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Abstract

In recent years, denoising diffusion models have demonstrated remarkable performance in the 

realm of generative modeling. However, these models have a significant drawback which is 

that of slow sampling time. The main cause of their high sampling cost is due to the Gaussian 

assumption of the reverse Markov transition, which requires a large number of denoising 

steps. To address this issue, we present a novel method, called DiffusionCNF, which models 

the reverse process of the diffusion model using normalizing fl ows. Our proposed approach 

enhances the sampling speed while maintaining the desirable properties of diffusion models. 

By leveraging the strengths of both models, we contribute to advancing the field of generative 

modeling and offer a promising solution for efficient and effective generation of complex data 

distributions.
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Chapter 1

Introduction

Generative AI models have emerged as effective tools for producing diverse and innovative

samples across various data types, including text [3, 5], images [37, 22, 36, 8], and videos

[20, 2]. These models leverage complex data distributions to unlock creative possibilities in

computer vision and natural language processing. In the field of computer vision, generative

models have been applied successfully to generate realistic images of objects, faces, and com-

plex scenes [21, 37]. By training on extensive datasets, these models acquire the ability to

generate new data that closely resembles the patterns and structures observed in the train-

ing data. This capability has proven valuable in tasks such as image synthesis [34, 8, 36],

data augmentation, and even artistic creation [37]. Similarly, in natural language process-

ing, generative models have been utilized to develop conversational agents and chatbots with

human-like language skills [5]. Through training on large text corpora, these models learn

the underlying structures and semantic relationships present in the data. As a result, they

can produce coherent and contextually appropriate responses, leading to engaging and in-

teractive conversational experiences.

Among the various types of generative models, one particularly prominent architecture
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is the Generative Adversarial Network (GAN) [16, 22, 15, 35]. GANs consist of two inter-

connected components: a generator and a discriminator. The generator’s role is to produce

synthetic data, such as images [7] or text [14], while the discriminator’s task is to distinguish

between real and fake samples. Through an iterative process of competition and feedback,

the generator learns to produce increasingly realistic and convincing outputs, while the dis-

criminator improves its ability to differentiate between real and generated data. Despite

their remarkable capabilities, GANs do have some limitations. One challenge is their inher-

ent instability during training, often manifesting as mode collapse [30]. This issue can make

training GANs a delicate and time-consuming process, requiring careful parameter tuning

and architectural modifications. To address some of the challenges of GANs, researchers

have explored alternative generative models, such as Denoising Diffusion Probabilistic Mod-

els (DDPM) [21] and Normalizing Flows [10].

Denoising Diffusion Probabilistic Models (DDPM) [21] represent a promising alternative

to address the challenges faced by Generative Adversarial Networks (GANs). DDPMs lever-

age the concept of diffusion models [41], which operate through a two-step process known

as the forward process and the reverse process. In the forward process of DDPMs, Gaussian

noise is gradually added to the training data, resulting in a sequence of images that become

progressively more distorted. This process transforms the original data into a distribution

that is entirely Gaussian. On the other hand, the reverse process involves the utilization

of a neural network to denoise the image obtained from the forward process. By applying

the reverse network in a step-by-step fashion, the Gaussian noise added during the forward

process is effectively removed, restoring the image to its original form. It is important to

note that the forward process in DDPM is based on a Markov Chain process, where each step

introduces a specific amount of noise. The neural network in the reverse process is trained

to learn how to denoise the noisy samples. The initial diffusion model introduced in the
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literature [41] was not renowned for its ability to produce high-quality samples. However,

the introduction of DDPM [21] significantly improved the performance of diffusion mod-

els in terms of sample quality. The authors of DDPM successfully constructed a diffusion

model capable of generating samples of remarkable fidelity and realism. Moreover, the au-

thors of DDPM suggested that a specific parameterization of diffusion models allows them

to be considered equivalent to other approaches in generative modeling and sampling, such

as denoising score matching and annealed Langevin dynamics. This intriguing connection

broadens the understanding of diffusion models.

While Denoising Diffusion Probabilistic Models (DDPMs), along with further literature

that provided more advancement, have made significant strides in improving sample qual-

ity, note that the sampling process of diffusion models can be computationally intensive.

Achieving high-quality samples often necessitates a substantial investment of time and com-

putational resources. This is because DDPM models the reverse process as Gaussian, which

is valid only when the forward process adds a small amount of noise at each timestep. This

means that the length of Markov chain should be large which slows down the sampling

process. As a result, generating high-fidelity samples can require considerable amount of

computations. It is crucial for researchers and practitioners utilizing diffusion models to be

aware of these computational considerations. Subject to the resources and time available,

one may need to make trade-offs between sample quality and computational efficiency. As

mentioned above, DDPM suffers from slow sampling due to their reliance on the Gaussian

assumption for the reverse Markov transition. This assumption necessitates the addition of

small amounts of noise at each time step, leading to a long Markov chain and subsequent

slow sampling. By removing the Gaussian assumption, we can overcome this limitation and

introduce a denoising distribution that is no longer constrained to be Gaussian. This is

where normalizing flows come into play. Normalizing flows have demonstrated an inherent
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capability to learn complex distributions effectively. By leveraging the flexibility and power

of normalizing flows, we can effectively model the reverse diffusion process without being

confined to Gaussian assumptions. This enables us to improve the sampling speed while

retaining the desirable properties of diffusion models.

Normalizing Flows [10] represent a class of generative models renowned for their ability to

learn the underlying probability distribution of a given dataset. Given a dataset, we want to

learn the underlying distribution from which this data is generated. Normalizing flows offer

a strategy for achieving this by transforming a simple and well-understood distribution, like

a standard Gaussian distribution, into the desired target distribution. The core idea behind

normalizing flows revolves around the use of a series of bijective (invertible) transformations.

Each transformation maps one distribution to another, gradually transitioning the initial

simple distribution into a more complex one that aligns with the target data distribution.

These transformations are invertible, meaning that you can easily compute both the forward

and backward transformations. Through these invertible transformations, normalizing flows

enable the model to generate new samples from the transformed distribution.

A notable advantage of normalizing flow models lies in their ability to accurately compute

the likelihood of the generated samples. Unlike other generative models such as Generative

Adversarial Networks (GANs) or Denoising Diffusion Probabilistic Models (DDPM), which

often struggle with likelihood estimation, normalizing flows excel in this aspect. Additionally,

normalizing flows exhibit remarkable flexibility in terms of the transformations they can

employ. They can incorporate a wide range of transformations, encompassing both linear

transformations that preserve distribution shape and non-linear transformations that capture

intricate relationships between variables. This adaptability enables normalizing flows to

capture complex patterns and dependencies within the data, resulting in the generation of

diverse and realistic samples.
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We also note the limitations of normalizing flows. When designing normalizing flows,

two important restrictions must be considered. Firstly, every transformation within the nor-

malizing flows framework must be invertible. This requirement ensures that the flow can be

reversed, allowing for both sampling and evaluation of probability densities. Secondly, the

Jacobian determinant of each transformation should be tractable. This determinant plays a

crucial role in updating the probability densities during the flow. These constraints signifi-

cantly impact the choice of architectures and functions that can be used within normalizing

flows to achieve the desired transformations while preserving the tractability of the under-

lying probabilistic computations.

In this work, we aim to build a diffusion model in which the reverse diffusion process

is learned by normalizing flows. The diffusion framework, offers a principled approach to

probabilistic modeling by formulating the problem as a sequence of continuous denoising

steps applied to a simple base distribution, gradually transforming it into the desired target

distribution. Denoising diffusion models have proven to be effective in capturing complex

data distributions by iteratively applying noise and denoising steps to the observed data.

