of motion across axes [65].

For feeding the data into the models, the sliding window technique was commonly

used, with window sizes ranging from 32 [62] to 5000 [55] milliseconds (ms); typically

50% of the window size was used as the step size [37, 36, 56, 32]. Guan and Plotz ran an

ensemble of models, each using a random sampling of a random number of frames with
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varying sample lengths and starting points. This method is similar to the bagging scheme

of random forests and was implemented to increase robustness of the model [57].

Architectures. Numerous architectural and hyperparameter choices were made among

the various studies. Most studies used two LSTM layers [32, 61, 64, 54, 58, 55, 57, 70,

62], while others used a single layer [69, 56, 68, 66, 72, 60, 39], three layers [72], or four

layers [73].

The number of units (i.e., nodes, LSTM cells) per layer range from 3 [65] to 512 [59].

Several studies used different numbers of units for different circumstances e.g., three units

per layer for unilateral movement (one arm) and four units per layer for bilateral movement

(both arms) [65] or 28 units per layer for the UCI HAR dataset (lower dimensionality)

versus 128 units per layer for the Opportunity dataset [55]. Others used different numbers

of units for different layers of the same model e.g., 14-14-21 for a 3-layer model [72].

Almost all of the reports used the sigmoid activation for the recurrent connections

within cells and the tanh activation function for the LSTM cell outputs, as these are the

activation functions used the original paper [42]. Other activation functions used for the

cell outputs include ReLU [55, 70] and sigmoid [60].

Several studies designed or utilized novel LSTM architectures that went beyond the

simple tuning of hyperparameters. Architectures tested include the combination of CNNs

with LSTMs such as ConvLSTM [33], DeepConvLSTM [32, 36, 56], and the multivariate

fully convolutional LSTM network (MLSTM-FCN) [74]; innovations regarding the con-

nections between hidden units including the bidirectional LSTM (b-LSTM) [37, 56, 65,

67, 51], hierarchical b-LSTM [75], deep residual b-LSTM (deep-res-bidir LSTM) [55],

and LSTM with peephole connections (p-LSTM) [37]; and other nuanced architectures

such as ensemble deep LSTM [57], weighted-average spatial LSTM (WAS-LSTM) [60],

deep-Q LSTM [39], the multivariate squeeze-and-excite fully convolutional network AL-

STM (MALSTM-FCN) [74], and similarity-based LSTM [38]. Note that the term deep
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indicates the use of multiple layers of hidden connections - generally three or more LSTM

layers qualifies as “deep”.

The use of densely-connected layers before or after the LSTM layers was also common.

Kyritsis, et. al. added a dense layer with ReLU activation after the LSTM layers, Zhao, et.

al. included a dense layer with tanh activation after the LSTMs, and Musci, et. al. used a

dense layer before and after its two LSTM layers [64, 72, 62]. The WAS-LSTM, deep-Q

LSTM, and the similarity-based LSTM used a combination of dense and LSTM hidden

layers.

Training. Weight initialization strategies employed include random orthogonal initial-

ization [32, 36], fixed random seed [59], the Glorot uniform initialization [56], random

uniform initialization on [-1, 1] [65], or using a random normal distribution [70]. For mini-

batch training, reported batch sizes range from 32 [54, 59] to 450 [63] training examples

(e.g., windows) per batch.

Loss functions for monitoring training include categorical cross-entropy [32, 73, 61, 36,

64, 59, 56, 70, 60], F1 score loss [57], mean squared error (MSE) [66], and mean absolute

error [72]. During back propagation, various updating rules e.g. RMSProp [32, 59, 56],

Adam [73, 64, 56, 70, 60], and Adagrad [68, 51] and learning rates 1e-7 [68], 1e-4 [36,

57], 2e-4 [65], 5e-4 [67], and 1e-2 [32] are used.

Regularization techniques employed include weight decay of 90% [32, 36]; update

momentum of 0.9 [65], 0.2 [67], or the Nesterov implementation [68]; dropout (e.g., 50%

[32, 36] or 70% [72]) between various layers; batch normalization [55]; or gradient clipping

using the norm [55, 70, 60]. Broome chose to test the stateful configuration for its baseline

LSTM [56]. In this configuration, unit memory cell weights are maintained between each

training example instead of resetting them to zero after each forward pass.

The number of epochs specified ranged from 100 [56] to 10,000 [70]. Many studies

chose to use early stopping to prevent overfitting [76]. Various patience schemes, speci-
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fying how many epochs with no improvement above a given threshold the model should

allow, were chosen.

Performance Measures. Various performance measures were used to assess the perfor-

mance of the model, including the F1 score - used by most [32, 56, 33, 55, 56], classifi-

cation error [37], accuracy [36, 59], and ROC [65, 70]. As this overview has shown, there

are many different model constructions being employed for HAR tasks. The work by the

aforementioned studies as well as others have laid the groundwork for this field of research.

Experimental Setup

We implemented a truncated version of our Pipeline, and have made code available for

running the entire Pipeline on the UCI HAR Dataset at

https://github.com/xtianmcd/accelstm.

Data. Although many studies use the gyroscope- and magnetometer-supplemented

records from complex inertial signals, accelerometer data is the most ubiquitous modal-

ity in this field and training models on this data alone helps illuminate the robustness of the

model and requires lower computational complexity (i.e., more applicable to online and

on-device classifications). As such, this report trains its models on triaxial accelerometer

data alone.

The primary dataset used for our experiments is the Human Activity Recognition Using

Smartphones Data Set (UCI HAR Dataset) from Anguita, et. al. [77].

UCI HAR Dataset. Classes (6) include walking, climbing stairs, descending stairs,

sitting, standing, and laying down. Data was collected from built-in accelerometers and

gyroscopes (not used in our study) in smartphones worn on the waists of participants.

A degree of preprocessing was applied to the raw signals themselves by the data collec-

tors. The accelerometer data (recorded at 50Hz) was preprocessed to remove noise by ap-

plying a third order low pass Butterworth filter with corner frequecy of 20Hz and a median

filter. A second filter was then applied to the total accelerometer signal (T) to remove the
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gravity component, leaving the isolated body accelerometer signal (B). The accelerometer

signals for both B and T were provided as pre-split single-axis windowed signals divided

into separate files; see Figure 2.4 A. Windows contained 2.56 seconds (128 time steps) of

data and had a step size of 50% of the window size. A 70:30 train-to-test split was used,

splitting one of the participants between the two sets.

Preprocessing. We kept preprocessing to a minimum. We first attempted to undo as

much of the preprocessing already performed on the data and reformat the data for feeding

it into the network. We did this to establish a baseline format for the data at the start of the

Pipeline so that data from different datasets can be used. The code for this procedure can

be found in the GitHub repository linked above in the file

accelstm/src/data/HAR_get_data.py.

First, we re-combined the training and testing sets (Figure 2.4 B). We effectively re-

moved the windows by concatenating together time points from every other window, re-

forming contiguous time series (Figure 2.4 C). We then combined each axis-specific time

series to form the desired triaxial data format, where each time point consists of the ac-

celerometer values along the x-, y-, and z-axes as a 3-dimensional array (Figure 2.4 D).

We generated one-hot labels in that step as well. We kept track of the participant to which

each record belonged (Figure 2.4 E) so that no single participant was later included in both

training and testing sets.

We used an 80:20 training-to-testing split (Figure 2 A-D), and subsequently standard-

ized the data by first fitting the standardization parameters (i.e., mean and standard devi-

ation) to the training data and then using these parameters to standardize the training and

testing sets separately (Figure 2 E1). This sequenced procedure prevents exposing any

summary information about the testing set to the model before training, i.e., data leakage.

Finally, a fixed-length sliding window was applied (Figure 2 E2), the windows were shuf-

fled to avoid localization during training (Figure 2 F), and the data was ready to feed into

the LSTM neural network.
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Figure 2.4: Depiction of the “undoing” procedure to return the data in the UCI HAR Dataset
to its unprocessed form. A. Data is provided as train/test-split single-axis windowed acc-
celerometer signals. B. Combine train and test sets. C. Remove windows; reformat labels
and subject include’s accordingly. D. Axes are combined into a three-dimensional time
series; one-hot labels are generated. E. 3-D time series and labels are grouped by subject
to emulate subject-wise data acquisition.
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Figure 2.5: Outline of the proposed data analysis pipeline. A. The data should start as raw
tri-axial data files separated into individual records; one record per individual. B. Shuffle
the records. C. Partition the records into k equal groupings for the k-fold cross validation.
D. Concatenate the records end-to-end within the train and test sets (for feeding in to the
LSTM). E. Standardize the data, careful to avoid data leakage; subsequently window the
data. F. Shuffle the windowed data sets. G. If in Part 1 of the Pipeline, optimize the model’s
hyperparameters; if in Part 2, train the optimized model on the training data. H. Predict
outcomes for the testing data using the trained model and score the results.

