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ABSTRACT 

In brain tumor diagnosis and treatment, manual segmentation is the “gold 

standard” approach, through which an expert annotates tumor regions manually. This 

process is becoming increasingly infeasible as patient data volumes exceed quantities 

which can be reliably segmented in reasonable periods of time. Additionally, brain 

tumors exhibit wide variation in type, extent and location, further complicating task. This 

renders manual segmentation a time-consuming and labor-intensive undertaking, shown 

to yield inconsistent results. Automated models, implemented with deep learning 

architectures have demonstrated a faster, more consistent segmentation approach. While 

the benefits of automated models have been established, they have historically failed to 

be integrated into clinical practice. Research indicates that bridging the clinical gap 

requires establishing “trust” and “transparency” between end users, clinicians, and these 

automated tools. This paper proposes color space visualization of automated 

segmentation results, designed to improve standard segmentation practices through 

collaborative effort between automation and expert knowledge.  
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CHAPTER ONE 

INTRODUCTION AND PURPOSE 

 

 Artificial Intelligence (AI) tools have revolutionized the field of data 

mining by enabling knowledge discovery in large, complex datasets with unprecedented 

speed and accuracy. In recent history, efforts have been made to apply AI deep learning 

(DL) models for biomedical image analysis. A specific instance is the use of deep 

learning models for image analysis in cancer diagnosis. In many cancer types, tumor 

segmentation is popular image analysis task, used to guide both diagnosis and treatment 

intervention. Tumor segmentation is an inherently complex task, further complicated in 

certain locations such as the brain. Current “gold standard” methods for brain tumor 

segmentation are becoming increasingly infeasible with the time and resources available. 

Volumes of patient medical imaging data are increasing exponentially, along with 

enhanced imaging protocols producing images with more detailed data than ever before. 

As the demand for biomedical image analysis increases, it is necessary to evaluate and 

improve current methods to ensure patient care is provided swiftly and knowledgeably 

for successful intervention.  

A number of benchmark studies of deep learning models for brain tumor 

segmentation have received high accuracy and efficiency relative to the “gold standard” 

manual diagnosis. At the same time, these models have thus largely failed to be 

implemented across clinical institutions. Further research explains that while fast and 
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accurate diagnosis is ideal, further requirements for clinical diagnostic tools exist. Most 

frequently, clinical studies report interpretability and transparency as barriers inhibiting 

clinical trust of automated diagnostic tools. As benchmark DL models for brain tumor 

segmentation have failed to address further relevant clinical concerns, the models have 

also failed to gain popularity in use.  

This paper addresses previous work on both state-of-the-art benchmark DL 

architectures for biomedical image analysis and the established need for clinical trust in 

diagnostic tools. The purpose of this study is to present an approach for using deep 

architectures for brain tumor segmentation in conjunction with enhanced explanatory 

visualization. The intention of this approach is to use expert evaluation, an element used 

in current clinical practice, to work alongside DL models in a combined effort to predict 

and evaluate tumor segmentation results. The goal, then, is to provide the best patient 

care possible by retaining the advantages of both automated and manual approaches for 

brain tumor segmentation. 

 

1.1 CONTRIBUTIONS 

The primary contribution of this work is the registration and enhancement module 

as part of a semi-automated brain tumor segmentation process. This tumor segmentation 

process is founded on principles of interpretable deep learning, in an effort to incorporate 

domain knowledge into real-world deep learning implementations. This semi-automated 

process involves deploying a benchmark deep automated model for brain tumor 

segmentation, followed by a registration and enhancement module to guide expert 

evaluation within the domain and ideally establish clinical trust in automated diagnostic 
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tools for biomedical image analysis. The enhancement module combines advancements 

in computer vision, human computer interaction and data visualization to improve the 

explanatory value of automated segmentation predictions for expert readers. Further work 

should implement these methods and tools in the real clinical setting so that the value and 

use may be evaluated.  
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CHAPTER TWO 

BRAIN AND CENTRAL NERVOUS SYSTEM TUMORS 

 

Brain tumors are a growing concern for society as they rate among the most 

common human diseases [7] and carry relatively poor prognosis for patients. A National 

Cancer Institute (NCI) initiative, the SEER program, indicates that in 2019, 

approximately 24,000 Americans were diagnosed with brain cancer while 18,000 

Americans died of the disease [42]. This program also estimates that the median age at 

diagnosis of brain cancer patients is 59 years, and that only 32.9% of those diagnosed 

with brain cancer are expected to survive five years [42]. The frequency and gravity of 

brain tumors have identified the immediate need to improve brain cancer prognosis. Time 

is one of the most influential factors in brain cancer prognosis, relative to both diagnosis 

and treatment since brain cancer can progress rapidly and tumor stage at diagnosis 

strongly influences patient prognosis [42]. Relative to other cancer sites, brain tumors are 

associated with higher symptom burden due to the unique neurocognitive symptoms [4]. 

This is in part due to the restrictive location inside the skull which leaves little room for 

growth before brain function is affected [42, 55].  

 

2.1 CAUSE AND TREATMENT 

Most cancers are caused by a mutation of the Deoxyribonucleic Acid (DNA) 

sequence which alters the genes responsible for cellular reproduction [16]. DNA serves 
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as an instruction manual for genes, which carry out a number of cycles relevant to both 

cancer instance and growth. A tumor manifests as the result of a genetic mutation causing 

the uncontrolled growth of cells [16]. Other relevant DNA mutations consider the 

apoptosis, necrosis and angiogenesis cellular processes.  Apoptosis and necrosis are both 

cell death cycles. Apoptosis is a “programmed cell death” which inhibits new gene 

transcription and complicates regulatory pathways [55]. Angiogenesis is a support cycle, 

in which genes establish vascular networks to support the needs of the body. In cancer 

incidence, angiogenesis allows cancer to spread and grow by establishing vascular 

networks to support newly formed tumors [16, 55]. A number of environmental, lifestyle, 

and diet factors can cause any of these mutations and result in cancer [16]. 

Treatment options for brain tumor patients consider both diagnostic information 

and relevant patient-specific information such as age, gender and religious restrictions. 

Most frequently, treatment options for brain tumors include surgical removal or resection, 

radiation therapy, chemotherapy, and other newer precision therapies such as intensity 

modulated proton therapy (IMPT).  