However, DDPM requires adding small amount of Gaussian noise at each time step. This

implies that the model requires a large number of time steps to effectively diffuse complex

data into complete Gaussian noise. As a result, the reverse process needs to go through

many denoising steps, slowing down the sampling. If one uses fewer time steps in the diffu-

sions process, the denoising distribution in the reverse process is not Gaussian anymore and

becomes a multi-modal distribution. To handle this multi-modal distribution, we propose

to use normalizing flows. This integration allows for improved model expressiveness and

faster convergence rates. Moreover, the combination of denoising diffusion and normalizing

flows holds promising implications for various real-world applications. It can empower re-

searchers and practitioners to tackle challenging problem like slow sampling process in image
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generation, speech synthesis, and other domains. Furthermore, the proposed integration can

contribute to advancing our understanding of deep generative models and their capabilities

in modeling real-world data

In our research, we adopt an evaluation framework comprising a set of generative model

metrics namely FID Score and negative log likelihood. These metrics serve as crucial bench-

marks for accurately assessing the performance and quality of our model. Our main objective

is twofold. Firstly, we aim to leverage the diffusion model to generate high-quality images,

ensuring that our outputs exhibit remarkable visual fidelity. Secondly, we strive to harness

the capabilities of the normalizing flow framework to expedite the sampling process. Con-

sequently, an additional focal point of our analysis involves comparing the sampling time

required by our model against that of the diffusion model. By synergistically combining the

strengths inherent in the diffusion model and the normalizing flow framework, we endeavor

to strike a harmonious balance between image quality and sampling efficiency. Our ultimate

goal is to demonstrate that our model not only produces visually captivating results but also

significantly reduces the time required for image generation.

To achieve this, we conduct an examination of the FID Score—an essential metric pro-

viding insights into the visual similarity between the images generated by our model and

authentic images sourced from the target distribution. Finally, we utilize the negative log

likelihood metric to ascertain our model’s proficiency in accurately estimating the likelihood

of generating a given image. By minimizing the negative log likelihood, we actively enhance

the overall quality and cohesiveness of our generated samples, bolstering their resemblance

to real-world images.
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Chapter 2

Background

2.1 Preliminaries

2.1.1 Gaussian Distribution

A well-known probability distribution, commonly referred to as the Gaussian distribution,

finds frequent application in modeling real-world phenomena. This distribution is often

characterized by its symmetrical shape, resembling that of a bell curve.

In simple terms, the Gaussian distribution represents a collection of values where the

majority of data points tend to cluster around a central average value. The spread of data

points gradually diminishes as one moves away from the center, resulting in fewer points

towards the tails of the distribution. To define this distribution, two key parameters are

used: the mean (µ) and the standard deviation (σ). The mean signifies the central value

towards which the data is inclined to cluster, while the standard deviation reflects the extent

of dispersion.

Mathematically, the Gaussian distribution’s probability density function (PDF) can be
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expressed as follows: where,

f(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
(2.1)

where, x denotes a specific value at which the PDF is evaluated. µ and σ are the mean and

standard deviation of the distribution respectively. σ controls the spread or variability of

the data.

The Gaussian distribution exhibits a symmetrical shape around its mean. The mean

serves as the peak of the distribution, and the standard deviation governs the width. A

smaller standard deviation results in a taller and narrower curve, while a larger standard

deviation gives rise to a shorter and wider curve.

2.1.2 Change of Variables Formula

A mathematical method called “change of variables” [11] enables us to change one set of

variables into another. It is a foundational idea that is applied in many disciplines, such as

probability theory and statistics. The purpose of changing the variables in a problem is to

reframe it in terms of new variables that can either make analysis easier or give a deeper

understanding of the issue at hand. The alteration of variables is particularly helpful for

modifying probability distributions in probability theory. When we change the variables,

we swap out the old ones for new ones that are connected by a mapping function. This

transformation may involve numerous variables and be nonlinear.

The probability density functions (PDFs) of the original variables and the transformed

variables are related using the change of variables formula. Let’s say we have two random

variables, X and Z, where X represents the transformed variable obtained through the use

of a mapping function, f(Z), and Z represents the original variable.
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The following is the formula for changing the variables:

pX(x) = pZ(f
−1(x)) · |J | (2.2)

where, pX(x) and pZ(z) represent the PDFs of the transformed variable X and the

original variable Z, respectively. f−1(x) denotes the inverse of the mapping function f . |J |

represents the determinant of the Jacobian matrix, denoted by the vertical bars.

The Jacobian matrix is decsribed as a matrix of partial derivatives. The Jacobian matrix

is given by the following formula:

J(f) =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


(2.3)

where x is a vector of input variables, and fi is the i-th component of the function f .

The Jacobian matrix is a square matrix, with n rows and n columns. The entry in the i− th

row and j − th column of the Jacobian matrix is the partial derivative of f(x) with respect

to xj, evaluated at x.

2.1.3 KL Divergence

KL Divergence, short for Kullback-Leibler Divergence, is a measure of the difference between

two probability distributions. It is often used in statistics and information theory to quantify

how one distribution differs from another.

The KL Divergence between two probability distributions, let’s call them P and Q, is

denoted as KL(P ||Q). It is defined as the expected value of the logarithmic difference
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between the probabilities of the two distributions:

KL(P ||Q) =

∫
P (x) log

(
P (x)

Q(x)

)
dx (2.4)

In this formula, P(x) and Q(x) represent the probability densities (or probability mass

functions) of the two distributions for a given value of x. The integral sums up the contri-

bution of each value of x to the overall divergence.

KL Divergence has several important properties. KL Divergence is always non-negative.

It equals zero if and only if P and Q are identical, meaning they have the same probabilities

for all values of x. KL Divergence is not symmetric, which means that KL(P ||Q) is not

necessarily the same as KL(Q||P ). In other words, the divergence from P to Q may not be

the same as the divergence from Q to P. Although it is called“divergence,” KL Divergence

is not a distance metric. That is, KL(P ||R) is not always less than or equal to KL(P ||Q) +

KL(Q||R).

2.2 Diffusion Models

Diffusion models are a class of deep generative models that have gained significant attention

in the realm of machine learning, specifically within the domain of computer vision. These

models are designed to generate new data samples, such as images, based on an understand-

ing of patterns and structures in existing data. The key idea behind diffusion models is to

model the process of gradually transforming an initial distribution into a simple target distri-

bution. This process is often referred to as “diffusing” the data. By modeling this diffusion

process, the model can generate new samples by reversing the diffusion process. One of the

notable advantages of diffusion models is their ability to generate high-quality samples with

fine details and diversity. They have been successful in generating realistic images, exhibit-
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ing impressive generative capabilities. Additionally, diffusion models have been applied to

various tasks in computer vision, such as image generation, image super-resolution, image

inpainting, and image editing.

A diffusion model is based on a two step process as shown in Figure 2.1: the forward

diffusion process, where Gaussian noise is gradually added in small time steps with the aim

of “diffusing” the data so that the data distribution matches the Gaussian distribution and

the reverse process, where a neural network learns to gradually reverse the diffusion process

and generate the original input. The forward process begins with an image from a data set

which is slowly transformed into a noisy image by adding small amounts of noise at different

time steps. The noise is usually chosen as Gaussian noise. As the forward process continues,

the input image is progressively destroyed until it reaches a Gaussian distribution. Due to

the process of adding noise in small progressive timesteps, multiple steps are involved in the

forward diffusion process.

During the reverse process, the aim is to reverse the process taken place during forward

process. The goal is to recreate the original image from the noisy image by reversing the

steps taken in the forward process. This is done by progressively removing the noise step by

step that was added in the forward process. By removing noise at each timestep, the original

image is gradually reconstructed. This means that during the inference or generation phase,

new images are generated by incrementally reconstructing them, starting from random white

noise. To remove noise from the image, a neural network is employed. The neural network

estimates the amount of noise that has to be removed at each timestep. Typically a U-Net

architecture [38] is used as the denoising neural network. U-Net is a particular type of neural

network architecture that is commonly used in image segmentation tasks. By using such a

network, the diffusion model can successfully maintain the dimensions and significant aspects
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of the original image while eliminating the noise. Denoising Diffusion Probabilistic Models

(DDPM) [21] is a type of probabilistic generative model based on the above-described diffu-

sion framework.

Let x0 ∼ q(x) be a data sample belonging to q(x) and π(x) be a simple distribution (e.g.,

Gaussian) for Diffusion models. DDPM builds the forward process that converts any com-

plex data from q to a sample from π which is any simple distribution, in our case, Gaussian

distribution using a Markov Chain [41]. x0 denotes the original sample that is uncorrupted.

The goal of DDPM is to model pθ that learns the reversal of this diffusion process.

Forward process: The forward process of the diffusion model is a fixed Markov chain

process where noise is added gradually to a data point x0 at different timestep t. This noise

is added according to a variance schedule β. The Markov chain forward process is also called

approximate posterior q(x1:T |x0) [42].