31



Training. All model training code can be found in the GitHub repository linked above

in the folder accelstm/src/models. Training the model was broken up into two

sections, the first of which consisted of hyperparameter optimization. We employed a

heuristic-based search, namely the tree-structured Parzen (TPE) expected improvement

(EI) algorithm, in order to more efficiently navigate the vast hyperparameter search space.

EI algorithms estimate the ability of a supposed model x to outperform some performance

standard y∗, and TPE aims to assist this expectation by heuristically modeling the search

space without requiring exhaustive exploration thereof. TPE iteratively substitutes equally-

weighted prior distributions over hyperparameters with Gaussians centered on the exam-

ples seen over time. This re-weighting of the search space allows TPE to estimate p(y) and

p(x|y) - regarding the performance y from suggested model x - ultimately allowing the EI

algorithm to estimate p(y|x) of model M via Bayes Theorem [78].

EIy∗(x) :=

∫ ∞
−∞

max(y∗ − y, 0)pM(y|x)dy

becomes

EIy∗(x) =

∫ y∗

−∞
max(y∗ − y, 0)pM(y|x)dy

=

∫ y∗

−∞

p(x|y)p(y)

p(x)
dy

=
γy∗l(x)

∫ y∗
−∞ p(y)dx

yl(x) + (1− γ)g(x)

∝ (γ +
g(x)

l(x)
(1− γ))−1

where

γ = p(y∗ < y)
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Table 2.1: The hyperparameters included in the search space, and their respective ranges.
Category Hyperparameter Range

Data Processing
Window Size 24, 48, 64, 128, 192, 256
Stride 25%, 50%, 75%
Batch Size 32, 64, 128, ..., 480

Architecture
Units 2, 22, 42, 62, ..., 522
Layers 1, 2, 3

Forward Processing
Activation Function (unit, state) softmax, tanh, sigmoid, ReLU, linear
Bias True, False

Weight Initialization (cell, state)
eros, ones, random uniform dist.,
random normal dist., constant (0.1), orthogonal,
Lecun normal, Glorot uniform

Regularization
Regularization (cell, state, bias, activation) None, L2 Norm, L1 Norm
Weight Dropout (unit, state) uniform distribution (0, 1)
Batch normalization True, False

Learning
Optimizers SGD, RMSProp, Adagrad, Adadelta, Nadam, Adam
Learning Rate 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1

p(x|y) = l(x) if y < y∗

= g(x) if y ≥ y∗

and p(a|b) is the conditional probability of a given event b.

The ranges of hyperparameters were devised to include all ranges explored by the var-

ious reports reviewed in the above section of this paper, as well as any other well-defined

range or setting used in the field, yielding an immense search space with trillions of pos-

sible combinations. The hyperparameters included in the search space are listed in Table

??. Due to constraints in the Python package used for hyperparameter optimization (i.e.,

hyperas from hyperopt), a subsequent tuning of the window size, stride length and

number of layers needed to be performed on the highest performing combination of all

other hyperparameters via randomized grid search. This step was omitted in the current

proof of concept experiment, but the code for carrying out the grid search can be found in

the file accelstm/src/models/more_opt.py. Thus, for initial optimization and

the final cross validation (detailed below), data was partitioned using a window size of 128

with 50% stride length and fed into a 2-layer LSTM network.
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For the second portion of the experiment, the Pipeline is completed via 5-fold cross

validation, where the folds were made at the participant level so that no single participant’s

data ended up in both training and testing sets.

Languages and Libraries. All models were written in the Python programming lan-

guage. The LSTMs were built and run using the Keras 2 library and TensorFlow 3 as the

backend heavy lifter. Hyperas 4 from Hyperopt 5 was used to optimize the network. Scikit

learn provided the packages for cross validation, randomized grid search, and standardiza-

tion of data. Numpy and Pandas were used to read and reformat the data among various

other operations.

Results

During preliminary testing, we found that the model performed better on the total raw

accelerometer signal (T) compared to the body-only data with the gravity-component (B)

removed. As such, we used the total accelerometer signal (T) in our experiment.

The hyperparameter optimization explored a search space with trillions of possible pa-

rameter combinations. Due to time constraints, we stopped the search after six full days

(hundreds of training iterations), during which time the suggested models’ accuracies on

test sets had ranged from 12.66% to 94.96%. The algorithm found several high-performing

models and had used at least once all the values possible for each activation function, ini-

tialization strategy, regularization strategy, learning rate, and optimizer in the search space.

The algorithm had tested models that both used and omitted batch normalization and bias,

and it had tested dropout values between 0.005 and 0.991, batch sizes between 35 and 441

samples per batch, and from 10 to 508 units at both of the two layers.

2https://keras.io
3https://www.tensorflow.org
4https://github.com/maxpumperla/hyperas
5http://hyperopt.github.io
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Table 2.2: Results table including results from baseline LSTM models trained on all 9
features in the data set - total accelerometer signals (T), body accelerometer signals (grav-
ity component removed, B), gyroscope signals (G). One of the baseline LSTM’s did not
explicitly specify the number of features used. We provide results from Part 1 (P1, Hy-
perparameter Optimization) and Part 2 (P2, Cross-Validation) of our Pipeline. P2 scores
include Accuracies (percentages) and F1 scores (decimals).

Model Performance Num. Features
Baseline LSTM 1 90.77% 9 (T,B,G)
Baseline LSTM 2 85.35% 3-9 (?)
Pipeline P1 (Best) 93.47% 3

Pipeline P2 (CV) 90.97% 3
0.910 3

Pipeline P2 (Best) 95.25% 3
0.957 3

Due to limited time to run our experiments, we conducted part two of the experiment

concurrently with part one using a baseline LSTM architecture we felt would be a good

starting point based on notes throughout the literature. The hyperparameter settings used

in the model are as follows: window size, 128 time steps; step size, 50% of window size;

number of layers, 2; units (layer1), 128; units (layer2), 114; batch size, 64; cell activation,

tanh; recurrent activation, sigmoid; dropout, 0.5; weight initialization, Glorot Uniform;

regularization, None; optimizer, RMSProp; bias, yes. We ran 5-fold CV on the model and

computed the overall and class-wise F1 scores and accuracies. Cross validation yielded an

average accuracy of 90.97% and F1 score of 0.90968, with a single best run of 95.25%

accuracy and 0.9572 F1 score. We include the single best run for comparison with other

reports, many of which do not report evidence of using cross validation or repeated trials.

Discussion

The execution of HAR research in various settings from the biomedical clinic early on [79,

30, 80] to current-day innovative settings such as the automobile [66], the bedroom [65], the

dining room [64], and outdoor sporting environments [37] justifies the time spent expand-
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ing this area of research. As LSTM models are increasingly demonstrated to have potential

for HAR research, the importance of deliberate and reproducible works is paramount.

Review of Previous Works. A survey of the literature revealed a lack of cohesiveness

regarding the use of LSTMs for accelerometer data and the overall data analysis pipeline.

We grew concerned with possible sources of data leakage. Test set data should come from

different participants than those used for the training data [5], and no information from the

test set should be exposed to the model before training.

We were surprised to see some of the more advanced preprocessing techniques be-

ing employed. Much of the appeal of non-linear models such as neural networks is their

ability to learn from raw data itself and independently perform smoothing and feature ex-

traction on noisy data through parameterized embeddings of the data. For example, Karpa-

thy’s 2015 study of LSTMs for language modeling showed specific neurons being activated

when quotes were opened and deactivated when the quotes were closed, while others were

activated by parenthetical phrases, marked the end of sentences, and so on [15]. Addition-

ally, these preprocessing methods are more computationally expensive and less realistic for

online and on-device implementations than is desired. The improved performance of the

model on the total accelerometer signal (T) versus the body-only signal (B) with the grav-

ity component removed demonstrates the promising potential of non-linear data-dependent

models for classifying complex noisy data and supports our claim that extensive prepro-

cessing is not necessary.

We do feel standardization is justified for this data due to its complexity and poor

signal-to-noise ratio. Standardization is often important for data-dependent models such

as LSTMs since the presence of outliers and skewed distributions may distort the weight

embeddings [76].

Hyperparameter Optimization and Data Analysis Pipeline. We structured our exper-

iments with the objective of maintaining simplicity, relying as much as possible on the
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baseline model itself, maximizing generalizability and reproducibility of our methods and

results, and unifying the existing methods and results in literature.

We saw very promising results from the hyperparameter optimization portion of the ex-

periment. The TPE algorithm, although not run to completion in this experiment, was able

to navigate the search space and find several well-performing models. We chose to err on

the side of caution by using very granular ranges over the numerical hyperparameters, and

as a result we ran out of time even using the heuristic-based TPE algorithm. We suggest

further experiments to reduce the search space by using less granular ranges over the nu-

meric hyperparameters, and exploring more advanced heuristic search methods. Doing so

will decrease the search time and allow completion of the entire Pipeline in a more reason-

able amount of time. Nonetheless, the TPE’s so-far-best model at the time of termination

and our baseline model from Part 2 outperformed other baseline LSTMs trained on higher

dimensional data from the same dataset [58, 55]; see Table ??.