 

2.2 PRIMARY AND METASTATIC TUMORS 

Tumors are most generally categorized as benign or malignant. Malignancy 

indicates the degree of aggressiveness of the tumor [6], whereas benign tumors are not 

aggressive. Though not aggressive, benign brain tumors can pose detrimental threats to 

patient wellbeing due to due to their restrictive location in the brain and potential for 

functional deficit and elevated symptom burden [7], where room for tumor growth is 

limited by restricted neuroplasticity [52]. A further classification labels tumor as primary 
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or metastatic. Primary reflects a tumor which originates in the brain whereas metastatic 

tumors form as a result of cancer cells spreading from a separate primary tumor location 

in the body [3, 52]. Primary brain tumors carry high rates of mortality and morbidity, 

with an estimated a mortality rate of 60% [6]. Primary tumors are less common than 

metastasis, but present more frequently in older adults and children [84]. Primacy or 

metastasis, number of tumors, size and location is all taken into consideration for both 

treatment planning and determining patient prognosis [5].  

 

2.3 TUMOR GRADING 

Tumor malignancy is measured in grades I-IV, where lower grades indicate less 

aggressive tumors and grade increases with malignancy [6]. Grades I and II are referred 

to as ‘low grade’ while grades III and IV reflect ‘high grade’ tumors. In general, lower 

grades are associated with better prognosis and long-term survival. The grading criterion 

is largely based on four morphological criteria: cytological atypia, mitotic activity, 

microvascular proliferation, and necrosis [53]. Grade I tumors are benign, slow growing 

and do not exhibit any of the four morphological criteria [53]. Grade II tumors show only 

cytological atypia of the four criterion and can be either malignant or non-malignant. 

These tumors are generally slow growing but are known to recur as higher-grade tumors 

as the disease progresses [53]. Grade III indicates tumors which exhibit both anaplasia 

and mitotic activity, are malignant and also associated with recurrence as at a higher 

grade. Grade IV tumors present with anaplasia, mitotic activity, microvascular 

proliferation and/or necrosis. These tumors are aggressively malignant and exhibit rapid 

rates of reproduction [53].  
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2.4 TUMOR CLASSIFICATION 

The World Health Organization published the most popular reference standards 

for tumor grading and categorization. A 2007 revision of these standards considers both 

brain tumors and central nervous system (CNS) tumors as a single categorization group. 

These standards delineate over 120 distinct classifications of brain and CNS tumors [3, 

13]. The specifications for each category were updated recently in a 2016 revision. Prior 

this revision, brain neoplasms were classified largely on histopathologic analysis [12] 

followed by surgical biopsy or resection [6, 38]. This raised concerns that histological 

classification did not comprehensively account for the various differentiations which can 

co-exist within a single tumor [56]. Further concerns noted that pathologists attribute 

importance of the WHO grading criteria differently [32, 55, 56]. 

The 2016 update of the WHO standards intended to improve diagnostic accuracy, 

patient management and treatment response [53], with a number of notable changes. One 

change is the inclusion of molecular markers in conjunction with histological criteria for 

defining distinct tumor entities [54, 56]. Specifically, molecular markers are “layered” 

with histopathological criteria, such that a tumor classification might be made solely on 

histopathological considerations, and molecular markers provide additional clarification 

when required or suggested [56]. Current standards do not classify brain lesions solely on 

a molecular basis [53]. Molecular markers are intended to narrowly define distinct 

classifications with the intent of improving diagnostic accuracy and enabling better inter-

laboratory comparison [53, 54]. Though the WHO provides detailed criterion for brain 

tumor diagnosis, tumor grading and categorization remains difficult as cellular structures 

become ill-defined and more difficult to distinguish at higher grades [16].  
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A final point on the 2016 revision is the addition of a ‘Not Otherwise Specified” 

or NOS classification. The NOS designation is applied in cases where there is insufficient 

information to classify a tumor according to the established guidelines [37]. This can 

manifest in a number of instances, such as, when genetic testing is not available, genetic 

testing results are not compatible with other tumor classification guidelines, or in 

instances of uncertainty of tumor features due to insufficient sampling or artifacts which 

obstruct analysis [56]. This revision also includes distinct considerations for pediatric 

tumors separate from those of adult tumors [53].  

 

2.5 CHALLENGES IN TUMOR CLASSIFICATION 

Though molecular markers provide additional clarification for tumor 

categorization, there remain concerns surrounding the feasibility of obtaining molecular 

genetic information in the realistic clinical setting. Broadly, these concerns reason that 

many clinical institutions lack access to the necessary tools for genetic testing [55]. 

Further concerns mention that molecular genetic procedures are complicated and time-

consuming, due to lack of a specified process for obtaining molecular information, which 

contribute to inter-observer and inter-institutional variability [53].  

In addition to potentials for human error and variation, broad tumor variation 

further complicates classification. Brain tumors are notoriously heterogeneous, meaning 

that a single tumor can present differing histopathologic features in tissue samples taken 

from different locations as tumor biology varies throughout the extent of the lesion [38, 

49]. At the same time, procedures involving extracting brain tissue carry inherent 

biological risk, affecting the practicality of obtaining more robust samples. Thus, 
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histopathological analysis further is dependent upon the extent to which the tumor 

samples are representative of the tumor as a whole.  

 

2.6 GLIOMA BRAIN TUMORS 

The dataset used for this study is composed of brain and CNS tumors classified in 

the Glioma group. Glioma account for over 70% of all brain tumors and are the most 

frequently diagnosed group of brain and CNS tumors [41, 46, 49], followed by the 

Meningioma group [41]. Glioma refers to a group of tumors which originate in the glial 

cells. There are three known variations of glial cells associated with cancer and tumors in 

the Glioma group are further classified based on the type of glial cell involved [63]. 

These classifications include Astrocytoma (g. I-IV), Oligodendroglioma (g. II-III), 

Ependymoma (g. I-III), and Glioblastoma (g. IV), where further subclassification for 

each of these four groups considers grade, age (pediatric or adult), and cellular features 

[62]. High grade Glioma present comparatively high mortality rates to other types of 

cancers, with a median survival rate of only two years [43]. Glioma are notoriously 

heterogeneous [38] and infiltrative lesions [46] which present challenges diagnosis and 

treatment decisions. The incidence and severity of Glioma tumors identify an immediate 

need for improving diagnosis and treatment of these lesions. 
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CHAPTER 3 

DIAGNOSTIC MODALITIES AND BIOMEDICAL DATA 

 

3.1 INVASIVE AND NON-INVASIVE DIAGNOSIS 

Medical diagnostic procedures can be generally classified as invasive or non-

invasive. Invasive procedures require biological samples to be extracted from the body or 

for some type of medical instrument to penetrate the body. Biopsy is popular invasive 

diagnostic procedure used in cancer diagnosis. Non-invasive diagnosis gathers 

information through questioning, physical examination, observation or biomedical 

imaging. Biomedical imaging is a popular resource used for cancer diagnosis, treatment 

planning and treatment response assessment since it provides quantitative imaging data 

with little or no biological risk to the patient.  