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1) (2.5)

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (2.6)

Here T is the total number of diffusion time steps involved, I is the Identity matrix and

N (x;µ, σ) is standard normal distribution with mean µ and variance σ. [42] mentions a

special property of the forward process:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I) (2.7)

where αt = 1 − βt and αt = 1
t

∑t
s=1 αs. This property creates a closed-form solution
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allowing us to sample xt for any t:

xt =
√
αtx0 +

√
1− αtϵ, (2.8)

where ϵ ∼ N (0, I). As mentioned above, noise is added according to β which is the

variance schedule. The choice of β or the variance schedule is an important consideration in

the forward process. β decides how the addition of noise level changes over time in diffusion

models. The variance schedule is chosen such that the value of βT , which is the value of β

at the last timestep T , approaches 0. This ensures that equation 2.6 reaches pure Gaussian

distribution with a mean of 0 and standard deviation of 1 at time step T . Additionally, if

we keep the values of β very very small, the forward process will be similar to the reverse

process. Intuitively, if we go from xt−1 to xt by adding a very very small amount of Gaussian

noise, it becomes more likely that xt−1 comes from a region close to where xt is observed.

This allows us to model this region with a Gaussian distribution, as the small step ensures

that the nearby regions have similar statistical properties [41]. The β values in the forward

process can be kept constant or can be learned via reparameterization. In DDPM imple-

mentation, β values are kept constant increasing linearly from β1 = 10−4 to βT = 0.02.

Reverse process: The reverse process of DDPM is a latent variable model parameterized

as pθ(x0). The reverse process is modeled as the joint distribution pθ(x0:T ) of pθ(x0). The

transitions of the reverse process begin at t = T and is p(xT ) = N (xT ; 0, I), which is pure

Gaussian noise.

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt) (2.9)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2.10)
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The reverse process pθ(xt−1|xt) is modeled through a neural network that predicts the

mean µθ(xt, t) and the covariance σθ(xt, t) after receiving a noisy image xt and time step t

as the input.

Loss function: For the loss function of diffusion models, KL divergence is used to com-

pare the probability distribution of the two probabilities mentioned above: pθ(xt−1|xt) and

q(xt−1|xt, x0). The reverse process model pθ is the conditional distribution of the previous

state given the current state, as modeled by the diffusion model, and is not tractable. The

forward posterior q is a posterior distribution of the previous state given the current state

and the initial state x0 and is tractable [21]. In an ideal scenario, when training a neural

network, we would want to maximize the likelihood of the model assigning a high probabil-

ity, pθ(x0), to each training example, x0. However, the challenge is that directly computing

pθ(x0) is difficult because it requires considering all possible reverse trajectories. To over-

come this challenge, a solution proposed in the literature is to minimize a variational lower

bound of the negative log-likelihood instead. This approach provides an approximation that

is easier to compute. This formulation provides a way to estimate the negative log-likelihood

by introducing a new term called the “variational lower-bound”. The goal becomes min-

imizing this lower bound rather than directly maximizing the likelihood. By minimizing

the variational lower bound, we are effectively training the neural network to optimize an

approximation of the negative log-likelihood. This approximation allows for more tractable

computations during the training process [6].

The authors use KL Divergence to compare pθ(xt−1|xt) and q(xt−1|xt, x0) and thus arriv-

ing at the following formula:

[
DKL (q(xT |x0)||p(xT )) +

∑
t>1

DKL (q(xt−1|xt, x0)||pθ(xt−1|xt))− log pθ(x0|x1)

]
(2.11)
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where q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI),

with µ̃t(xt, x0) :=
√
ᾱt− 1βt

1−ᾱtx0

1−ᾱt−1
+
√

αt(1− ᾱt− 1) 1−ᾱtxt

1−ᾱt−1
and β̃t := 1−ᾱt−1

1−ᾱt
βt. In order

to simplify the above loss function, the DDPM authors [21] have divided the loss function

into three parts for ease of understanding. The KL Divergence between (q(xT |x0) and p(xT ))

is termed as Lt. Since the beta values in DDPM are set to constant and linearly increasing

from β1 = 10−4 to βT = 0.02, the term Lt remains constant.

The KL Divergence between (q(xt−1|xt, x0) and pθ(xt−1|xt)) is termed as Lt−1 and the

last term which is the negative of log of reverse process probability of x0 given x1 is termed

as L0. For Lt−1 term, DDPM assumes,

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), for1 < t ≤ T (2.12)

Where DDPM sets Σθ(xt, t) = σ2
t I.

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I) (2.13)

The σ2 was set to βt by the authors because the authors found that it was the best choice

for x0 ∼ N (0, I). With the above assumption of pθ(xt−1|xt), a new loss function is obtained:

Lt−1 = E
[

1

2σ2
t

|µ̃(xt, x0)− µθ(xt, t)|2
]
+ const (2.14)

Which says that the model µθ predicts noise. The authors of DDPM [21] have mentioned

that there is a potential of predicting x0 which is the initial image not corrupted by any

noise but the authors found it to lower the quality of samples generated. In this paper, we

are trying to predict the image x0 directly by using the normalizing flow model instead of

the diffusion model for our reverse process.

Equation 2.14 can be further expanded by reparametrization and using closed form equa-
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tion in place of xt. This leads to a simplified loss function given used in DDPM as given

below:

Ex0,ϵ

[∣∣ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∣∣2] (2.15)

The above loss function calculates the MSE between actual noise and predicted noise for

any image xt. The DDPM paper showed the simplified loss function to perform better.

Figure 2.1: Forward and reverse process of the diffusion model

2.3 Normalizing Flows

A Normalizing Flow is a potent framework that harnesses a sequence of reversible and differ-

entiable mappings to convert a basic probability distribution, like a Gaussian distribution,

into a more intricate and adaptable distribution. This technique has gained considerable

attention in recent years due to its effectiveness in modeling complex data distributions and

accomplishing various probabilistic tasks.

The procedure of a Normalizing Flow involves employing a chain of transformations to

modify a simple distribution and convert it into a complex distribution, or vice versa. Each

transformation in the sequence is meticulously designed to be reversible, which means it

possesses a corresponding inverse transformation that can revert the modified sample back
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to its original distribution.

Let Z be a random variable Z ∈ RD having a tractable probability distribution pZ and

let X be an observed variable belonging to a dataset D. The normalizing flow uses a set of

invertible functions such as f and the change of variable formula to calculate the density of

x in terms of the latent variable z [10].

A series of invertible transformations f1, f2, ..., fK that map z to x, looks like this:

x
f1←→ h1

f2←→ h2
f3←→ h3 . . .

fK←→ z

where, hi represents latent variables for each transformation i. The complete set of

transformations is given by the formula;

x = fK ◦ fK−1 ◦ ... ◦ f1(z) (2.16)

The change of variables formula for given random variables X and Z, that are related by a

mapping function f such that

X = f(Z)

and

Z = f−1(X)

gives the distribution of X as [10]:

pX(x) = pZ(f(x))

∣∣∣∣∂f(x)∂xT

∣∣∣∣ (2.17)

17



Adding log on both sides of the above equation, we have [10]:

log(pX(x)) = log(pZ(f(x))) + log

∣∣∣∣∂f(x)∂xT

∣∣∣∣ (2.18)

where ∂f(x)
∂xT is the Jacobian of f at x.

Normalizing flows are trained by maximizing the total log-likelihood n log pX(n) with

respect to the parameters of the neural network that maps the function f .

In the context of Normalizing Flows, bijections, which are complex non-linear and in-

vertible functions, need to be easy to compute, invert and to calculate the determinant of

their Jacobian. There are different types of flows that can be constructed to implement the

bijective properties of normalizing flows. The simplest of all is the Elementwise Flows which

are transformations where each element is a vector and is individually modified using a scalar

function that is bijective. The most common types of flows are Linear flows and they are

used as the base for more sophisticated flow types. Linear Flows involve using linear map-

pings to express correlations between dimensions in a dataset. This approach complements

the limitations of elementwise operations, which cannot capture such correlations. Linear

mappings can be defined as

g(x) = Ax+ b (2.19)

where x represents a vector of input dimensions, A is a parameter matrix of size D x D,

and b is a parameter vector of size D. If the matrix A is invertible, the function becomes

invertible as well. As mentioned earlier, linear flows are more generally used as building

blocks for more complex flows like affine coupling flows. These flows leverage the concept

of linear mappings to create more flexible and expressive transformations as will be shown

below. It is worth noting that the determinant of Jacobian for linear flows is denoted as

det(A) and calculating det(A) can be computationally expensive as it is of the order O(D3).