We also compare our performance with other benchmark experiments on the UCI HAR

dataset. Compared with more complex LSTMs trained using more features, our aver-

aged cross validation results scored competitively with the b-LSTM (91.09%), the residual

LSTM (91.55%), and the deep res-bidir-LSTM (93.57%) all from Zhao, et. al. [55]. As

we found no evidence of cross validation in these other reports, we compare our single

best-performing test’s accuracy of 95.25% and F1 score of 0.9572 and find it to compete

with the highest scoring models found in literature: 4 layer LSTM (96.7% accuracy, 0.96

F1score) [73], MLSTM-FCN and MALSTM-FCN (96.71% accuracy) [74], and one-vs-

one (OVO) SVM (96.4% accuracy, 551 features) [25].

Conclusions and Future Work

We demonstrate the ability for a baseline LSTM model trained solely on raw triaxial

accelerometer data (without gravity component removed) to perform competitively with
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classical models trained on hundreds of hand-crafted features and with other more complex

LSTM models trained on higher dimensional sensor data.

We demonstrate the ability to optimize a data-centric model over an expansive hyperpa-

rameter search space and train it end-to-end within a scientifically rigorous and deliberate

Data Analysis Pipeline. The code used in this project can be found at

https://github.com/xtianmcd/accelstm.

Going forward, we would like to repeat this experiment to average performances from

different models returned by the TPE algorithm; we would also like to repeat this exper-

iment on other HAR datasets. Further exploration should be done to analyze why the

algorithms selections are indeed superior, how different data affect these choices, and how

the LSTM cells within the models themselves are representing this type of data as has been

done with LSTMs in other domains.

We hope that this Pipeline will serve useful in producing explicit and reproducible

experiment results and in pushing the field forward in a methodical way.
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CHAPTER 3

DEVELOPING A GRAPH CONVOLUTION-BASED ANALYSIS PIPELINE FOR

MULTI-MODAL NEUROIMAGE DATA: AN APPLICATION TO PARKINSON’S

DISEASE

1

1McDaniel, C.L. and S. Quinn. 2019. Proceedings of the 18th Python in Science Conference (SciPy 2018)
31-40. Reprinted here with permission of the publisher.
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Abstract

Parkinson’s disease (PD) is a highly prevalent neurodegenerative disease originating in sub-

cortical areas of the brain and resulting in progressively worsening motor, cognitive, and

psychiatric (e.g., depression) symptoms. Neuroimage data is an attractive research tool

given the neurophysiological origins of the disease. Despite insights potentially available

in magnetic resonance imaging (MRI) data, developing sound analytical techniques for

this data has proven difficult. Principally, multiple image modalities are needed to compile

the most accurate view possible; the process of incorporating multiple image modalities

into a single holistic model is both poorly defined and extremely challenging. In this pa-

per, we address these issues through the proposition of a novel graph-based convolutional

neural network (GCN) architecture and present an end-to-end pipeline for preprocessing,

formatting, and analyzing multimodal neuroimage data. We employ our pipeline on data

downloaded from the Parkinson’s Progression Markers Initiative (PPMI) database. Our

GCN model outperforms baseline models, and uniquely allows for direct interpretation of

its results.

Introduction

Affecting more than 1% of the United States population over the age of 60, Parkinson’s

disease (PD) is the second-most prevalent age-related neurodegenerative disease following

Alzheimer’s disease [19]. PD diagnosis has traditionally relied on clinical assessments with

some degree of subjectivity [20], often missing early-stage PD altogether [21]. Benchmarks

for delineating PD progression or differentiating between similar conditions are lacking

[22, 23]. As such, many efforts have emerged to identify quantitatively rigorous methods

through which to distinguish PD.

Neuroimage data is an attractive tool for PD research. Magnetic resonance imaging

(MRI) in particular is safe for patients, highly diverse in what it can capture, and decreasing
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in cost to acquire. Recent work shows that multiple MRI modalities are required to provide

researchers and clinicians with the most accurate view of a patient’s physiological state

[81, 21, 23]. For example, anatomical MRI (aMRI 2) data is useful for identifying specific

brain regions, but the Euclidean distance between regions does not well-approximate the

functional or structural connectivity between them. Diffusion-weighted MRI (dMRI) mea-

sures the flow of water through the brain in order to track the tube-like connections between

regions (i.e., tracking nerve fiber bundles a.k.a. tracts via white matter tractography; see

Appendix A below for more information), and functional MRI (fMRI) measures changes

in blood oxygenation throughout the brain over time to approximate which regions of the

brain function together. As such, it is useful to analyze a combination of these modalities to

gain insights from multiple measures of brain physiology. Processing and analyzing multi-

modal data together is both poorly defined and extremely challenging, requiring combined

expertise from neuroscience and data analytics.

MRI data is inherently noisy data and requires extensive preprocessing before analy-

sis can be performed. This is often left to the researcher to carry out; many techniques

exist, and the technical implementation decisions made along the way can affect the out-

come of later analysis. This is a major barrier to reproducibility and prevents data analysts

from applying their skills in this domain. More work is needed to automate the procedure

and provide better documentation for steps requiring case-specific input. To that end, we

discuss our findings and methods below, and our code is available on GitHub 3.

Following preprocessing, we address the issue of analyzing multimodal MRI data to-

gether. Previous work has shown that graph-based signal processing techniques allow mul-

timodal analysis in a common data space [82, 83, 84]. It has been shown that graph-based

signal processing classifiers can be incorporated in neural network-like architectures and

2In this paper we use anatomical MRI to refer to standard T1-weighted (T1w) MR imaging. T1 weighted
refers to the specific sequence and timing of magnetic pulses and radio frequencies used during imaging.
T1w MRI is a common MR imaging procedure; the important thing to note is that T1 weighting yields high-
resolution images which show contrast between different tissue types, allowing for segmentation of different
anatomical regions.

3https://github.com/xtianmcd/GCNeuro

41

https://github.com/xtianmcd/GCNeuro


applied to neuroimage data. Similar to convolutional neural networks, Graph Convolutional

Networks (GCNs) learn filters over a graph so as to identify patterns in the graph structure,

and ultimately perform classification on the nodes of the graph. In this paper, following

the discussion of our preprocessing pipeline, we propose a novel GCN architecture which

uses graph attention network (GAT) layers to perform whole-graph classification on graphs

formed from multimodal neuroimage data.

On data downloaded from the Parkinson’s Progression Markers Initiative (PPMI), we

compare the performance of the novel GCN architecture to that of baseline models. We find

that our GCN model outperforms baseline models on our data. The weights from GAT lay-

ers provide a means for direct interpretation of the results, indicating which brain regions

contributed the most to the distinction between patients with PD and healthy controls.

Related Works

While genetic and molecular biomarkers have exhibited some efficacy in developing a PD

blueprint [20, 85, 86], many research efforts have turned to neuroimaging due to its non-

invasive nature and alignment with existing knowledge of the disease. Namely, PD affects

a major dopamine-producing pathway (i.e., the nigrostriatal dopaminergic pathway) of the

brain [26], and results in various structural and functional brain abnormalities that can be

captured by existing imaging modalities [87, 85, 88, 89, 90, 28]. Subsequent whole-brain

neuroimage analysis has identified PD-related regions of interest (ROIs) throughout the

brain, from cortical and limbic regions to the brainstem and cerebellum [91, 89, 28].

As neuroimage data has accumulated, researchers have worked to develop sound an-

alytical techniques for the complex images. Powerful machine learning techniques have

been employed for analyzing neuroimage data [85, 89, 91, 90], but algorithmic differences

can result in vastly different results [88, 92, 87]. [27] and [28] found that implementa-

tion choices made during the processing pipeline can affect analysis results as much as

anatomical differences themselves (e.g., when performing white matter tractography on
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diffusion-weighted MRI (dMRI) data and in group analysis of resting-state functional MRI

(rfMRI) data, respectively). To overcome the effect of assumptions made by a given anal-

ysis algorithm, many researchers have turned to applications of deep machine learning

(DL) for neuroimage data analysis. Considered universal function approximators [93], DL

algorithms are highly flexible and therefore have low bias in their modeling behavior. Ex-

amples of DL applications to neuroimage analysis are widespread. [94] proposes a 3D

convolutional neural network (CNN) for skull stripping 3D brain images, [95] proposes a

novel recurrent neural network plus independent component analysis (RNN-ICA) model

for fMRI analysis, and [96] demonstrate the efficacy of the restricted Boltzmann machine

(RBM) for network identification. [4] offer a comprehensive review of deep learning-based

methods for medical image computing.

Multi-modal neuroimage analysis is increasing in prevalence [97, 81, 21, 22, 23] due

to limitations of single modalities, resulting in larger and increasingly complex data sets.