Biomedical imaging is available in a number of modalities which are considered 

as structural or functional, dependent upon the type of information provided. Structural 

imaging depicts structural and anatomical information on the imaged organ or region. 

Functional imaging reflects functional information of the imaged organ through 

biomarkers and metabolic functions. Structural imaging modalities are routinely used in 

brain tumor diagnosis to gather information on the shape, extent, and position of the 

tumor in the brain [16, 84].  
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3.2 COMPUTED TOMOGRAPHY 

The two most widely utilized imaging modalities for brain tumor diagnosis are 

Computed Tomography (CT) imaging and Magnetic Resonance Imaging (MRI), both of 

which provide structural information. CT imaging uses a series of subsequent and 

revolving x-ray scans to image the human body layer by layer [90]. CT is associated with 

enhanced biological risk for the use of series X-ray imaging, which requires exposing 

patients to ionized radiation.  Doses of ionized radiation used in medical imaging have 

definitively been identified as a cause of cancer [28]. The concern for ionized radiation 

exposure is amplified in CT relative to X-ray, since a CT scan conducts a series of X-rays 

and therefore exposes patients to much higher doses of ionized radiation. It is estimated 

than a single chest CT scan exposes the patient to over 100 times more ionized radiation 

than a similar x-ray imaging procedure [28]. Further, the parameters for CT imaging 

protocols are not standardized the effective dose of ionized radiation exposure varies 

substantially within and across institutions [28]. A CT image reflects similar tissue 

information to an MR image but is generally regarded as inferior for cancer diagnosis due 

to the associated biological hazard [2]. 

 

3.3 MAGNETIC RESONANCE IMAGING 

In contrast with CT, MRI is not associated with any known biological hazards. In 

a Magnetic Resonance Imaging scan, the patient lays inside the MR and the machine 

emits a strong magnetic field around the region being imaged. This magnetic field forces 

the protons in the body to align along a linear vector. Radio waves are then employed to 

deflect the vector of aligned protons. The intensity of this reflection is plotted in 
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grayscale to create a cross-sectional image of the organ [2]. Since MR images use signal 

intensity measured from a mechanical displacement,  it is possible to identify necrotic  

from healthy tissue, as each have unique mechanical relaxation time [2].  

An MR scan can be performed with a number of different parameters (sequences) 

each of which produce distinct variations of contrast in the resulting image [3]. A CT 

image reflects similar tissue information to an MR image but is generally regarded as 

inferior in the case of cancer diagnosis due to the associated biological hazard. For cancer 

diagnosis, common sequences include FLAIR, T1, T1-ce, and T2 [8, 16]. Fluid 

attenuated inversion recovery (FLAIR) is used to distinguish edema region from 

cerebrospinal fluid (CSF). FLAIR restricts the signal of water molecules flowing in the 

brain, allowing for CSF signals to be interpreted more clearly [8, 16]. T1 (also called T1-

weighted) provides enhanced gray and white matter contrast and is used to annotate 

healthy brain tissue and view CSF [16]. T1-ce (contrast enhanced) uses the T1 sequence 

along with gadolinium contrast. Gadolinium is a contrast enhancement which is 

intravenously both before and during the scan and is used to enhance the contrast of 

tumor borders, necrotic core and active cell regions by making them appear brighter [3, 8, 

83]. The T2 sequence is sensitive to water content and is used to visualize the edematous 

regions of the lesion with a bright contrast [3, 8, 16].  

 

3.4 IMAGE ANALYSIS AND SEGMENTATION 

Image Analysis is the process of extracting complex information from images [1]. 

Biomedical image analysis retrieves clinically relevant data from images and is to guide 

diagnostic decision making and treatment planning and treatment response assessment. 
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Segmentation is a sub-domain of image analysis which divides images into distinct buy 

relatively homogeneous segments or regions [30, 67]. In general, image segmentation is 

useful for image understanding, feature extraction, and interpretation [10]. Image 

segmentation can be a very complex task, dependent upon the type of structured being 

segmented, size of the dataset and variability in the regions of interest [9].  

Image segmentation involves pixel classification, where pixels are identified with 

one or more regions based on intensity, pattern recognition, or other quantifiable features 

such as texture [12, 68]. Segmentation methods are hard or soft. Hard image 

segmentation divides the image into regions which have zero-overlap, all pixels/voxels 

are identified with only one region separated by marked boundaries. Soft segmentation 

partitions the image into regions which over-lap to some degree. This allows a single 

pixel to be associated with two or more regions as opposed to a single region in hard 

segmentation [60].  

 

3.5 TUMOR SEGMENTATION WITH MRI 

In biomedical image analysis, tumor segmentation is an applied image 

segmentation task which defines tumor borders and regions with the goal of identifying 

and analyzing tumor features as a guide for diagnosis and treatment [3, 14, 20]. Brain 

tumor segmentation methods are used for: tissue classification, tumor localization, 

volume estimation, delineation of blood cells, surgical planning, atlas matching and 

medical image registration [10]. Some standard tumor segmentation methods are trained 

to identify healthy brain matter (white matter (WM), gray matter (GM) and CSF) and 

classify abnormal matter as pathological [26]. A number of models are available which 
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experts have designed to guide tumor segmentation based on morphological features and 

known anatomical structures [11].  

Tumor segmentation is a highly technical and difficult task further complicated 

variation in brain tumor instances [10]. Brain tumor variability presents in a number of 

forms, including tumor heterogeneity, tumor infiltration, as well as size, shape and 

location. This makes it exceptionally difficult to establish generally applicable 

segmentation rules. Analysis of heterogeneous tumor images is challenging since the 

heterogeneity presents as slight various grayscale signal intensity across tumor regions. 

which may not be readily distinguishable to the human eye. This is an issue often related 

to the Glioma group, which have a lower blood-brain barrier than other tumors which 

inhibits the distribution of contrast during the imaging scan [49]. This is further 

complicated by the tendency of these tumors to be tumor infiltrative, where the necrotic 

core to diffuses into healthy tissue by extending tentacle-like structures [46, 49]. This 

makes delineating tumor borders difficult, as the borders become blurred in the diffusion 

process. Infiltrative tumors have been shown to present high uncertainty among expert 

neurosurgeons and neuroradiologists in defining tumor boundaries [49].  