To address this issue, different methods are employed to restrict the form of the matrix A.
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For example, matrix A can be constructed as a triangular matrix whose determinant is the

product of its diagonal [25].

Two key ideas in the study of normalizing flows are coupling flows and autoregressive

flows. Coupling flows and Autoregressive flows are one of the most widely used flow architec-

tures. The paper “NICE: Non-linear Independent Components Estimation” [9] introduced

a special type of normalizing flow called the coupling flow. The key idea behind NICE is to

factorize the Jacobian determinant of the transformation into a product of diagonal matrices.

By doing so, the computation of the determinant becomes efficient, allowing for tractable

likelihood estimation. This factorization is achieved by splitting the input variables into two

groups and applying different affine transformations to each group alternately. In a general

coupling layer, we have an input x, which is divided into two parts: I1 and I2. Let I1

represent the first d dimensions of x, and I2 represent the remaining dimensions.

The output of the coupling layer is denoted as y, which consists of two parts: yI1 and

yI2. The yI1 part simply retains the values of xI1 unchanged. The transformation applied

to xI2 is defined by a function called the coupling law, denoted as g. This function takes xI2

and a mapping function m(xI1) as inputs and produces yI2.

Mathematically, we can express the above coupling layer as follows [9]:

yI1 = xI1

yI2 = g(xI2,m(xI1))

Here, g is an invertible map with respect to its first argument given the second argument,

which ensures the invertibility of the coupling layer.

In the case of coupling flows, how to split or partition x remains an important question.
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Several works mention different ways of splitting. “Density estimation using RealNVP” [10]

introduces the RealNVP (Real-valued Non-Volume Preserving) algorithm as a method for

flexible and efficient density estimation using normalizing flows. The RealNVP architecture

employs a class of coupling layers, where each layer divides the input into two parts and

transforms only one part while leaving the other unchanged. In the context of the RealNVP

algorithm, coupling layers are designed as affine coupling layers. In an affine coupling layer,

the transformation applied to the I2 part is an affine transformation, which consists of a

scale function (s) and a translation function (t). These functions take the I1 part as input

and produce parameters for the affine transformation. The output vector of the coupling

layer is obtained by applying the affine transformation to the I2 part and combining it with

the I1 part [12].

One important property of the coupling layers is that the Jacobian determinant of the

transformation can be efficiently computed. The Jacobian matrix of the coupling layer has

a triangular structure, and its determinant can be computed as the product of the diagonal

elements, which depend on the scale function (s). This property allows for efficient training

of the model using the determinant-based loss function.

To implement the coupling layers, masked convolutions can be used. Masked convo-

lutions utilize binary masks to selectively update specific dimensions of the input vector

while keeping others unchanged. The masks are designed based on the local correlation

structure of images. Two types of masks are employed: spatial checkerboard patterns and

channel-wise masking. The scale and translation functions (s and t) in the coupling layers

are implemented as convolutional neural networks. “Glow: Generative Flow with Invertible

1x1 Convolutions” [24] builds on NICE and RealNVP. The main idea behind Glow is to

utilize invertible 1x1 convolutions as building blocks for constructing a flow-based generative

model. The architecture of the Glow model comprises multiple levels, each consisting of

several steps. At each level, the input is divided into multiple channels, enabling the model
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to capture diverse aspects and dependencies of the data distribution. Each step within a

level consists of three key components: an actnorm layer, an invertible 1x1 convolution, and

a coupling transform. The actnorm layer is responsible for normalizing the input data to

zero mean and unit variance along each channel. This normalization step helps stabilize

the training process and ensures effective learning of the transformation parameters. The

invertible 1x1 convolution plays a pivotal role in the Glow model. It performs a convolution

operation on the input data while maintaining invertibility. This feature allows the model to

capture intricate dependencies between the input and output spaces without loss of informa-

tion. The coupling transform is also used as a crucial element in the Glow model. It splits

the input data into two parts: a fixed part and a transformed part. The fixed part serves as

a conditioning input, while the transformed part undergoes modification through an affine

transformation. This approach enables the model to efficiently capture local variations and

details in the data distribution. Glow utilizes a multi-scale architecture. This means that

the model operates at multiple resolutions or levels, where each level comprises a set of steps.

The multi-scale architecture empowers the model to effectively capture both global and local

structures present in the data distribution.

Another type of flow is the autoregressive flow which is based on the concept of the

autoregressive property. The probability distribution of each variable is represented in au-

toregressive models as a function of the preceding variables. This implies that each variable

in the model only depends on the variables that came before it in a specific order. The

ability to decompose a complex probability distribution into a series of conditional distri-

butions that are easier to understand can be modeled using neural networks thanks to the

autoregressive property. In particular, autoregressive normalizing flows employ a series of

invertible neural networks, each of which transforms a subsequent variable in dependence on

earlier ones. Autoregressive flows, much like coupling flows, use the same functional form
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which is a bijective function that has an input from one part of the space, and the parameters

of the bijective function are determined based on the other part of the space. This bijective

function is called the coupling function in both coupling flows and autoregressive flows.

There are many types of coupling functions in use in many of the literature stated above.

One of the most common types of coupling functions which has been stated above several

times is the affine coupling function used in “NICE” and “RealNVP” and many other lit-

erature. Spline is another type of coupling function commonly used. A spline is a type

of function that is defined by a series of points called knots. The spline is constructed

by connecting these knots using polynomial or rational functions. To create a useful cou-

pling function, the spline should be monotone, which means that it consistently increases

or decreases as we move along the spline. This monotonicity is achieved by ensuring that

the x-values of the knots increase and the corresponding y-values also increase. Typically,

splines are defined within a specific interval, such as a compact interval, to limit their range

of values [32].

In the context of rational quadratic spline flows, a specific type of spline called a rational

quadratic spline is utilized. [12] introduced the concept of rational quadratic spline flows,

which involve modeling the coupling function as a monotone rational quadratic spline on an

interval while behaving as the identity function outside of this interval. The construction of

the spline involves specifying K+1 knots and their derivatives at the inner points. These knot

locations and derivatives are parameterized as the output of a neural network, following a

commonly used method in spline construction. The rational quadratic spline functions used

in this approach are advantageous because they are easily differentiable and analytically

invertible. The spline is divided into K bins, with each bin being defined by a monotonic

rational quadratic function. A rational quadratic function can be expressed as the division

of two quadratic polynomials. The spline ensures that it passes through the specified knots
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and the derivatives at the knots match the desired values. The transformation outside the

interval is kept as the identity function, resulting in linear “tails” that allow for unconstrained

inputs. The monotonicity, differentiability, and invertibility of the rational quadratic spline

make it suitable for constructing coupling functions in the context of normalizing flows.

[12] states that the rational quadratic spline flows (RQ-NSF) can be used as a replacement

for affine or additive transformations in normalizing flows. When used alongside alternating

invertible linear transformations, they constitute a category of normalizing flows referred

to as rational-quadratic neural spline flows (RQ-NSF). These flows can incorporate both

coupling layers (RQ-NSF(C)) and autoregressive layers (RQ-NSF(AR)), offering improved

flexibility compared to other transformation methods [12].
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Chapter 3

Methodology

3.1 Motivation

While diffusion models have made notable progress in improving sample quality, it is im-

portant to acknowledge that these models can be computationally demanding during the

sampling process. Generating high-quality samples often necessitates a substantial invest-

ment of time and computational resources. This is due, in part, to the complexity of the

U-Net architecture employed by DDPM, which is known for its large number of parameters.

The computational demands of diffusion models can be attributed to several factors. First,

the sampling process involves iteratively denoising an initial noisy sample sampled from a

known distribution like Gaussian. This denoising process requires multiple steps and in-

volves complex computations, which can significantly increase the time and computational

resources required. The computational demands of diffusion models arise from the nature

of the sampling process and the necessity for multiple transformation steps. In diffusion

models, the goal of the forward process is to transform an initial unknown data distribution

into a known distribution, typically a Gaussian distribution. This transformation is achieved

by iteratively adding small amounts of Gaussian noise to the data distribution over multiple
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timesteps. The reason for using multiple timesteps instead of adding all the noise in a single

timestep is twofold. Firstly, if all the noise were added at once, the reverse process of gener-

ating a sample by predicting all the noise in a single timestep would be highly challenging.