Recently, researchers have utilized advances in graph convolutional networks to address

these concerns. We discuss the mathematical background of graph convolutional networks

(GCNs) and graph attention networks (GATs, a variant of GCNs with added attention mech-

anisms) in the Methods Section below and Appendix B. Principally, our model is based on

advancements made by [98] and [99] on GCNs and GATs, respectively.

This work follows from previous efforts applying GCNs to similar classification tasks.

[100] — in addition to providing in-depth intuition behind spectral graph processing (i.e.,

processing a signal defined on a graph structure) — demonstrate spectral graph processing

on diffusion signals defined on a graph of connected brain regions. Their paper preceded

but laid the groundwork for incorporating spectral graph processing into convolutional neu-

ral network architectures. To classify image objects based on multiple views or angles,

[101, 102] developed siamese and multi-view neural networks. These architectures share

weights across parallel neural networks to incorporate each view of the data. They group
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examples into pairs, aiming to classify the pairs as being from the same class or different

classes.

Efforts to utilize GCNs for multimodal neuroimage data have used similar pairwise

grouping as a way to increase the size of their data set. Ktena, et. al. 2017 and Ktena, et.

al. 2018 train GCN models to learn similarity metrics between subjects with Autism Spec-

trum Disorder (ASD) and healthy controls (HC), using fMRI data from the Autism Brain

Imaging Data Exchange (ABIDE) database [82, 83]. Zhang, et. al. 2018 apply a similar

architecture to learn similarity metrics between subjects with PD and HC, using dMRI data

from the PPMI data set [84]. Their work inspired our paper; to our knowledge, our study is

the first that uses GCNs to predict the class of neuroimage data directly, instead of making

predictions on pairwise examples.

Discussion of the Processing Pipeline

This section walks through our pipeline, which handles the formatting and preprocessing

of multimodal neuroimage data and readies it for analysis via our GCN architecture. We

reference the specific python files that handle each task, and we provide some background

information. More information can be found in the Appendices below.

Data Formatting MRI data requires extensive artifact correction and removal before it

can be used. MRI signals are acquired through the application of precisely coordinated

magnetic fields and radiofrequency (RF) pulses. Each image is reconstructed from a se-

ries of recordings averaged over many individual signals. This inherently results in noisy

measurements, magnetic-based artifacts, and artifacts from human error such as motion

artifacts [103, 104]. As such, extensive preprocessing must be performed to clean the data

before analysis. Appendix A provides more details on the main MRI modalities.
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Our pipeline assumes that a “multi-zip” download is used to get data from the PPMI

database 4. The file neuro_format.py combines the data from multiple download

folders into a single folder, consolidating the multiple zip files and recombining data from

the same subject.

Next, before preprocessing, images should be converted to the Neuroimaging Informat-

ics Technology Initiative (NIfTI) 5 file format. Whereas many MRI data are initially in the

Digital Information and Communications in Medicine (DICOM) 6 format for standardized

transfer of medical data and metadata, the NIfTI format is structured for ease of use when

conducting computational analysis and processing on these files. The size, orientation, and

location in space of the voxel data is dependent on settings used during image acquisition

and requires an affine matrix to relate two images in a standard coordinate space. The

NIfTI file format automatically associates each image with an affine matrix as well as a

header file, which contains other helpful metadata. The software dcm2niix 7 is helpful

for converting the data from DICOM format to NIfTI format.

Next, it is common practice to convert the data file structure to the Brain Imaging Data

Structure (BIDS) 8 format. Converting data to the BIDS format is required by certain

softwares, and ensures a standardized and intuitive file structure. There exist some readily

available programs for doing this, but we wrote our own function specifically for PPMI

data in make_bids.py, as the PPMI data structure is quite nuanced. This file also calls

dcm2niix to convert the image files to NIfTI format.

Data Preprocessing. This subsection discusses the various softwares and commands

used to preprocess the multimodal MRI data. The bash script setup should help with

getting the necessary dependencies installed 9. The script was written for setting up a

4When using the “Advanced Download” option on the PPMI database, the data is split into multiple zip
files, often splitting up the data of a single subject.

5https://nifti.nimh.nih.gov
6https://www.dicomlibrary.com
7https://github.com/rordenlab/dcm2niix
8https://bids.neuroimaging.io
9We install the softwares to the home (‘ ‘) directory due to permission issues when connect to Google

cloud virtual machines via the ‘ssh‘ command. Freesurfer’s setup does not automatically adapt to installation
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Google cloud virtual machine, and assumes the data and pipeline files are already stored in

a Google cloud bucket.

The standard software for preprocessing anatomical MRI (aMRI 10) data is Freesurfer

11. Freesurfer is an actively developed software with responsive technical support and rich

forums. The software is dense and the documentation is lacking in some areas, so training

may still be helpful, although not available in our case. The recon-all command per-

forms all the steps needed for standard aMRI preprocessing, including motion correction,

registration to a common coordinate space using the Talairach atlas by default, intensity

correction and thresholding, skull-stripping, region segmentation, surface tessellation and

reconstruction, statistical compilation, etc.

The entire process takes around 15 or more hours per image. Support for GPU-enabled

processing was stopped years ago, and the -openmp<num_cores> command, which

allows parallel processing across the designated number of cores, may only reduce the pro-

cessing time to around 8-10 hours per image 12. We found that running parallel single-core

CPU processes worked the best, especially when many processing cores are available. For

this we employed a Google Cloud Platform virtual machine and utilized the python module

joblib.Parallel to run many single-core processes in parallel. For segmentation, the

Deskian/Killiany atlas is used, resulting in around 115 volume segmentations per image, to

be used as the nodes for the graph.

in the home directory, so several of its environment variables need to be hard coded. See the ‘setup‘ bash
script provided for details.

10In this paper we use anatomical MRI to refer to standard T1-weighted (T1w) MR imaging. T1 weighted
refers to the specific sequence and timing of magnetic pulses and radio frequencies used during imaging.
T1w MRI is a common MR imaging procedure; the important thing to note is that T1 weighting yields high-
resolution images which show contrast between different tissue types, allowing for segmentation of different
anatomical regions.

11https://surfer.nmr.mgh.harvard.edu
12In the release notes, it is recommended for multi-subject pipelines to use a single core per image and pro-

cess subjects in parallel, and in the forums it is discussed that multiprocessing may only reduce the processing
time to around 10 hours. It is also mentioned that the time required to transfer data on and off GPU cores
may diminish the speedup provided by GPU processing. GPU support has not been provided by Freesurfer
for quite some time, and we were unable to compile Freesurfer to use newer versions of CUDA. We tested
multiple CPU multiprocessing approaches and found that running images in parallel with a single core per
process was the fastest method.
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The Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library

(FSL) 13 is often used to preprocess diffusion data (dMRI). The b0 volume is taken at the

beginning of dMRI acquisition and is used to align dMRI images to aMRI images of the

same subject. This volume is isolated (fslroi) and merged with b0’s of other clinic visits

(CVs) 14 for the same subject (fslmerge). fslmerge requires that all dMRI acquisi-

tions for a given subject have the same number of coordinates (e.g., (116,116,78,65)

vs. the standard (116,116,72,65)). Since some acquisitions had excess coordinates,

we manually examined these images and, if possible, removed empty space above or below

the brain. Otherwise, these acquisitions were discarded. Next, the brain is isolated from the

skull (skull stripped, bet with the help of fslmaths-Tmean), magnetic susceptibility

correction is performed for specific cases (see below) using topup, and eddy correction

is performed using eddy_openmp. Magnetic susceptibility and eddy correction refer to

specific noise artifacts that significantly affect dMRI data.

The topup tool requires two or more dMRI acquisitions for a given subject, where the

image acquisition parameters TotalReadoutTime and/or PhaseEncodingDirection

(found in the image’s header file) differ from one another. Since the multiple acquisitions

for a given subject typically span different visits to the clinic, the same parameters are often

used and topup cannot be utilized. We found another software, BrainSuite 15, which can

perform magnetic susceptibility correction using a single acquisition. Although we still

include FSL in our pipeline since it is the standard software used in many other papers, we

employ the BrainSuite software’s Brain Diffusion Pipeline to perform magnetic suscepti-

bility correction and to align the corrected dMRI data to the aMRI data for a given subject

(i.e., coregistration).
13https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
14Each subject has anatomical and diffusion MRI data for varying numbers of visits to the clinic. We use

clinic visit or CV to refer to the MRI acquisitions (anatomical and diffusion) obtained during a single visit to
the clinic.

15http://brainsuite.org
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First, a BrainSuite compatible brain mask is obtained using bse. Next, bfc is used for

bias field (magnetic susceptibility) correction, and finally bdp performs co-registration of

the diffusion data to the aMRI image of the same subject. The calls to the Freesurfer, FSL,

and BrainSuite software libraries are included in automate_preproc.py.