In addition to challenges in tumor variation, image analysis and segmentation is 

further complicated by factors associated with MRI including image noise, the partial 

volume effect, and hardware inconsistencies. Noise in MR imaging data complicates 

image segmentation by obscuring minute differences in the signal intensities which 

separate tumor regions. Noise and artifacts in MR scans have been shown to negatively 

influence segmentation results [12, 18]. The partial volume effect refers to blurred 

intensity between tissue classes which occurs at the border of distinct regions where a 
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single voxel represents more than one tissue type [8, 9]. The final and perhaps most 

severe challenge to MR analysis and effective tumor segmentation tools is the lack of 

standard hardware and institutional MR imaging protocols. Image intensities are not 

consistent across MR scanners [12], and it is often the case that different institutions use 

different imagine hardware [51]. In addition, there is no institutional standard for image 

acquisition parameters and contrast injection protocols [51]. Further the scale of 

voxel/pixel values is not standardized in MR imaging [46]. Each of these variations 

contributes to a lack of MRI generalization from which data generated from a single 

machine or institution can reflect different grayscale values for the very same tumor [51]. 

This makes it challenging to create effective tumor segmentation models which 

generalize well across institutions and establishes institutional bias which can directly 

influence the accuracy of the segmentation result [51].  

 

3.6 TUMOR SEGMENTATION METHODS 

Manual tumor segmentation (also called expert segmentation) is the current “gold 

standard” process across clinical institutions. [9, 12] This typically involves a radiologist 

sitting at a computer and using a mouse to define the region of interest (ROI) in a series 

of two-dimensional images taken from various angles. Images are evaluated one at a 

time, and once the ROI is identified, the radiologist annotates tumor features and borders 

[25]. An advantage of this process is the use of expert knowledge, which is readily 

available without sophisticated pre- and post-processing software [82]. A second 

advantage is that manual slice editing is performed on a “case-by-case” basis, where 

complex interpretations can be made without a robust training set to learn from [82].  
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While manual annotation is a popular and enduring approach, it suffers serious 

limitations and is rapidly becoming an unsustainable process. The concern for 

sustainability in this process is that the volume of patient imaging data being generated 

greatly exceeds the amount that experts can realistically analyze [18]. Manual slice 

editing is a tedious time-consuming task, even for experienced readers [3, 8, 33, 45, 84]. 

At the same time, a single medical image contains vast amounts of data [84] and the 

volume of patient data being generated is increasing exponentially [24]. It is estimated 

that a single colon cancer case generates over 20 Terabytes of data [82]. Thus, it is not 

feasible to manually annotate the vast, and rapidly growing volumes of imaging data in a 

reasonable amount of time [8, 24, 81].  

In addition, manual segmentation produces accuracy concerns. Medical images 

contain data which the human visual system is unable to detect. A single MRI system can 

produce images equal to 65,535 distinct gray levels [12]. The human visual system 

restricts expert ability to detect minor differences in grayscale [82], and can negatively 

impact segmentation results [26]. This is, in addition to extenuating factors which inhibit 

image interpretation, such as structural noise in the images, incomplete visual search 

patters, suboptimal image quality and fatigue [81]. Further accuracy concerns consider 

reader bias, where individuals attribute different levels of importance to diagnostic 

criteria and have varying levels of expertise [32].  

These challenges, together with the inherent difficulty of the profession, make it 

unsurprising that studies show significant inter- and intra-reader variation in expert 

segmentation results [9, 20, 29, 32, 55, 81]. Further studies demonstrate that inter-reader 

variability has influences the quality of diagnosis [32] and is likely significant in the 
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impact of evaluating tumor response and progression [29]. Specific studies find manual 

segmentation to be biased toward larger models and in the process noted that the average 

time for a single manual tumor segmentation session took over two hours [33]. These 

concerns for data volumes, processing times, and variability identify a need for building 

efficient and accurate segmentation methods.  

 

3.7 AUTOMATED DIAGNOSTIC TOOLS 

 This section focuses on AI tools such as DL as promising approach for improving 

current tumor segmentation methods. Perhaps the most severe limitation of manual 

segmentation is that volumes of patient data are expanding at rates which far exceed 

human resources needed to analyze them. At the same time, there is data present in MR 

images which is inaccessible to experts due to restrictions of the human visual system. 

Computational models, deep learning architectures specifically are powerful resources 

and practical application for efficient and effective biomedical image analysis [46, 81]. 

Computational models overcome several limitations of manual segmentation with 

efficient data processing powered by quantitative mathematical representation. DL 

models represent image data mathematically rather than visually. Thus enabling the 

identification of patterns in the pixel data relevant to classification and prediction without 

the inherent limitations of the human visual system [58]. Mathematical representation of 

pixel data enables quantitively separation of pixel values which would have otherwise 

been inaccessible due to slight variation in value. In addition, these learning models use 

simultaneous layered functions which process images in a fraction of the time needed for 

manual segmentation while maintaining comparatively higher accuracy metrics. For 
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example, this study proposes an extended U-Net architecture, a popular implementation 

of deep learning architecture, which segments an entire brain with speeds ranging from as 

little as 25 seconds to 3 minutes [46]. These times are compelling in comparison to the 

average two hours needed for a single manual segmentation. Transitioning from manual 

segmentation to automated or semi-automated segmentation approaches will help 

radiologists and clinicians provide the best possible treatment options to patients faster, 

obtaining relevant tumor information more quickly to be used in treatment planning [18, 

58].  