By spreading the noise addition over multiple timesteps, the model can more easily capture

and learn the complex dependencies between the data and the noise. Each timestep allows

the model to gradually refine its understanding of the transformation process, making it

more feasible to generate high-quality samples. Secondly, the spacing between timesteps is

crucial for achieving the desired transformation. The reverse process of diffusion models

assumes a Gaussian distribution. The time interval between timesteps needs to be small

because removing a small amount of Gaussian noise at each timestep progressively leads to

the emergence of a Gaussian distribution. If the timesteps were too far apart, the noise re-

moval process would be too abrupt, and the resulting distribution might deviate significantly

from the desired Gaussian distribution. As a result, diffusion models require a large number

of timesteps, typically ranging to thousands, to effectively transform the data distribution.

This leads to a longer Markov chain requiring more time for denoising it. Additionally, the

U-Net architecture used in DDPM contributes to the computational burden. The U-Net

is a deep neural network with a large number of layers and parameters. While this allows

the model to capture intricate patterns and dependencies in the data, it also increases the

computational complexity of both training and sampling. The extensive parameterization of

the U-Net necessitates numerous computations during both forward and backward passes,

which can be time-consuming.

To address these challenges and improve the efficiency of diffusion models, we propose

leveraging a conditional normalizing flow with rational quadratic transformation introduced

by the Neural Spline Flow (NSF) [12] to model the reverse diffusion process. This allows us

to eliminate the use of U-Net architecture and also removes the dependency of using multiple

small timesteps for denoising the noisy samples. By employing a normalizing flow model in
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place of U-Net we can learn the direct mapping from noisy sample to original data by using

invertible transformations which then allows us to skip timesteps while denoising. The nor-

malizing flow approach offers a promising alternative to the U-Net architecture, potentially

reducing the computational complexity while maintaining the model’s expressive power. For

the implementation of our method, we use the rational quadratic transformation as defined

by the Neural Spline Flow [12]. By incorporating the rational quadratic transformation

into the diffusion framework, we aim to enhance the efficiency of sampling and mitigate the

computational demands associated with diffusion models.

Thus in summary, in this thesis, we focus on implementing and evaluating our proposed

methodology, which adds the strengths of the normalizing flow with the rational quadratic

transformation from [12] to the diffusion model framework. By integrating normalizing flow

in the reverse process of diffusion models, we aim to improve the computational efficiency of

diffusion models without compromising their modeling capabilities. The rational quadratic

transformation provides an alternative architecture for the transformation process, poten-

tially reducing the computational complexity and accelerating both training and sampling

procedures.

3.2 Algorithm

This section presents the algorithm proposed in this paper, which uses a conditional nor-

malizing flow to model the reverse process of diffusion models. The goal is to create a new

generative model that leverages the normalizing flow model to reduce sampling time in dif-

fusion models. Our approach involves incorporating a conditional normalizing flow into the

diffusion model framework. The motivation behind this is to accelerate the sampling process

of the diffusion model by selectively skipping timesteps. As mentioned in Section 3.1, the
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Algorithm 1: Training

repeat
x0 ∼ q(x0);
t← Uniform({1, 2, ..., T});
ϵ ∼ N (0, I);
xt ←

√
αt · x0 +

√
1− αt · ϵ;

temb ←
sinusoidal embedding(t);
Ct ← xt + temb;
Take gradient descent step on:
nll = fθ(x0, Ct), where
fθ = f1 · f2 · . . . · fn;

until converged ;

Algorithm 2: Sampling

x̂0 ← None;
first iter ← True;
for t = T to 1 step k do

where k = number of
timesteps to skip;
ϵ ∼ N (0, I);
if first iter then

xt ← ϵ;
first iter ← False;

else
xt ←

√
αt · x̂0 +

√
1− αt · ϵ;

temb ←
sinusoidal embedding(t);
Ct ← xt + temb;
x̂0 ← f−1

θ (ϵ, Ct);

Output: x̂0

Figure 3.1: Training and Sampling Algorithms

stepwise addition of noise is crucial for the effectiveness of the diffusion model, as it enables

the model to learn the underlying data distribution more effectively. The reverse diffusion

process assumes a Gaussian distribution. To achieve the desired distribution, small intervals

between noise addition and removal are required. Large time intervals or excessive noise

addition can lead to a deviation from the desired distribution. Diffusion models thus require

a large number of timesteps, leading to a longer Markov chain and more time for denoising

and sampling.

To address these challenges, we propose incorporating a conditional normalizing flow into

the diffusion model to model the reverse process of diffusion models. The normalizing flow

we use in our implementation is trained on a dataset D conditioned on noisy samples xt

at a given timestep t. Unlike the existing approaches that use U-Net to learn the reverse

transition dynamics, we incorporate a normalizing flow to enhance the modeling capabilities
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and achieve more effective generative results. Traditionally, a U-Net architecture in DDPM

takes an input image and a corresponding noisy image xt, along with its associated timestep

t, to predict the noise added in the forward process. However, we depart from this approach

and opt for a normalizing flow as the primary tool to learn the reverse transition process.

In our implementation, we start by feeding the dataset sample as the input to the nor-

malizing flow. Let us denote a sample by x0 ∈ D. Using the closed-form equation of the

diffusion model we generate the noisy sample xt for a given timestep t:

xt =
√
αtx0 +

√
1− αtϵ, (3.1)

where αt = 1 − βt and αt =
1
t

∑t
s=1 αs, β is variance schedule according to which noise is

added to the image at timestep t, x0 is the original sample from dataset D and ϵ is noise

added. We provide the normalizing flow with both xt and t in the form of context information

Ct, which is described in detail in section 3.2.1, which corresponds to the noisy image at

timestep t obtained by the closed-form solution in the DDPM framework along with the

original samples.

z = fθ(x0, Ct) (3.2)

where, z ∈ N (0, I) and fθ is a composition of transformation functions given by:

fθ = f1 ◦ . . . ◦ fN1 ◦ fN (3.3)

By incorporating this conditional setup, we enable the model to capture the intricate

relationship between the original samples and the noisy image at the given timestep. The

model is optimized over negative log-likelihood of the normalizing flow which completes the

training process. The negative log-likelihood of the normalizing flow model is given by:

28



log pθ(x0) = log pZ(z)−
K∑
k=1

log

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣ (3.4)

where θ denotes the parameters of normalizing flow and pZ is known distribution such

as Gaussian and z is a sample from Gaussian.

The sampling process designed for our implementation is represented by Figure 3.2.

It is designed in such a way that it fastens the sampling process of the diffusion model.

This is done by ensuring that the underlying normalizing flow model has the ability to

learn pθ(xt−k|xt), which allows to jump multiple timesteps backward. During the sampling

process, we follow an iterative process over a reverse sequence of timesteps. The denoising

process of our implementation consists of two steps. Firstly, we predict x̂0, which is the

predicted sample at timestep t from xt using Conditional Normalizing Flow (CNF). Secondly,

we obtain xt − k from the predicted x̂0. The sampling process of our implementation takes

in a fresh sample from the Gaussian distribution and context xt and t and outputs a newly

generated sample x̂0. We apply the closed-form solution from the forward diffusion process

and reach a sample at timestep t − k where k is the number of timesteps skipped. This

process is repeated iteratively for a sequence of timesteps. This eventually leads to the

generation of a new sample in a small number of timesteps as compared to the traditional

diffusion model. It is important to note that xt at the first timestep is fresh noise.

A difference between our sampling process and the sampling process employed by DDPM

is that DDPM predicts noise whereas our approach directly predicts the denoised sample.

3.2.1 Contextual information

This section presents the process of generating contextual information for our proposed

method, which is essential for effectively conditioning the normalizing flow model on the

forward process of the diffusion model. The contextual information is derived using the
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Figure 3.2: Sampling Process of our Implementation

closed-form equation of diffusion models, enabling us to incorporate the underlying dynamics

into the data generation process.