Once the data has been cleaned, additional processing is performed on the diffusion

(dMRI) data. As discussed in the Introduction section, dMRI data measures the diffusion

of water throughout the brain. The flow of water is constricted along the tube-like path-

ways (tracts) that connect regions of the brain, and the direction of diffusion can be traced

from voxel to voxel to approximate the paths of tracts between brain regions. There are

many algorithms and softwares that perform tractography, and the choice of algorithm

can greatly affect the analysis results. We use the Diffusion Toolkit (DTK) 16 to per-

form multiple tractography algorithms on each diffusion image. In dtk.py we employ

four different diffusion tensor imaging (DTI)-based deterministic tractography algorithms:

Fiber Assignment by Continuous Tracking (FACT; [105]), the second-order RungeKutta

method (RK2; [106]), the tensorline method (TL; [107]), and the interpolated streamline

method (SL, [108]). [109] provide more information on each method. dti_recon first

transforms the output file from Brainsuite into a usable format for DTK, and then the

function dti_tracker is called for each of the tractography algorithms. Finally, the

spline_filter function is used to smooth the generated tracts, denoising the outputs.

Now that the images are processed, they can be efficiently loaded using python libraries

nibabel and dipy, and subsequently operated on using standard data analysis packages

such as numpy and scipy.

Defining Graph Nodes and Features. Neuroimage data is readily applied to graph pro-

cessing techniques and is often used as a benchmark application for new developments

in graph processing [100]. Intuitively, the objective is to characterize the structural and

functional relationships between brain regions, since correlations between PD and abnor-

16http://trackvis.org/dtk/
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mal brain structure and function have been shown. As such, the first step is to define a

graph structure for our data. This step alone has intuitive benefits. Even after preprocess-

ing, individual voxels of MRI data contain significant noise that can affect analysis [28].

Brain region sizes vary greatly across individuals and change over one individual’s lifetime

(e.g., due to natural aging [110]). Representing regions as vertices on a graph meaningfully

groups individual voxels and mitigates these potential red herrings from analysis.

We use an undirected weighted graph G = V , E ,W with a set of vertices V with |V| =

the number of brain regions N , a set of edges E , and a weighted adjacency matrix W,

to represent our aMRI data. G is shared across the entire data set to represent general

population-wide brain structure. Each vertex vi ∈ V represents a brain region. Together,

V , E , and W form a k-Nearest Neighbor adjacency matrix, in which each vertex is con-

nected to its k nearest neighbors (including itself) by an edge, and edges are weighted

according to the average Euclidean distance between two vertices. The weight values are

normalized by dividing each distance by the maximum distance from a given vertex to all

of its neighbors, dij ∈ [0, 1]. (Refer to Appendix B for details.)

gen_nodes.py first defines the vertices of the graph using the anatomical MRI data,

which has been cleaned and segmented into brain regions by Freesurfer. The center voxel

for each segmentation volume in each image is calculated. Next, adj_mtx.py calculates

the mean center coordinate across all aMRI images for every brain region. The average

center coordinate for each region i is a vertex vi ∈ V of the graph G. See Figure 3 for a

depiction of the process.

Using these vertices, we wish to incorporate information from other modalities to char-

acterize the relationships between the vertices. We define a signal on the vertices as a

function f : V → R, returning a vector f ∈ RN . These vectors can be analyzed as sig-

nals on each vertex, where the change in signal across vertices is used to define patterns

throughout the overall graph structure. In our case, the vector signal defined on a vertex

vi represents that vertex’s weighted connectivity to all other vertices [100]. The weights
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Figure 3.1: A depiction of the steps involved in forming the adjacency matrix. First,
anatomical images are segmented into regions of interest (ROIs), which represent the ver-
tices of the graph. The center voxel for each ROI is then calculated. An edge is placed
between each node i and its k-nearest neighbors, calculated using the center coordinates.
Lastly, each edge is weighted by the normalized distance between each node i and its con-
nected neighbor j.

correspond to the strength of connectivity between vi and some other vertex vj , as calcu-

lated by a given tractography algorithm. As such, each signal is a vertex of size N and

there areN signals defined on each graph (one for each vertex), forming anNxN weighted

connectivity matrix. Each dMRI image has one NxN set of signals for each tractography

algorithm. In this way, the dimensionality of the data is drastically reduced, and informa-

tion from multiple modalities and processing algorithms may be analyzed in a common

data space.

gen_features.py approximates the strength of connectivity between each pair of

vertices. For this, the number of tracts (output by each tractography algorithm) connect-

ing each pair of brain regions must be counted. Recall that each image carries with it

an affine matrix that translates the voxel data to a coordinate space. Each preprocess-

ing software uses a different coordinate space, so a new affine matrix must be calculated

to align the segmented anatomical images and the diffusion tracts (i.e., coregistration).

Freesurfer’s mri_convert, FSL’s flirt, and DTK’s track_transform are used

to put the two modalities in the same coordinate space so that voxel-to-voxel compar-

isons can be made. Next, nibabel’s i/o functionality is used to generate a mask file for

50

gen_features.py
mri_convert
flirt
track_transform
nibabel


Figure 3.2: The process of generating the features from a single tractography algorithm is
shown. Tractography streamlines are aligned to a corresponding anatomical image. The
number of streamlines connecting each pair of brain regions is calculated to represent the
strength of connection. Using each brain region as a vertex on the graph, the connection
strengths between a given vertex to all other vertices are compiled to form the signal vector
for that vertex.

each brain region, nibabel.streamlines is used to read in the tractography data and

dipy.tracking.utils.target is used to identify which tracts travel through each

volume mask. The tracts are encoded using a unique hashing function to save space and

allow later identification.

To generate the signals for each vertex, utils.py uses the encoded tract IDs assigned

to each volume to count the number of tracts connecting each volume pair. The number

of connections between pairs of brain regions approximate the connection strength, and

these values are normalized similar to the normalization scheme mentioned above for the

k-nearest neighbor weights. Figure 3.2 offers a visualization.

Graph Convolutional Networks. Common to many areas of data analysis, spectral

graph processing techniques (i.e., processing a signal defined on a graph structure) have

capitalized on the highly flexible and complex modeling capacity of so-called deep learning

neural network architectures. The layered construction of nonlinear calculations loosens

rigid parameterizations of other classical methods. This is desirable, as changes in parame-

terizations have been shown to affect results in both neuroimage analysis (e.g., independent
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component analysis (ICA) [27]) and in graph processing (e.g., the explicit parameterization

used in Chebyshev approximation [98]; further discussed in Appendix B).

In this paper, we utilize the Graph Convolutional Network (GCN) to compute signal

processing on graphs. GCNs were originally used to classify the vertices of a single graph

using a single set of signals defined on its vertices. Instead, our task is to learn signal

patterns that generalize over many subjects’ data. To this end, we designed a novel GCN

architecture, which combines information from anatomical and diffusion MRI (dMRI) data,

processes data from multiple diffusion MRI tractography algorithms for each dMRI image,

and consolidates this information into a single vector so as to compare many subjects’ data

side-by-side. A single complete forward pass of our model consists of multiple parallel

Graph Convolutional Networks (one for each tractography algorithm), max pooling, and

graph classification via Graph Attention Network layers. We will briefly explain each part

in this subsection; see Appendix B for a deeper discussion.

The convolution operation measures the amount of change enacted on a function f1 by

combining it with another function f2. We can define f2 such that its convolution with

instances of f1 from one class (e.g., PD) produce large changes while its convolution with

instances of f1 from another class (e.g., HC) produce small changes; this provides a way

to discriminate instances of ‘f1 into classes without explicitly knowing the class values.

Recall that we have defined a function f over the vertices of our graph using dMRI data

(i.e., the signals). We seek to learn functions, termed filters, that, when convolved with

the input graph signals, transform the inputs into distinguishable groups according to class

value (e.g., PD vs. healthy control). This is similar to the local filters used in convolutional

neural networks, except that the filters of GCNs use the connections of the graph (i.e., the

edges) to establish locality.
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Our specific implementation is based off the GCN class from [98]’s PyTorch implemen-

tation 17, which has several computational improvements over the original graph convolu-

tion formula. In short, the graph convolutional operation is based off the graph Laplacian

Ł = I −D
−1
2 WD

−1
2 , (3.1)

where I is the identity matrix with 1’s along the diagonal and 0’s everywhere else, W is

the weighted adjacency matrix defined earlier w.r.t. G, and D is a weighted degree matrix

such that Dii =
∑

j Wij . We define the graph convolutional operation as

Z = D̃
−1
2 W̃ D̃

−1
2 XΘ. (3.2)

A so-called renormalization trick has been applied to Ł wherein identity matrix IN has

been added; i.e., self-loops have been added to the adjacency matrix. IN + D
−1
2 WD

−1
2

becomes ‘D̃
−1
2 W̃ D̃

−1
2 , where W̃ = W + IN and D̃ii =

∑
j W̃ij . Θ ∈ RCxF is a matrix

of trainable coefficients, where C = N is the length of the input signals at each node, and

F = N is the number of C-dimensional filters to be learned. X is the NxN matrix of

input signals for all vertices (i.e., the signals from a single tractography output of a single

dMRI image). Z ∈ RNxF is the output matrix of convolved signals. We will call the output

signals features going forward.