 

3.8 CANCER DISPARITY 

Cancer disparity identifies an additional purpose for transitioning from manual to 

automated and semi-automated cancer diagnostic approaches. In many regions across 

America and across the world, there exist rural areas with low medical infrastructure and 

fewer doctors than are needed to treat the population and residents lack accessible 

healthcare and hospital resources [15, 91]. Residents of rural and low-income areas are 

more likely to face a number of other challenges in meeting their healthcare needs. This 

is particularly relevant in the scope of cancer, where rural populations suffer from an 

increased risk of cancer death compared to urban populations [92] and low-income 

residents see an elevated cancer incidence [74]. Further, rural populations experience 

shorter survival times relative to metropolitan residents [74]. Real clinical circumstance 

often fails to meet the needs of rural populations. In turn, these populations are often 

diagnosed with tumors at a higher grade, presumably due to physical and economic 
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barriers which make early intervention more difficult for rural populations, which in turn 

see worse prognosis than metropolitan cancer patients [52].  

It is hopeful that the implementation of automated tools can have significant 

benefit in areas of low medical infrastructure. Primarily, these tools are believed to be 

useful for helping clinicians work more efficiently, which is especially important in 

regions with low medical infrastructure. In addition, automated tools have potential to 

service low-income populations better, where studies indicate that automated diagnostic 

tools required for biomedical image analysis will probably be cheaper than expert image 

analysis [58]. This is a promising step for making healthcare resources more available to 

populations by offsetting the economic and physical limitations which these populations 

are known to suffer from. In turn, we hope to see increased survival and prognosis of 

rural cancer patients, by providing accessible treatment options.  
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CHAPTER 4 

AUTOMATED AND SEMI-AUTOMATED SEGMENTATION 

 

4.1 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 

Artificial Intelligence is a field devoted to building and using “intelligent software 

to automate routine labor, understand speech or images, make diagnosis in medicine and 

support basic scientific research” [27]. AI is also known as “the field rapidly tackles and 

solved problems that are intellectually difficult for human beings but relatively straight-

forward for computers- problems that can be described by a list of formal, mathematical 

rules” [27].  Together, these ideas are the foundation of AI learning models for medical 

image analysis: to understand medical images and support medical diagnosis though 

heave computational elements with a foundation of formal mathematical rules. While 

tumor segmentation is time-consuming and labor-intensive for radiologists, AI tools are 

able to tackle this task more efficiently.  

The field of AI expands much further than the learning models discussed in this 

paper. Learning models are a large, but not comprehensive extension of AI. The core 

principle of learning models to “learn” or make insight from input data without specific 

guidelines or instructions to complete a defined task [80]. Learning architectures use 

input data to build representative models to interpret the data and apply this knowledge 

for prediction and classification tasks. The key difference between the two categories of 

learning models is that deep learning refers to a specific set of models which loosely 
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simulate human decision making in a computational manner [80]. Unlike ML models, 

deep models obtain feature information hierarchically rather than linearly  [27]. ML 

models are “linear” where structure defines a direct function mapping input data to output 

prediction or classification based on feature extraction. Deep learning utilizes “hidden” 

layers between the input and output vectors which allow more complicated concepts to be 

broken down into simpler ones built on top of one another [27]. Deep architectures learn 

complex concepts and relationships by breaking them down into simpler concepts and 

relationships and combining these simplified concepts for a greater feature understanding 

and representation of the total concept through multiple levels of composition [27].  

 

4.2 AUTOMATION AND LEARNING 

For the tumor segmentation task, MR images are used as input data to learn 

features, or variables and attributes in the image set. Once features have been extracted 

from the data, they are evaluated for relevance in the feature selection process. Feature 

relevance is measure of the extent to which a feature provides information relevant to 

solving the task at hand [73]. In short, some features provide information which carried 

weight in predictive output, while others provide little or no useful information to the 

task. The purpose feature selection is to reduce the dimensionality of the algorithm by 

reducing the search space. Considering only the most intuitive features and ignoring the 

less useful features minimizes the necessary computational resources of the model 

without reducing the accuracy.  

Recently, popular approaches AI tools for segmentation implement variations of 

the deep learning architectures known as neural networks. Neural networks refer to a 
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family of models which mimic the structure of human neural system to learn from the 

data and make observations. By far the most popular in this family for medical image 

analysis are Convolutional Neural Networks (CNN) [11, 16]. This is because the 

hierarchical structure of CNNs utilize spatial and configural information from images 

[11]. High spatial resolution is necessary for characterizing features in heterogeneous 

tumors [65]. CNNs utilize this information using a convolution layers which build 

hierarchical feature map. This succession of layers obtains features which are invariant to 

translation and distortion and take into consideration a pixel’s relevance to other 

neighboring pixels in determining a segmentation result [16].  

A state-of-the-art learning network is the U-Net, an encoder-decoder network 

which models the convolution functions of a CNN along with pooling and up-sampling 

operations. These networks have quickly become very accomplished in image processing 

and classification tasks as the convolution function accounts for spatial information and 

the pooling and up-sampling operations enable high-level feature encoding while 

controlling dimensionality and computational resources. The result is that these models 

have achieved high model sensitivity and prediction accuracy [17, 61].  

 

4.3 EVALUATING LEARNING MODELS 

Machine learning models are evaluated on a number of metrics, but the most 

relevant to biomedical image analysis and tumor segmentation consider factors related to 

classification accuracy, algorithm performance and computational resources [12].  

Sensitivity is a true positive fraction which represents the probability that a diagnostic 

test is positive, given that a person has the disease [47]. For tumor segmentation, 
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sensitivity is the probability that a pixel is classified as tumor given that it is in the 

necrotic zone. Specificity is a true negative fraction which reflects the probability that a 

diagnostic test is negative, given that a person does not have the disease [47]. For 

segmentation, this is the probability that a pixel is classifies as healthy given that it is 

healthy tissue. Accuracy refers to the probability that a pixel is classified accurately, 

whether it be necrotic or healthy. Important factors for automated brain tumor 

segmentation models are accuracy of results, computation time, and robustness [8]. 

Computation time refers to the time it takes the model to generate the segmentation 

result, and robustness is a factor representing how well a model performs on all relevant 

data outside of the training data.  

 

4.4 SEGMENTATION TECHNIQUES 

Tumor segmentation techniques vary in how features are considered to build 

segmentation models. This paper uses a thresholding technique. Thresholding techniques 

classify pixels in the image based on intensity and color information, where a threshold is 

set for each classification, and pixels are sorted accordingly [1]. Thresholding approaches 

are known to be most effective when the object and background, in this case the brain 

and other matter, are clearly separated [1]. Edge-based segmentation considers the edges 

and contours in the image and is known to fail of the image is too complex for borders to 

be clearly identified [1]. Edge-based segmentation is used in the second phase of this 

study for the visual enhancement module. Region based segmentation extracts pixels and 

compares these pixels with other neighboring pixels in the region to exploit spatial 

information within the regions [1]. Finally, volumetric segmentation is the rendering of a 
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three-dimensional volume from two-dimensional images by stacking consecutive images 

together [31]. Some consider volumetric segmentation a superior technique for 

biomedical image analysis as the segmentation result allows the interpreter to look 

through the volume, and because these models are capable of accommodating significant 

variability in biological structures over time and across individuals [31]. The model used 

in this study uses a thresholding technique to create a volumetric segmentation.  