Given a specific time-step t, the noisy data xt is generated by simulating the forward

process of diffusion models. This is achieved by adding noise sampled from a Gaussian

distribution to the data. Mathematically, we can express this as the closed-form equation of

the diffusion models as described in the previous section:

xt =
√
αtx0 +

√
1− αtϵ, (3.5)

During the training process, the time-step t is randomly selected for the input data.

Additionally, we transform and convert the time-step t into a sinusoidal embedding, providing

the network with explicit time information. This embedding allows the model to effectively

utilize and learn the temporal patterns present in the data. Mathematically, the sinusoidal

embedding can be represented as:

tembedding = sin

(
2πt

T

)
, cos

(
2πt

T

)
(3.6)
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where T represents the maximum value of the timestep.

To incorporate the contextual information xt and the transformed time-step tembedding

into the model, we perform an element-wise addition, yielding a representation denoted as

Ct. This merged representation serves as the input context for the normalizing flow model.

Mathematically, this can be expressed as:

Ct = xt + tembedding (3.7)

Furthermore, we have explored alternative techniques as shown in Figure 3.3, including

convolutional neural networks and multi-layer perceptron, to merge the contextual informa-

tion. These approaches provide flexibility in capturing complex relationships and dependen-

cies between the input data and the noisy data at a specific timestep.

Figure 3.3: Different ways of adding context information

The processing of context information in conditional normalizing flow models can take

place in various ways. In our proposed implementation, we utilize the glow model, which

comprises an actnorm layer, an invertible 1× 1 convolutional layer, and a rational quadratic

spline coupling layer instead of an affine coupling layer. Within our framework, the con-

ditional normalizing flow model takes two inputs as shown in Figure 3.4, real samples and

context information which are noisy images at specific timesteps, denoted by xt. To pre-
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process the real samples, we apply the squeeze transformation, followed by the actnorm

layer and the 1 × 1 convolutional layer. Similarly, the context information undergoes the

squeeze transformation which ensures that the context and input data are of the same shape.

Subsequently, both the real samples and context information pass through a convolutional

layer before entering the rational quadratic coupling layer. By integrating the contextual

information, our model gains a comprehensive understanding of the data, leveraging both

the observed inputs which are real samples, and the generated contextual information. This

enhanced capability facilitates the exploration and exploitation of underlying patterns and

dependencies, aiming to improve performance and accuracy in modeling the data.

Figure 3.4: Conditional Normalizing Flows
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3.3 Implementation Details

To implement our suggested methodology, we leveraged the code from two distinct repos-

itories, namely the Denoising Diffusion Probabilistic Models (DDPM) repository [45] and

the Neural Spline Flow repository [13]. By combining and adapting the code from these

repositories, we were able to take advantage of the strengths offered by both models and

tailor the implementation to suit the specific requirements of our research. In essence, we

utilized the DDPM code to handle the forward process of the diffusion model in mainly the

generation of noisy images using the closed-form solution, while the Neural Spline Flow code

was employed to model the probability distribution function. The resulting implementation

served as the foundation for conducting our experimental analysis. The Neural Spline Flow

code incorporates the use of rational quadratic spline transforms, as outlined in the work

[12]. Specifically, we adopted the architecture employed in the Glow model [24]. The trans-

formation process aligns with the transformations used to create neural spline flow, and we

opted for a multi-scale architecture. The number of flows within the model is determined

by two key variables: “levels” and “steps per level”. Each level comprises a squeeze trans-

form, actnorm layer, an invertible 1 x 1 convolutional layer, and a number of transform

steps corresponding to the specified steps per level. As previously mentioned, we utilized

the piecewise rational quadratic coupling transform with linear tails for each step. We set

a tail bound of 5 and generated a mid-binary split mask based on the number of channels

in the dataset. Additionally, we incorporated the preprocessing transform provided by the

neural spline flow repository, specifically selecting the real nvp preprocessing transform. This

preprocessing transform maps the input data to the range [0, 1] before passing it through

subsequent transformations and computations. This step ensures that the input data is

appropriately scaled for optimal processing by the remaining transforms in the pipeline.
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Chapter 4

Related Works

4.1 Diffusion Models

There are many works in the field of diffusion models that aim at solving the high sam-

pling times of DDPM. Denoising Diffusion Implicit Models [42] (DDIM) are an extension of

DDPM models where the forward process used in DDIM is Non-Markovian as opposed to the

Markovian process in DDPMs. This ensures that noisy image sample from given timesteps

in DDIMs can depend on their previous image, as in DDPM, and also on the very first

timestep. This work is an effective implementation in the domain of reducing the sampling

time of the diffusion models by reducing the number of timesteps. Our work is an extension

of this mission of working on reducing the number of timesteps for diffusion models.

[33] propose further improvements in DDPM. They found that the performance of diffu-

sion models in terms of log-likelihood can be significantly improved by learning the variance

parameter. Allowing the model to learn the variance enhances its efficiency in generating

samples. Instead of the simple mean squared error (MSE) loss function that DDPM uses,

they use a hybrid loss function composed of the MSE loss function as defined by DDPM and

the variational lower bound. The variational lower bound is controlled by a regularization
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term. The authors introduce a new noise schedule that adapts to the local complexity of

the data. By adjusting the noise level during the diffusion process, the model can effectively

capture both low and high-frequency details in the generated images.

[28] introduced Bilateral Denoising Diffusion Models (BDDMS) to solve the problem of

using a large number of timesteps. The authors of BDDMS acknowledge the formation of

longer Markov chains in the forward process leading to a longer sampling time. Previous

research such as [4, 26] have shown that changing the noise schedule in the sampling process

and keeping it different from the noise schedule used in forward process can reduce the

sampling time. These approaches followed a non-linear noise schedule where [26] used a

fixed noise schedule and [4] used a grid search method to find the best one. BDDMS aims

to directly learn the noise schedule for sampling. They also use a bilateral mode of training

where forward and reverse process train together. They first use the forward process to

sample from a distribution and obtain an initial sample. Then, they initiate the reverse

process starting from that initial sample. Two networks, a score network, and a scheduling

network are used to parameterize the forward and reverse processes. They were able to show

a significant reduction in the sampling time but the use of two networks can add to the

computational overload. As opposed to their method, our method uses only one network for

modeling the reverse process. They also use a score network whereas we use a conditional

normalizing flow.

Denoising Diffusion Restoration Models (DDRM) [23] is an approach for solving image

restoration problems like denoising and improving image quality. DDRM generates good-

quality results in a relatively shorter amount of time by employing a pre-trained diffusion

model. The key idea behind DDRM is the development of an unsupervised method which

does not require task specific training for any of the image restoration task. By using pre-

trained diffusion model, DDRM produces diverse samples for different tasks relatively faster.

[39] also discuss the problem of requiring high computational resources and time while
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training and evaluating diffusion models. To tackle this, they introduce Pyramid Diffusion

Model. Their approach uses a diffusion model conditioned on positional embedding and gen-

erates higher-quality samples starting from coarser-quality samples. In their forward process,

they provide real samples as well as the position of each pixel as conditional information.

In their reverse process, instead of using a single full diffusion model for reverse sampling,

they use a multi-scale approach. They employ a pyramid structure where the reverse sam-

pling process starts from the lowest resolution and progressively moves to higher resolutions.

This enables faster and more efficient sampling. In this approach, they solve the problem

of slow sampling of diffusion models by using a conditional diffusion model whereas we use

a conditional normalizing flow model. They condition their model on positional embedding

whereas our model is conditioned on noisy samples at given timesteps.

4.2 Normalizing Flows

In recent years, there has been a growing interest in incorporating conditional information

into normalizing flow models to enhance their capabilities in various domains. Several no-

table works have explored different approaches to leverage conditional normalizing flows.

The work by the authors in [1] introduces StyleFlow, a significant contribution in the field of

attribute-controlled image generation using conditional continuous normalizing flows. Previ-

ous methods, including unconditional GANs like StyleGAN, have limitations in controlling

attribute-specific generation while maintaining image quality. However, StyleFlow overcomes

these limitations by conditioning the generation process on attribute features. This allows

for precise control and fine-grained editing of specific attributes, such as pose, expression,

and age, without undesired effects on other attributes. Another notable work, CFLOW-AD

[17], presents a real-time model based on a conditional normalizing flow framework specif-

ically designed for anomaly detection with localization. The architecture of CFLOW-AD
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has a discriminatively pre-trained encoder along with a multi-scale generative decoder. The

encoder extracts relevant features from the input data, while the generative decoders esti-

mate the likelihood of encoded features at multiple scales, enabling anomaly detection and

localization. The conditional normalizing flow model in our approach uses noisy samples of

the original image as conditional information as opposed to various attributes of the image

like most of the implementations follow.