Generalizing Θ to the weight matrix W(l) at a layer l and X = H(l) as the inputs to

layer l, where H(0) is the original data, we can calculate a hidden layer of our GCN as

Z = f(X,A) = softmax(ÂReLU(ÂXW(0))W(1)), (3.3)

where Â = D̃
−1
2 ÃD̃

−1
2 .

Multi-View Pooling. For each dMRI acquisition, d different tractography algorithms are

used to compute multiple views of the diffusion data. To account for the variability in the

17https://github.com/tkipf/pygcn
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outputs produced by each algorithm, we wish to compile the information from each before

classifying the whole graph. As such, d GCNs are trained side-by-side, such that the GCNs

share their weights [101, 82]. This results in d output graphs, i.e. d output vectors for each

vertex. The vectors corresponding to the same vertex are pooled using max pooling, which

has been shown to outperform mean pooling [84].

Graph Attention Networks. Recent development of attention-based mechanisms allows

for a weighting of each vertex based on its individual contribution during learning, thus

facilitating whole-graph classifications. In order to convert the task from classifying each

node to classifying the whole graph, the features on each vertex must be pooled to generate

a single feature vector for each input. The self-attention mechanism, widely used to com-

pute a concise representation of a signal sequence, has been used to effectively compute

the importance of graph vertices in a neighborhood [99]. This allows for a weighted sum

of the vertices’ features during pooling.

Velickovic, et. al. 2018 use a single-layer feedforward neural network as an attention

mechanism a to compute attention coefficients e across pairs of vertices in a graph. For a

given vertex vi, the attention mechanism attends over its first-order neighbors vj:

eij = a(Wahi,Wahj), (3.4)

where hi and hj are the features on vertices vi and vj , and Wa is a shared weight

matrix applied to each vertex’s features. eij is normalized via the softmax function to

compute aij: aij = softmax(eij) = exp(eij)/
∑

k∈Ni
exp(eik), where Ni is the neigh-

borhood of vertex vi. The new features at vi are obtained via linear combination of the

original features and the normalized attention coefficients, wrapped in a nonlinearity σ :

hi′ = σ(
∑

j∈Ni
aijWahj) [99].
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Multi-head attention can be used, yielding K independent attention mechanisms that

are concatenated (or averaged for the final layer). This helps to stabilize the self-attention

learning process.

hi = ||Kk=1σ(
∑
j∈Ni

akijW
k
ahj), (3.5)

or

hfinal = σ(
1

K

K∑
k=1

∑
j∈Ni

akjkW
k
ahj). (3.6)

We employ a PyTorch implementation 18 of [99]’s GAT class to implement a graph

attention network, learning attention coefficients as

aij =
exp(LeakyReLU(aT [Wahi||Wahj]))∑
k∈Ni

exp(LeakyReLU(aT [Wahi||Wahk]))
, (3.7)

where || is concatenation.

Multi-Subject Training. The model is trained using train.py. First, several helper

functions in utils.py are called to load the graph, input signals, and their labels, and

prepare them for training. The model is built and run using the GCNetwork class in

GCN.py. During training, the model reads in the signals for one dMRI acquisition at a

time, where the signals from each tractography algorithm are processed in parallel, pooled

into one graph, and then pooled into a single feature vector via the graph attention network.

Using this final feature vector, a class prediction is made. Once a class prediction is made

for every input dMRI instance, the error is computed and the weights of the model are

updated through backpropagation. This is repeated over many epochs to iteratively fit the

weights to the classification task. Figure 3 shows an outline of the network architecture.

Methods

18https://github.com/Diego999/pyGAT
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Figure 3.3: A depiction of the novel GCN architecture is shown. First, a GCN is trained
for each view of the data, corresponding to a specific tractography algorithm. The GCNs
share weights, and the resulting features are pooled for each vertex. This composite graph
is then used to train a multi-head graph attention network, which assigns a weight (i.e.,
attention) to the feature computed at each vertex. The weight assigned to each vertex is
used to compute a weighted sum of the features, yielding a single feature vector for graph
classification.

Our data is downloaded from the Parkinson’s Progression Markers Initiative (PPMI) 19

database. We download 243 images, consisting of 96 aMRI images and 140 diffusion

images. The images are from 20 individuals (each subject had multiple visits to the clinic

and data from multiple image modalities). Among the images, 117 are from the Parkinson’s

Disease (PD) group and 30 are from healthy controls (HC). We preprocessed our data

using the pipeline described above. We ran this preprocessing using a Google cloud virtual

machine with 96 CPU cores over the course of several days.

Following preprocessing, we constructed the shared adjacency matrix and trained the

model on the dMRI signals, which totaled to 588 (147 dMRI acquisitions x 4 tractography

algorithms) NxN connectivity matrices. We calculated the adjacency matrix using each

node’s 20 nearest neighbors. To account for the class imbalance between PD and HC

images, we use a bagging method. On each of five iterations, all the images from the

HC group were combined with an equally-sized subset from the PD group. All of the

images were used at least once during training, and the overall performance measures were

averaged across training folds.

19https://www.ppmi-info.org
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Using caution to prevent any forms of data leakage, we used a roughly 80/20 train-test

split, wherein we ensured all data from the same subject was used as only training or testing

data. To assess the performance of our GCN model, we first trained a number of baseline

models on the features constructed from the diffusion data. These models include k-nearest

neighbor, logistic regression, ridge regression, random forest, and support vector machine

(SVM, with both linear and polynomial kernels) from scikit-learn; we also trained

a fully-connected neural network (fcNN) and a 4-channel convolutional neural network

(CNN) using PyTorch. Finally, we compare our model to the siamese multi-view GCN

(sMVGCN) used in [84]. This network utilizes diffusion and anatomical MRI data and

trains on pairs of image data to predict whether the pairs are from the same or different

classes. The data is also from the PPMI data set and uses the PD and HC classes during

classification. This was the closest model to ours that we found in the literature.

Except for the multi-channel CNN, we trained each model on the features from each

tractography algorithm individually, and averaged the results. We calculated the overall

accuracy, F1 score, and area under the ROC curve (AUC) as our performance measures.

The default parameters were used for the scikit-learnmodels. The fcNN was a three-

layer network with two hidden layers. The first layer had 128 ReLU units; the second had

64. For the CNN, a single convolutional layer was used, containing 18 filters of size 3;

stride of 1 was used. Max pooling with a kernel size of 2 and stride of 2 was used to

feed the features through two fully-connected layers before the final output. The first fully-

connected layer reduced the 18x57x57-dimension input — where 57 is the original input

width and height of 115 halved via max pooling — to 64 ReLU hidden units. For both

neural networks, softmax activation was applied to the outputs and negative log likelihood

was used as the loss function (i.e., cross entropy). Again for both models, learning rate

was set to 0.01 and dropout of 0.5 was used between fully-connected hidden layers. These

parameters coincide with the default parameters of the graph convolutional network class
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we used 20, and are commonly used in the literature. We used a validation set to find the

optimal number of epochs to train each network for. We tested 40, 80, 100, 140, 200, and

400 epochs for each model and found that 140 worked best for the fcNN, and 100 for the

CNN.

We trained the graph convolutional network (GCN) on the same bagged subsets of data

for comparison purposes. The only difference is that the features are mapped to the ver-

tices of the adjacency matrix before training. We used a validation set to tune the model

parameters. We tested with or without dropout (set to 0.5 when used), with or without

weight decay (set to 5e-4 when used), the number of hidden units for the first GCN layer

(8,16,32), the number of “heads” or individual attention weights (2,4,6,8), and the number

of epochs (same options as for the fcNN and GCN). We found that dropout of 0.5, weight

decay of 5e-4, 8 hidden units, 8 attention heads, and 80 epochs worked best for our model.

The results from training the GCN are also included in Table 3.1.

Results

The results from training the diffusion data on baseline models, and the combined diffusion

and anatomical data on the GCN are included in Table 3.1. We report accuracy, F1-score,

and AUC for each model; these numbers are averaged across five training iterations using

subsets of the data to account for class imbalance. Subsequently, we analyze the attention

weights from the GCN model. Each node of the adjacency matrix was assigned an attention

weighting corresponding to that nodes importance in determining the overall class of the

graph. Since each node of the adjacency matrix corresponds to an anatomical brain region,

we could interpret the magnitude of each nodes attention weight as the relative importance

of a brain region for distinguishing the PD vs. HC classes. We compiled the attention

weights from each training iteration and determined the 16 brain regions with the highest
20https://github.com/tkipf/pygcn
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Figure 3.4: The 16 regions with highest attention weighting across all training iterations.
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Table 3.1: The results from our testing of the baseline algorithms on the features con-
structed from the diffusion data alone, and our graph convolutional network (GCN) which
additionally incorporates anatomical information. The results are averaged across five
training iterations, which use subsamples of the data to ensure class balance.