 

4.5 AUTOMATED AND SEMI-AUTOMATED 

Automated methods for brain tumor segmentation are broadly classified as either 

semi-automatic or automatic based on the level of interaction between a human and the 

model. Semi-automatic methods involve some level of human interaction where fully 

automated segmentation models do not. This involvement varies between models, but 

common frameworks for semi-automated segmentation involve an expert input in one of  

ways: for outlining the region of interest (ROI) [12], setting the parameters of the model 

[8, 12], initializing the method [12], and analyzing the visual information for feedback 

and checking the accuracy of the segmentation result [8]. The general purpose of semi-

automated segmentation is to exploit the advantages of both expert knowledge and 

computational performance. In these cases, the radiologist interacts with the model as a 

guide, making identifications to help the model achieve the best result, providing 

feedback to improve model robustness and evaluating the overall credibility of the model. 

As experts in the field, radiologists have extensive training and experience in tumor 

segmentation. Automated models streamline the computation process of segmentation but 

cannot replace expert experience and training. Semi-automation allows experts to 



 

25 

analyze, interpret and assess results, combining both expert knowledge and 

computational efficiency for obtaining the best possible result and establishing clinical 

trust. Fully automated segmentation models involve no human interaction. Advantages of 

these models include the full labor shift from manual to computational relieving experts 

from the most labor-intensive parts of diagnostic testing, and promoting accurate, 

consistent and reproducible segmentation results [25].  

 

4.6 LIMITATIONS FOR CLINICAL LEARNING MODELS: DATA 

While data surplus is a major challenge to manual tumor segmentation and image 

analysis, a lack of data availability for research is one of the greatest limitations to the 

advancement of learning models for biomedical image analysis. The amount of patient 

data in existence is in no way similar to the amount that any person, group, or clinical 

institution has access to. This is true for tumor imaging data in general as well as labeled, 

segmented data. Crowd-sourcing, or annotation of large-scale datasets through 

collaboration is a potential response to this problem, but is limited by the potential for 

accuracy loss from less-than-expert sources drawing ground-truth for training [35].  

To construct a representative model, the number of images collected should be 

relatively high and instances of quite varied shapes should be selected [18, 30, 35, 82]. 

Patient data is private with legal, institutional and societal barriers limiting access [82]. 

For these reasons, it is difficult or even impossible for researchers to obtain medical 

images for training and testing samples [11] and expert segmentations to train with [33, 

35]. Learning models require robust datasets in order to generalize well. A trained model 

cannot perform well on examples of classifications which it has not been exposed to in 
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training [13, 27]. The performance of a model is directly restricted to the variability in the 

training data [27]. Insufficiently deep architectures or insufficient training examples lead 

to models with poor generalization [11, 27]. Lack of available and robust data is a major 

limitation to model advancement and causes issues for model precision [82].  

 

4.7 LIMITATIONS: FALSE DISCOVERY 

Another concern with automated brain tumor models is the concern for “false 

discovery”, when the cost of misclassification is high [21, 22, 36]. It is proposed that the 

“black box” characteristic of ML models makes them prone to false discovery [18, 37], 

since it can be difficult to follow how the model classifies results from input to output. 

Brain tumor diagnosis is a “high stakes” application, where error resulting from a lack of 

model robustness or poor generalization can have a detrimental impact on overall patient 

care. False results can guide clinicians to make ill-informed patient care decisions, such 

as not treating a patient who the algorithm output led the clinician to believe the patient is 

healthy when the patient is actually diseased. This problem is clarified by studies which 

suggest physicians are highly influences by computer aided diagnostic (CAD) systems 

[44].  

 

4.8 LIMITATIONS: THE “BLACK BOX” 

Perhaps the most common complaint of DL models is their “black box” nature, 

which refers to the opacity of these models [21] and the inherent difficulty in 

understanding and interpreting these models intuitively [11, 37]. The internal function of 

ML and DL frameworks make it difficult to determine the underlying reason or process 
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by which an output is determined [36]. This lack of transparency has historically deterred 

non-experts from understanding and applying these models [82]. The transparency 

limitation for non-expert interpretation is exacerbated for deep networks. There is a 

generally understood trade-off between shallow and deep networks (ML and DL), where 

deep architectures, the more complex of the two, yield higher accuracy and precision at 

the expense of interpretability [34]. Machine learning models, then, working with a more 

linear-functionality, have increased interpretability but decreased performance to their 

deep counterparts [34].  

The inherent challenge of interpreting these models has generated criticism for 

their place in the medical domain, even in with the promise of better efficiency and 

accuracy. While automated segmentation provides quantitative and accurate prediction 

and classification results [35], critics maintain that the medical sector requires something 

more than accuracy and time-efficiency: transparency. Further, it is not clear what 

transparency and interpretability in these models would look like. Manual tumor 

segmentation and diagnosis refers to biological interpretation and predictive signatures 

[18]. Automated segmentation uses mathematical functions and matrix translations for 

segmentation results, without consideration of biomarkers or predictive signatures. The 

problem, then, becomes building credibility and transparency for the clinicians who use 

these models, but who have also not strayed from the clinical gold standard, which has a 

totally different functionality and decision-making process.  
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CHAPTER 5 

 RESEARCH AND CLINICAL REALITY 

 

5.1 FUNDAMENTAL DIAGNOSTIC DIFFERENCES 

Standard clinical diagnosis can be understood follow a model of diagnostic 

reasoning shaped by domain knowledge, specialized training and experience. Generally, 

this diagnostic reasoning model begins with a working hypothesis and proceeds to testing 

the hypothesis, acquiring and interpreting diagnostic data, and then confirming, rejecting, 

or forming a new hypothesis as information is gathered over time [89]. The initial 

hypothesis is typically established based on contributing factors from both patient 

circumstance and clinical experience. Generally, patient case factors such as observed or 

reported symptoms and patient/family medical history, are considered together with 

clinical experience in order to determine possible or probable diagnoses. This information 

is used to guide further diagnostic testing until a hypothesis can be confirmed or denied 

with some level of confidence.  