[43] proposes a fully conditional Glow-based architecture for generating realistic images

of street scenes given a semantic segmentation map. The authors suggest that this approach

can be used to augment existing datasets with synthetic images, which can be beneficial for

training visual semantic segmentation or object recognition systems. The paper discusses the

challenges of collecting labeled visual data for training autonomous agents, such as driver-

less cars, and highlights the benefits of using generative models for data augmentation. It

mentions that GANs and auto-regressive architectures have been widely used for image gen-

eration but have certain limitations. Normalizing flows, specifically, Glow, are introduced

as a promising alternative that can generate high-quality images and have advantages such

as stable training, explicit representation learning, efficient synthesis, and exact likelihood

evaluation. The proposed architecture, Full-Glow, combines innovations from previous Glow-

based models for conditional image generation. It consists of two parallel stacks of Glow,

where all sub-steps are made conditional by inserting conditioning networks. The condition-

ing networks allow for the integration of source-domain information at the relevant level of

hierarchy. The architecture includes conditional actnorm and 1x1 convolutions, which are

also connected to the source Glow. The conditioning networks are built using convolutional

and fully connected layers.
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4.3 Hybrid of Diffusion Models and Normalizing Flows

The paper Diffusion Normalizing Flow [46] proposes a new methodology that combines

diffusion models and normalizing flows. Diffusion Normalizing Flow (DNFs) use a diffusion

process to convert a complex data distribution to a base distribution such as Gaussian and

then use a normalizing flow to learn transformations from a base distribution to a complex

dataset. DNFs do the two processes i.e. forward diffusion process and the normalizing

flow process simultaneously. DNFs also use two neural networks for the two simultaneous

processes. This could result in better modeling of complex target distributions and improved

performance. The difference between our approach and the approach used in DNFs is that

we do not use a neural network for the forward process making our process less parameter-

heavy. We also use a conditional normalizing flow as opposed to the traditional normalizing

flow making it easier for the neural network to learn features effectively.

“Generalized Normalizing Flows via Markov Chains” [18] presents a new framework for

generative models that combines deterministic and stochastic normalizing flows. The frame-

work is based on the idea of Markov chains. The authors argue that the Markov chain

framework provides a number of advantages over traditional approaches to generative mod-

eling, including increased flexibility, expressiveness, and mathematical rigor. The authors

define a stochastic normalizing flow as a Markov chain where the transition kernel is a de-

terministic invertible function. This means that the Markov chain can be represented as

a sequence of deterministic invertible functions, each of which transforms the state of the

chain to a new state. This definition allows for more flexible and expressive modeling of

complex probability distributions. This is because the Markov chain can be used to model

the evolution of a random variable through a sequence of different probability distributions.

A number of theoretical results that support the use of the Markov chain framework for

generative modeling are presented. The authors also demonstrate the effectiveness of the
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framework on a number of real-world datasets.

[40] utilizes a combination of normalizing flow models and diffusion models to help flow-

based models solve the problem of latent space mapping. Normalizing flows have limitations

in fully mapping to a Gaussian distribution, as demonstrated in research [42]. While these

models strive to approximate the target distribution, they may not achieve a perfect match.

This limitation affects the model’s ability to generate samples that cover the entire input

space faithfully. [40] aims to use diffusion model along with normalizing flow models to effec-

tively map the latent space to Gaussian distribution. This ensures that no approximations

are generated while sampling from the transformed distribution leading to a better quality

of generated samples.
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Chapter 5

Experiments

To demonstrate the effectiveness of DiffusionCNF, we evaluated the model on 3 popular

benchmark datasets: MNIST, CIFAR-10, and CelebA. MNIST dataset [29] is a collection of

handwritten images. Each image in the dataset corresponds to a handwritten digit ranging

from 0 to 9. It consists of 60000 training samples and 10000 test samples. Each image in

the MNIST dataset is a gray scale image of size 28 x 28 pixels. CIFAR-10 dataset [27] is a

collection of images belonging to 10 different classes. It has 60000 training samples where

each class consists of 6000 samples. The CIFAR-10 dataset consists of RGB images with

a resolution of 32 x 32 pixels. The CelebA dataset [31] consists of a collection of celebrity

faces. There are 202,599 RGB samples in the dataset with each image being 178 x 218 pixels.

For our model, we used the Adam optimizer with a learning rate of 0.0001 during train-

ing. We trained our model for varying numbers of epochs depending on the dataset under

consideration. For MNIST dataset, our normalizing flow model consists of 4 levels where

each level is composed of 30 flow steps. Every flow step is a combination of actnorm, 1x1

convolution, and affine coupling transformation as explained in section 3.3. The number of

features were set to 128. For the CIFAR-10 dataset, we employed 30 steps per level with 3
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levels and 128 hidden features. The number of steps per level was set to 25 with 4 levels for

the CelebA dataset and hidden features were set to 128. Table 5.1 summarizes the above

training configuration.

Timesteps in the diffusion model control the number of steps over which noise is gradually

added in the forward step in the diffusion model. In our implementation, we utilized a total

of 100 timesteps for the sampling process, as opposed to the default 1000 timesteps used

in traditional DDPM models. The selection of 100 timesteps allowed us to achieve efficient

and effective sampling while reducing the computational burden. To generate the timestep

sequence, we employed a uniform skip type, ensuring that the intervals between timesteps

were evenly distributed. The sequence has 100 steps skipped in between.

Table 5.1: Training Configuration
Configuration Value
Batch size (MNIST) 512
Batch size (CelebA) 64
Batch size (CIFAR-10) 150
Steps per level (MNIST) 30
Steps per level (CelebA) 25
Steps per level (CIFAR-10) 30
Level (MNIST) 4
Level (CelebA) 4
Level (CIFAR-10) 3
Learning Rate 0.0001
Transform type Rational Quadratic Spline
Total diffusion timesteps for sampling 100
Optimizer Adam

In terms of architecture, we followed the implementation details mentioned in the previous

section. Additionally, we evaluated the performance of our model using two key metrics:

Negative Log Likelihood (NLL) and Frechet Inception Distance (FID) [19]. Negative log

likelihood measures the underlying distribution of the original data. It is a measure to

determine how accurately the model predicts the original distribution of training data. A
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Table 5.2: Experiment Results
Dataset FID nll(bpd)
MNIST 2.13 0.88
CELEBA 4.13 2.66
CIFAR-10 3.47 3.28

lower NLL indicates that the model can effectively model the data distribution and generate

samples that closely match the real data distribution. We presented the nll in terms of bits

per dimension (bpd). The FID Score quantifies the similarity between the distribution of

generated samples and the real samples. It employs a pre-trained Inception network [44] to

extract features and calculate the distance between the feature distributions. A lower FID

score indicates better quality and diversity in the generated samples [19]. The FID score

depends on the feature vectors that we use. In our case, all models have been evaluated by

setting the feature vector length to 768. We used FID function provided by the torchmetrics

library.

To further evaluate the performance of our model, a comparison was made with other

models on the CelebA dataset and MNIST dataset. Table 5.3 and Table 5.4 display the

results. Furthermore, we assessed the efficiency of our approach by measuring the sampling

times for generating 25 samples for each experiment. These time measurements provided

valuable insights into the computational efficiency and practical viability of our integrated

approach. The analysis of all the experiments is discussed in the results section.