Model Accuracy F1-Score AUC
k-Nearest Neighbor 63.66% 0.636 0.646
Logistic Regression 75.72% 0.749 0.839
Ridge Regression 85.54% 0.883 0.500
Random Forest 77.77% 0.765 0.782
SVM (linear kernel) 87.66% 0.873 0.894
SVM (Polynomial kernel) 87.02% 0.899 0.887
Fully-Connected NN 83.98% 0.854 0.881
Convolutional NN 85.33% 0.900 0.908
Graph Convolutional NN 92.14% 0.953 0.943

weights. The names and relative importance assigned to these regions are shown in Figure

3.

Discussions and Conclusions

From the results on the baseline models, we can see that the features generated from the

diffusion MRI data are suitable for distinguishing the PD vs. HC classes. Furthermore, we

see from the improved performance of the GCN model that the incorporation of anatomical

data improves the capacity for the data to be modeled. Of the 16 highest-weighted regions

according to the GAT attentions layers, 9 coincide with lateral or contralateral regions iden-

tified by [84] as significantly contributing to the distinction between PD and HC classes.

All but two of the regions listed in Figure 3 were from the left hemisphere, whereas the

majority of regions in [84] were from the right hemisphere. We arent sure why this may be,

but the stronger identification of left hemispheric regions aligns with asymmetries found

by [111], wherein the left hemisphere is more significantly affected in early-stage PD.

Due to the time required to construct the pipeline, and the substantial time and compute

resources required for each additional image, we used a relatively small data set. The

models showed signs of overfitting during training, due to increasing performance on the
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training data after improvement with the testing data had stopped. We feel that reproduction

with a larger dataset may mitigate this issue and improve the robustness of our initial results.

We would also like to see future studies incorporate both diffusion and functional MRI

data. We investigated the use of the C-PAC preprocessing software to generate features

from functional MRI (fMRI) data, and we believe these features could be incorporated into

our model. Additional anatomical information such as the volume of each region could also

be incorporated, and even metadata such as age or genetic information could be added to

each node of an image to encourage class separation. These points reflect our use of graph

convolutional networks for multimodal neuroimage analysis, as the format allows for the

combination of multiple forms of data in an efficient and intuitive manner. All of these

points were beyond the scope of the current experiment, and are possibilities for future

research.

We have made the code for our pipeline available on GitHub 21. Included in the repos-

itory are the parameters we used to download our data from PPMI, so that researchers

with access to the database might download similar data for reproduction. Processing this

data is very technical; there are multiple ways of doing so and our pipeline is surely ca-

pable of being improved upon. For example, we utilized all 115 brain regions returned by

Freesurfers segmentaion. Instead, [84] selectively utilize only 84 of the regions. By con-

fining the number of regions, e.g., to only those with clinical significance to PD, we may

see improvements in performance and interpretability.

We have presented here a complete pipeline for preprocessing multi-modal neuroimage

data, applied to real-world data aimed at developing image biomarkers for Parkinson’s

disease research. We propose a novel graph-based deep learning model for analysing the

data in an interpretable format. Our focus in this paper was to explicitly delineate the steps

we took and implement sound data analysis techniques To this end, we hope to help bridge

the gap between neuroscience research and advanced data analysis.

21https://github.com/xtianmcd/GCNeuro
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Appendix A: MRI Modalities

The modality which serves as the basis for the nodes of the graphs is anatomical T1-

weighted MRI (aMRI 22) data. This modality provides high resolution images which are

quite useful for distinguishing different tissue types and region boundaries. The speed

and relative simplicity of aMRI imaging results in fewer and less severe artifacts. For a

given subject, images from the other modalities are often aligned to aMRI images, and this

modality is often used to obtain brain masks (via skull stripping) and perform volumetric

segmentation. Typical preprocessing includes motion-correction, intensity normalization,

magnetic susceptibility correction, skull stripping, registration to a common brain atlas,

and segmentation 23 [103, 104].

Diffusion-weighted MR imaging (dMRI) introduces additional noise sources. dMRI

measures the diffusion of water molecules in the brain by applying pulsed magnetic field

gradients in numerous directions, resulting in multiple 3D volumes for a single image.

Typically, a higher resolution image (resembling anatomical images) is taken as the first

volume, and is termed the b0 volume. During processing, all other volumes are aligned

to this volume. dMRI data is usually obtained using an MRI variant known as spin-echo

echo planar imaging (EPI), which results in artifacts such as eddy currents and magnetic

susceptibility artifacts. Typical preprocessing includes correcting these artifacts and co-

registering the diffusion data to aMRI images of the same acquisition, for comparison to

the aMRI data during analysis [103, 104].

Once dMRI data is cleaned, the information can be processed to trace the directionality

of water diffusion across voxels, forming connected paths between them. This process,

called tractography estimates white matter (WM) tracts, which are bundles of nerve fibers,
22In this paper we use anatomical MRI to refer to standard T1-weighted (T1w) MR imaging. T1 weighted

refers to the specific sequence and timing of magnetic pulses and radio frequencies used during imaging.
T1w MRI is a common MR imaging procedure; the important thing to note is that T1 weighting yields high-
resolution images which show contrast between different tissue types, allowing for segmentation of different
anatomical regions.

23https://surfer.nmr.mgh.harvard.edu
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or axons, that connect regions of the brain. The specific tractography algorithm can signif-

icantly affect the analysis results, so we incorporate the output from four different tractog-

raphy algorithms in our model.

Appendix B: Graph Convolutional Networks

Given an undirected weighted graph G = V , E ,W with a set of vertices ‘V with |V| = N , a

set of edges E , and a weighted adjacency matrix W, we define a signal on the vertices as a

function ‘{ : V → R, returning a vector f ∈ RN for each vertex. The vector signal defined

on each vertex represents that vertex’s weighted connectivity to all other vertices [100].

We seek to learn filters g over the graph, similar to the local filters used in convolu-

tional neural networks. The discrete Fourier transform (FT) matrix of the normalized graph

Laplacian Ł provides a means for doing this. Ł is a real symmetric matrix represented as

Ł = I −D
−1
2 WD

−1
2 (3.8)

and with eigendecomposition Ł = UΛUT , where D is a diagonal matrix with entries

Dii =
∑

j Wij = W · 1U , U = (u1, ..., uN) is a complete set of orthonormal eigenvectors,

and Λ are the associated real, non-negative eigenvalues.

The graph FT f̂ of any function f ∈ RN on the vertices of G gives the expansion of f

in terms of the eigenvectors of Ł [100]. This allows us to define functions f and g, which

are both functions on the vertices of G, in terms of the eigendecomposition of the graph

Laplacian of G.

The Convolution Theorem [112] defines a linear operator that diagonalizes in the Fourier

domain as a convolution operator in the vector domain. Commuting Ł with the translation

operator produces such an operator [113] and can be used to convolve functions f and g.
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We can now define a graph convolution of input signals x with filters g on G by

x ∗ gθ = UgUTx, (3.9)

Where x is a specific instance of f (a single connectivity matrix of graph signals), U is

the matrix of eigenvectors of Ł given by the graph FT, and θ are the parameters we wish

to learn. We consider gθ as a function of the eigenvalues Λ, gθ(Λ) = diag(θ); thus the

parameters θ are the Fourier coefficients from the graph FT on Ł [98].

Finding these parameters are computationally expensive as multiplication with U is

O(N2), and Ł itself may be quite expensive to calculate. So, an approximation is made in

terms of Chebyshev polynomials Tk(x) up to the Kth order [114]. Chebyshev polynomials

are recursively defined Tk(x) = 2xTk−1(x) − Tk−2(x), with T0(x) = 1 and T1(x) = x.

Now, gθ′(Λ) ≈
∑K

k=0 θk′Tk(Λ̃), where rescaled Λ̃ = 2
lmax

Λ − IN and lmax is the largest

eigenvalue of Λ. Defining Ł̃ = 2
lmax

Ł− IN , we have

gθ′ ∗ x ≈
K∑
k=0

θk′Tk(Ł̃)x (3.10)

[98].

The expression is K-localized, relying only on nodes that are K-steps away from a

given node (its Kth-order neighborhood). Evaluating such a function is O(E). By lim-

iting K = 1 we have a linear function with respect to Ł as the preactivation Ĥ of our

convolutional layer. Wrapping Ĥ in a nonlinear activation function and stacking multiple

layers gives us our graph convolutional network architecture. This so-called deep learning

architecture removes the rigid parameterization enforced by Chebyshev polynomials [98].