Automated segmentation is a fundamentally different process which represents, 

learns and interprets and diagnostic data according to quantitative analysis. Learning 

models use mathematical functions to determine the correlation between variables [24]. 

This mathematical functionality enables automated segmentation models to describe 

feature relationships with high accuracy and thus establish segmentation results based 

quantitative data. Relative to current standard practices, this is done time and resource 
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efficiently. At the same time, the credibility of these models in the healthcare sector is 

arguably limited by their fundamental distinctions from clinical norms.  A notable 

consequence of this distinction is that automated models do not consider causal factors as 

relevant to diagnostic predictions, where causal factors have historically carried vast 

importance in standard clinical diagnostic diagnosis. 

 

5.2 CLINICAL CONCERNS 

The invention of tools for clinical diagnosis is, relatively speaking, not a new 

idea. Automated learning models have been widely purposed for brain tumor 

classification and tumor grading tasks [38, 39, 40, 41, 45]. These automated tools have 

existed for some time now, with continued innovations promising unprecedented speed 

and accuracy in biomedical data mining tasks. In recent history, several of these models 

implemented for testing in clinical institutions in order to identify potential directions for 

model refining and improvement. While the research investment in these models is 

abundant, clinical diagnostic support systems have thus failed to be routinely 

implemented in healthcare institutions. One reason behind this failure is a lack of 

communication between researchers and clinicians, which has led to the engineering of 

automated models that fail to meet clinical standards for diagnostic tools [3, 19, 84, 89]. 

As the end users of automated diagnostic tools, clinicians play a key role in the tools’ 

ability to thrive, being that clinicians ultimately decide whether or not to use these tools 

[9]. In order to bridge the gap between research and real-world clinical implementation, 

clinical needs must be addressed thoroughly in the development of all clinical diagnostic 

tools. Several studies have sought to clearly define clinical standards for diagnostic tools. 
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Largely, findings indicate benchmark automated models fail to meet clinical standards for 

interpretability and transparency [9, 23, 84] with additional desires for user-friendly 

interfaces [3, 9, 84].  

 

5.3 INTERPRETABLE DEEP LEARNING  

It has been established that clinicians want diagnostic tools which prioritize 

interpretability and ease of use [9] but remains unclear what this entails from a 

developmental standpoint. There is a lack of consensus on what constitutes ‘interpretable’ 

machine learning in any domain. It nonetheless remains that deep learning systems 

intended for the medical domain need be supplemented to improve human understanding 

and decision-making [19]. Certain works explain “interpretability” as loosely 

synonymous with explain-ability, and claim that the transparency standard for diagnostic 

tools can be met by providing clinicians with a validation standard for evaluating the 

model [19, 22]. In this sense, the “goal” is to provide clinicians with grounds for 

justifying the result. It is mentioned that this approach is useful for “high stakes” 

diagnostic cases where the cost of mistakes can be detrimental. This approach is further 

supported by the argument that “the human body is a black box” in which causal 

relationships can often not be identified for a number of reasons [19], and yet, diagnostic 

decisions are still made with some level of confidence.  

Other works conclude that the diagnostic transparency standard can be met 

through expert interaction and enhanced data visualization to translate the complex logic 

behind the so called “black box models” [23]. Based on these findings, the understanding 

in this study is that an effective approach for enhancing the transparency of automated 
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diagnostic models establishes a standard which allows end users to evaluate model 

performance with reasons to confirm or deny the prediction, before any action is taken on 

behalf of the clinician [21]. From the clinical standpoint, transparency is valued as the 

foundation of a creditable and faithful diagnosis and serves as a reasonable defense 

against adversarial attacks [35]. Several works corroborate the idea that credible 

diagnostic tools do not require expert understanding of functionality, so long as they 

supplement clinical understanding with established standards for supporting or denying 

model results [34]. 

Healthcare institutions place a premium on the reasoning and comprehensibility 

of diagnostic systems [32]. The ability to explain diagnostic decisions is of significant 

interest to clinicians [32], possibly even more so in high stakes cases like brain tumor 

diagnosis, where the cost of being wrong is substantial. Transitioning automated 

diagnostic tools from research to clinical reality requires clinical motivation to do so. 

Establishing model credibility among non-expert users is a critical step toward 

implementing deep models into real-world situated use.  

 

5.4 HUMAN-ORIENTED DATA REPRESENTATION 

Visual interfaces with enhanced representation have the potential to add 

transparency to automated clinical tools for tumor segmentation by exploiting domain 

specific knowledge to gain credibility. Data visualization is concerned with the graphical 

representation of data set values and patterns. Effective data visualization models 

represent data intuitively well in terms of patterns and distinctions. Well-founded visual 

models have proven to be of significant value in enhancing knowledge discovery and 
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analysis of class-labeled data [36]. Recent studies have explored data visualization 

models as a tool for enhancing the explanatory context of diagnostic models and 

improving model understanding [22]. Several studies report that visual and interactive 

user interfaces, when implemented effectively, are effective in enabling users to integrate 

domain knowledge to interpret complex models [37].  

The benefits of graphical model representation in enhancing the explanatory 

power of data are well explored. A highly relevant study finds that data visualization is a 

potentially powerful tool for enhancing visual reasoning and model credibility in 

automated models for diagnosis of breast cancer [36]. Further studies analyze the 

explanatory value of color differentiation in perception of model output for classification 

tasks. One particular study proposes a method for increasing visual reasoning with an 

interface which uses color differentiation to display quantitative and qualitative 

similarities among queries and class labels [87]. The authors of this study boast a “win-

win” methodology for enhanced discriminatory power, on the grounds that the visual 

interface allows better formalization to support the visual reasoning process [87]. This 

methodology has potential to be further enriched in cases of expert use, where domain 

knowledge and enhanced visualization can be used as collaborative tools for assisting 

model understanding. These studies are among many which present significant evidence 

to support the use of visual models as a means of exploiting expert domain knowledge for 

overall increased visual reasoning and model understanding. Further, visual models are a 

practical approach for enhancing deep model understanding, being that visual 

enhancement modules are generally low-cost in terms of time-efficiency and 

computational resources. 
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5.5 COLOR DISCRIMINATION 

It remains well established that data visualization has potential to be an effective 

tool for information gain and model understanding, but specific standards for 

“effectively” representing data remain unclear. An effective visual interface not only 

represents the data accurately and comprehensively but also in a manner which is 

intuitive for the end users. In context, an effective visual model for tumor segmentation 

visualizes the segmentation result in a manner which enables a radiologist to apply 

domain knowledge for evaluation as a standard for validating or invalidating model 

output. If successfully implemented, the intention is that the radiologist is able to 

determine model credibility in reference to expert knowledge of industry standards.  