5.1 Results

Table 5.2 provides the performance metrics for our model on three different datasets: MNIST,

CelebA, and CIFAR-10. For the MNIST dataset, our model achieved an FID score of 2.13

and an nll of 0.88 bits per dimension (bpd). An FID of 2.13 indicates a lower average
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Table 5.3: Comparison with Different models on CELEBA
Models FID loss sampling time

Our model 4.13 2.66 nll 34 secs
DDPM 2.94 0.03 mse 42 secs

RQ-NSF(C) 3.02 2.86 nll 0.22 secs

Table 5.4: Comparison with Different models on MNIST
Models FID loss sampling time

Our model 2.13 0.88 nll 21.5 secs
DDPM 2.34 0.03 mse 29.9 secs

RQ-NSF(C) 3.48 0.89 nll 0.21 secs

distance between the generated samples and real images from the MNIST dataset. A nll

value of 0.88 shows that the model was able to accurately generate the underlying data

distribution of the original data. The quantitative results of the model demonstrate that our

model generates good-quality results for the MNIST dataset. The lower FID score and lower

nll value can also be attributed to the simple structure of the MNIST dataset consisting of

only grayscale images. In terms of the visual quality, the samples generated by the model

are easily identifiable as handwritten digits as shown in Figure 5.5. However, a few samples

show minor irregularities or breaks in the digit shape. Further training may help alleviate

the discontinuities observed in some samples. Overall, since this is a simple dataset our

model was able to better capture it’s underlying data distribution and this is reflected in

the negative log-likelihood as well as the FID score of the generated samples. Further in

this section, we will compare the outputs of our model on MNIST datset with other models

providing analysis on the same.

On the CELEBA dataset, the FID score obtained was 4.13, and the nll was 2.66 bpd.

These metrics suggest that the generated samples of the CelebA dataset are lower in quality

compared to the MNIST dataset. The difference in the FID scores and the nll between
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the MNIST and the CelebA dataset can be associated with the relatively higher complexity

of the CelebA dataset when compared to MNIST. The CelebA dataset consists of more

complex and diverse images with varying backgrounds. These complexities may make the

model to converge slowly resulting in a higher nll value than the MNIST dataset. Our

model is able to generate samples that resemble faces, as seen in Figure 5.6. However, some

distortion in the images are observed. As mentioned in Section 5, we utilized 25 steps per

level in our experiments due to computational limitations. Due to the complexity of the

CelebA dataset, more steps per level may increase the quality of generated samples and help

in achieving a lower FID score and nll. Similarly, for the CIFAR-10 dataset, our model

achieved an FID score of 3.47 and an nll of 3.28 bpd. The higher nll value suggests that the

model faces challenges in accurately capturing the underlying data distribution present in

the CIFAR-10 dataset. Visually, the images are hard to recognize, as shown in Figure 5.7,

and seem to be more blurry compared to the other two datasets. It was observed that the

model, when trained on the CIFAR-10 dataset, needed more number of epochs compared

to CelebA or MNIST to reach convergence. This may be tackled by using a learning rate

scheduler to facilitate smoother convergence. More efforts towards fine tunning the model

specifically when trained on the CIFAR-10 dataset may prove to be valuable. The quality

of samples generated by the model when trained on the CelebA dataset was better than

the ones obtained by training on the CIFAR-10 dataset. The CelebA dataset consists of

facial images with a high resolution pixels, providing a more detailed representation of facial

features and textures. The higher resolution allows the model to capture fine-grained details,

resulting in more realistic and visually appealing generated samples. On the other hand, the

CIFAR-10 dataset comprises images with a resolution of 32 x 32 pixels, limiting the level of

detail that can be captured by the model.

As mentioned in section 5, we performed experiments to compare the performance of

our proposed model with that of DDPM [21] and RQ-NSF(C) [12]. Table 5.3 and Table
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5.4 show FID, nll, and sampling times of different models. DDPM achieved a lower FID

score of 2.94. This indicates that DDPM has a better ability to capture the underlying

distribution of the CelebA dataset. One reason for DDPM’s low FID score can be attributed

to its repetitive denoising process. However, this leads to a trade-off between the quality of

samples generated and the sampling time. DDPM generates 25 samples in 42 seconds which

indicates it is the slowest among all models due to its repeated denoising process. On the

other hand, RQ-NSF(C) exhibited the fastest sampling time among the compared models,

generating samples in just 0.22 seconds. RQ-NSF(C) obtained an FID score of 3.02, placing it

in between our model and DDPM in terms of image quality. When comparing these models

with our proposed model, we observe that our model performs comparably to DDPM in

terms of FID scores on the CelebA dataset. Normalizing flow models typically require large

number of transformations and thus the higher FID score can be bought down by training

on a larger number of flows. Our model has an advantage in terms of sampling time, as it

generates 25 samples in 34 seconds compared to DDPM’s 42 seconds. This suggests that

our model achieves a better balance between generative performance and computational

efficiency, making it a favorable choice when time constraints are important. Moreover, it is

important to consider the trade-offs between these models. DDPM excels in terms of image

quality and reconstruction performance but requires a longer sampling time, indicating a

higher computational overhead. RQ-NSF(C) demonstrates impressive sampling speed but

may sacrifice some accuracy in capturing the dataset’s statistical properties. In contrast,

our proposed model strikes a balance between FID scores and sampling time making it a

promising choice for applications that require a satisfactory trade-off between efficiency and

quality. It is worth noting that our model utilized a total of 100 sampling timesteps, whereas

DDPM used 1000 timesteps. However, further experimentation holds the potential to achieve

both improved sample quality and reduced sampling time. We can also investigate alternative

approaches to incorporate contextual information into normalizing flows for improving the
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sample quality. Other methods such as refining the architecture or incorporating additional

contextual cues, may lead to higher-quality samples and more efficient sampling procedures.

In addition to the quantitative evaluation, we have also provided the comparison of

samples generated from the three different models in order to provide a visual represen-

tation of the comparison. Figure 5.1 and Figure 5.3 shows the generated samples from

our model, i.e DiffusionCNF and from the DDPM model for CelebA dataset and MNIST

dataset respectively. Figure 5.2 and Figure 5.4 shows the generated samples from our model,

i.e DiffusionCNF and from the RQ-NSF(C) model for CelebA dataset and MNIST dataset

respectively.

Figure 5.1: Comparison of generated samples from DiffusionCNF of CELEBA data with
generated samples from DDPM
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Figure 5.2: Comparison of generated samples from DiffusionCNF of CELEBA data with
generated samples from RQ-NSF

Figure 5.3: Comparison of generated samples from DiffusionCNF of MNIST data with gen-
erated samples from DDPM
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Figure 5.4: Comparison of generated samples from DiffusionCNF of MNIST data with gen-
erated samples from RQ-NSF

Figure 5.5: Generated Image Samples of MNIST data from our Implementation
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Figure 5.6: Generated Image Samples of CELEB-A data from our Implementation
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Figure 5.7: Generated Image Samples of CIFAR-10 data from our Implementation
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Chapter 6

Discussion

In conclusion, our implementation aims to leverage the strengths of normalizing flows within

diffusion models to address the limitation of slow sampling time. By integrating a normal-

izing flow into the reverse process of the diffusion model, our objective is to significantly

reduce the time required for image generation.

Moving forward, there are several avenues for further experimentation and refinement of

our new model. One potential direction is to explore better methods of incorporating contex-

tual information by enhancing the formulation of Ct, which combines xt and t. Investigating

alternative approaches to incorporate Ct into the normalizing flows could potentially lead to

improved modeling of the reverse diffusion process.

Furthermore, exploring different types of normalizing flows within the diffusion framework

is worth considering. There are various types of normalizing flows, such as RealNVP, Glow,

or MAF, each with its own advantages and characteristics. Evaluating the performance of

different types of normalizing flows and their compatibility with the diffusion framework may

provide insights into enhancing the capabilities of our model.

Additionally, efforts can be made to optimize both the speed of image generation and the

quality of the generated samples. This could involve refining the architecture of the model
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like introducing a ResNet block, exploring alternative training techniques, or incorporating

additional contextual cues to increase the sample process’s efficiency and accuracy. With

the introduction of a ResNet block in future work, the model may be able to better capture

more fine-grained details present in the CIFAR-10 dataset. Along with this, experimenting

and obtaining a striking balance between the levels and steps per level may further increase

the performance of the model.

In summary, future work should focus on further exploring the integration of contextual

information, investigating different types of normalizing flows, and optimizing the speed and

quality of image generation. By pursuing these directions, we can unlock new possibilities for

improving the performance and applicability of our model in various domains. These ongoing

endeavors will ensure that our model strikes a balance between efficient sampling time and

high-quality output, paving the way for improved performance in future applications.
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