[98] further approximate lmax ≈ 2 and simplify the equation for Ĥ to gθ′∗x ≈ θ0′(x)+

θ1′(Ł− IN)x = θ0′(x)− θ1′D
−1
2 AD

−1
2 x, reducing the task to learning two free parameters
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which can be shared over the whole graph. If θ0′ is set equal to −θ1′, then the equation can

be expressed with a single parameter ‘θ = θ0′:

gtheta ∗ x ≈ θ(IN +D
−1
2 AD

−1
2 )x. (3.11)

k successive applications of this operator effectively convolve the kth-order neighbor-

hood of a given node, but may also lead to numerical instabilities and the exploding/vanish-

ing gradient problem, since IN + D
−1
2 AD

−1
2 now has eigenvalues in [0,2]. [98] solve this

issue via a renormalization trick such that IN + D
−1
2 AD

−1
2 becomes D̃

−1
2 ÃD̃

−1
2 , where

Ã = A + IN and D̃ii =
∑

j Ãij . I.e., self-loops have been added to the adjacency ma-

trix. The weights given to these connections should bear similar importance to the other

connections, e.g., using the mean edge weight.

Finally, the equation is generalized to a signal X ∈ RNxC with C-dimensional feature

vectors at every node (each element will learn a single parameter) and F filters:

Z = D̃
−1
2 ÃD̃

−1
2 XΘ, (3.12)

where Θ ∈ RCxF are the parameters and Z ∈ RNxF is the convolved signal matrix.

This equation is of complexity O(|E|FC). Generalizing X = H(l) as the inputs to a layer,

where H(0) is the original data and ‘Θ to the weight matrix W(l) at a layer l, we can

calculate a hidden layer as

H(l + 1) = σ(D̃
−1
2 ÃD̃

−1
2 H(l)W(l)). (3.13)

The time complexity of computing a single attention mechanism isO(|V|FF ′+ |E|F ′),

where F is the number of input features and F ′ is the number of output features.
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CHAPTER 4

CONCLUSION

Reproducibility and the Data Science Pipeline

In this thesis we have demonstrated the potential impact of deep machine learning algo-

rithms in biomedical research, and the importance of ensuring reproducibility in studies

related thereto. We have echoed the consensus among experts in the field that reproducibil-

ity needs increased attention, and have outlined the utility in the data science pipeline as a

means to facilitate reproducible work.

Chapters 2 and 3 of this thesis demonstrate two domain specific experiments in which

we formulated and employed data science pipelines to perform deep learning-based analy-

sis on complex biomedical data. We used the guidelines compiled by [14], represented by

the acronym PRIMAD and discussed in Chapter 1 of this thesis, to guide the construction

of our pipelines. We also included tips and strategies we learned along the way, and pro-

vided in-depth background information on the algorithms used. In doing so we aimed to

highlight the rich corpus of works that came before ours, and hope to have made productive

contributions to the domains in which we focused.

As mentioned by [14] in their report on the 2016 Dagstuhl Seminar, an international

convergence of computer science and domain experts, ensuring reproducibility requires

significant time and consideration by researchers. We encountered this challenge in our

own experiments, as our focus on designing thorough pipelines, implementation tips, and

rich background information took away from the breadth of analysis we could perform

on our data. We would also like to see our pipelines undergo further development with

testing, increased documentation, and APIs for user modularity, as these improvements

were outside the scope of our research but would further improve reproducibility.
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As mentioned in Chapter 1 of this thesis, our focus on developing pipelines for our

experiments resulted from difficulties when trying to reproduce other experiments. During

both of our studies, we encountered works that lacked sufficient detail to reproduce. For

example, our use of Graph Convolutional Networks (GCNs) in Chapter 3 was largely in-

spired by [84]. Although they provide the code they used to train their model and perform

analysis, portions of the experimental methods are lacking, and their data is confidential

and cannot be shared. Without example data to experiment with, we could not decipher

portions of their code or reproduce some of their methods. Especially in cases where data

cannot be shared (as with the data we used in Chapter 3), it is important to include detailed

reports of the experimental process. We include as part of the code repository the settings

we used during download from the PPMI database to help others download the same or a

similar data set, once they acquire access from PPMI.

On the other hand, we also benefited from reproducible code during our experiment

in Chapter 3. The novel GCN architecture we devised borrows from several publications,

namely [98] and [99]. Both of these authors provide very well-documented code, and their

background sections were instrumental in our understanding of GCNs. Our ability to build

upon these works is a great reproducibility success.

Deep Machine Learning in Biomedical Research

The potential for deep learning (DL) algorithms to find new relationships and structures

among the growing corpus of biomedical data has caught the attention of many researchers.

We have conducted the work in this thesis in accordance with that potential, to encourage

practices which enhance the robustness and utility of DL-based findings.

As with many emerging technologies, DL has limitations that should be considered.

DL algorithms are particularly sensitive to the data they are trained on. They are highly

capable of overfitting the training data, and may model any sampling or selection bias

therein [6]. As discussed in Chapters 2 and 3, there are regulation schemes which can help
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alleviate overfitting, and the use of a testing set improves the generalizability of results. The

application of data-centered deep learning algorithms poses a particular challenge when

dealing with real-world data. For example, models trained to recognize the Parkinsonian

tremor may not be able to distinguish this PD motor symptom from a subject wearing the

sensor while mowing the lawn [6]. Another PD motor symptom, bradykinesia, is marked

by slowed movement, which is also typical during bouts of fatigue or when navigating a

risky environment [24]. Algorithms trained in the lab or on limited data sets may not be

equipped to handle such real-world cases.

While DL algorithms are quite useful for making predictions on new examples, forming

explanations for how or why they generated those predictions can be more tricky. Analyz-

ing intermediate outputs and visualizing the training process are helpful methods for in-

creasing explanatory power. Similar to producing reproducible code, performing this type

of post-hoc analysis may exceed the resources available for a single study. However, when

experiments are reproducible, follow-up studies can be performed which dig deeper into

the models and methods of the original work.

The Application to Parkinson’s Disease

Parkinson’s Disease (PD) is an intriguing example for examining DL applications to and

reproducibility in biomedical research. Its diagnosis has traditionally relied on clinical as-

sessments with some degree of subjectivity [20]. There is significant interest in establishing

more quantitatively rigorous tools for PD diagnosis and research [24], and the nature of the

disease lends itself to multiple modes of quantitative analysis.

Technological advances have yielded so-called technology-based objective measures

(TOMs) capable of capturing biometric information for PD research [24]. There is concern

over these technologies forming “competing islands of expertise” [24], particularly since

these emerging technologies are not included in traditional clinical and research training.
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Reproducible work alleviates this concern by allowing researchers to easily implement new

technologies and methods, enabling comparison and integration of various TOM domains.

We focused on two principle areas of TOM-based PD research. Both experiments in-

volved a great deal of background research. We focused on developing pipeline-style re-

ports to enable others to pick up where we left off, as this was impossible at times when

trying to implement the work of others. In the experiment in Chapter 2, we focus on

developing a pipeline that unites implementational disparities we found in the literature.

We focus on optimization and model simplicity to strengthen the legitimacy of DL-based

methods for accelerometer research. We also focused on sound data science techniques to

prevent issues such as data leakage and ensure robust results.

Although we were not able to use our pipeline in Chapter 2 to process the PD-related

accelerometer data directly (due to remaining confidientiality of the data), we hope that

our work may aid future experiments seeking to use LSTMs for PD- or other HAR-related

accelerometer research. The PD accelerometer data from the challenge will be released

following the publication of a manuscript, which contains findings from post-hoc analysis

conducted by many of the participating teams, including ours.

In the pipeline described in Chapter 3, we again seek to unite methods and fill gaps

we found in the literature related to neuroimage preprocessing. The processing required of

neuroimage data is extensive and technical, each modality requiring specific steps. We were

surprised by the general lack of information available. Unlike other areas of biomedical

analysis, where equipment is proprietary and includes instructions with the purchase, open

source software may have very little documentation and may not be actively maintained

despite ongoing use.

Many papers do name the software and algorithms they use for preprocessing. We

wanted to go a step further and provide the specific calls made to each software and discuss

some of the challenges we faced, as it was very difficult to compile this information.
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By generating our pipelines for real-world research problems we were able to obtain

tangible analysis results, both to contribute to the field and verify the efficacy of our

pipelines. That being said, we recognize that these are single examples and there is room

for improvement in each of them. As much as we encourage use of our code and methods,

we equally encourage a discussion of our methods and constructive revisions and refuta-

tions to decisions we made.

Closing Remarks

We believe that open source science has been and will continue to be essential to the modern

scientific process. Open source technologies allow more people than ever before to enhance

and apply their skills to a multitude of domains. We also find that deep learning-based

algorithms are well-suited for the challenges of biomedical research. As such, we have

conducted this thesis as a reflection of the emergence of open science in healthcare and a

proposal for how to improve it going forward. We feel that the ultimate goal of biomedical

research should be the application of its findings to curing diseases and solving healthcare-

related problems in the real world. We advocate the framing of computational biomedical

experiments around the creation of reusable code and models as beneficial to that mission.
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