Biomedical images each contain vast amounts of data and standard visual 

representations of this data are not optimized for human visual interpretation.  In this 

case, state-of-the-art visualization methods can play a key role in enhancing the 

discriminatory power of biomedical image representations. Previous work explains that 

the human visual system and color discrimination are highly relevant to enhancing 

information content in monochrome MR images for expert interpretation [60].  

The limited explanatory content of monochrome medical images can generally be 

explained with color differentiation tasks. Color discrimination tasks rely on a person’s 

ability to detect small differences between two visual stimuli when examples of similar 

chromatic composition are presented [64]. A person with normal color vision can 

distinguish millions of colors [76]. Those with serious color deficiency can discriminate 

only a few hundred different colors [76]. However, this reflects general standards for 

distinct (not continuous or connected) color experiences, whereas color differentiation 
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becomes a far more challenging task when colors are presented in a continuous space, 

such as an image.  

The human visual system projects all possible color impressions into three-

dimensional space, and color perceptions differ on these three dimensions: intensity, the 

brightness factor of the perception, hue the color, and chroma (saturation), or the level of 

“colorfulness” [64, 77]. Several predefined color spaces have been created which 

represent colors according to numerical values. A popular “standard” color space is RGB 

(red, green, blue), another is HSV (hue, saturation, value) [77], a model intended to be 

designed to consider human sense of color [90]. Generally, color spaces differ upon 

scope, order and uniformity. 

The human eye is unable to perceive continuous change in color and is only able 

to differentiate colors when there is significant change [60]. The threshold for change 

detection [64] is subjective to each person but generally within a standard margin. This 

margin was popularized by Ernst Weber, a 19th century psychologist who explained this 

concept as “Just Noticeable Difference” or “Weber’s Law”. Color spaces quantify color 

difference with distance formulas. Euclidean distance is a popular metric for cubic color 

representations such as RGB. In light of Weber’s Law, visual representations which 

maximize the instances of JND have enhanced discriminatory power relevant to color 

differentiation tasks.  

 

5.6 MRI COLOR ENHANCEMENT 

Since MR images are monochrome, pixel values are distinguished as variations of 

intensity using only a single hue. Applying the concept of uniform and distinguishable 
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color distance thresholds, the discriminatory power of MR images can be enhanced by 

maximizing the instances of JND over the image. The intention is to increase visual 

discrimination power by taking advantage of a larger range over the human visual system 

and expanding the differences between pixel values. At the same time, it is crucial to 

maintain uniformity and visual cues [78] in the translation so that the data is accurately 

represented according to the intensity information [77], but over a larger range of hues. 

By modeling the same data in a visual interface which utilizes all three aspects of color 

impression, the data takes a more human-centered approach to improving pixel 

discrimination for classification by mapping the pixels into a complete color space 

instead of along a single hue vector.  This is done to enhance the difference (according to 

color distance) between similar values in the MR scan.  

Several studies have considered the value of colorized tumor segmentation, both 

for the actual segmentation process and for interpretation of segmentation results. For 

studies which use colorization in the segmentation process, many report promising results 

with improved segmentation accuracy. This study reports an improved segmentation 

result obtained using color space translations as a preprocessing method [72]. Several 

similar studies report increased classification accuracy using color translated images for 

training segmentation models [72, 77, 90]. While this is a popular approach with 

established advantages, this comes at the expense of higher computational costs 

compared to monochrome images due to dimensionality expansion [67]. For this reason, 

the current study focuses on the value of color translations for segmentation evaluation.  

Several earlier works address various applications for color translation of 

monochrome medical images for enhancing discrimination power. One approach for 
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transforming monochrome images uses 38 colors to represent the 38 basic types of soft 

tissues in the human brain [60]. This study reports that a single MRI sequence is 

insufficient for precise pathological evaluation, but that the colorized images enhance 

discriminatory power for information gain in pathological interpretation. The result, as 

reported, is an increased visualization of tissue density and opaqueness for easier analysis 

of brain regions individually and the brain in entirety [60]. One study uses a color space 

translation algorithm to evaluate head and neck tumors with a five-color-coded map and 

reports information gain in image interpretation and visualizing tumor heterogeneity [86]. 

A similar study maps two-dimensional (hue, intensity) pixel information into a 20-

contrast scale and found similar improvements in enhancing data conspicuity and 

efficiency of interpretation [85]. Other studies encountered similar findings on the 

positive effects of color mapping MRI data for increasing interpretation performance of 

inexperienced readers [71]. These findings support motivations for using color space 

projection as a tool for information gain and model understating with clinical expert 

evaluation.  
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CHAPTER 6 

RESEARCH METHODS PART ONE: THE SEGMENTATION TASK 

 

  The purpose this study is to propose a semi-automated approach for brain 

tumor segmentation which combines state-of-the-art deep learning and computer vision 

innovation with methods of current clinical practice in a collaborative effort to identify 

more-efficient tumor segmentation methods. Manual segmentation, the current “gold 

standard” practice, is unsustainable due to concerns for relevant time-efficiency in cancer 

diagnosis and rapidly growing quantities of patient imaging data to be processed [18]. At 

the same time, manual segmentation is a historically relevant process with established 

clinical trust, while more time and resource-efficient benchmark automated tumor 

segmentation approaches have failed to gain popularity in clinical practice. Prior studies 

indicate that deep learning tumor segmentation models “fail to thrive” as a result of 

unmet clinical standards for diagnostic tools [3, 19, 84, 89]. While current benchmark 

models exceed clinical standards of speed and accuracy [46], additional concerns for 

interpretability, transparency and a user-friendly interface remain largely unaddressed [3, 

9, 23, 84]. This study presents enhanced visualization and export collaboration as an 

approach to interpretable deep learning and adapting benchmark deep learning 

segmentation approaches to meet clinical industry standards for diagnostic tools.   

  The Methods used in this study are divided into two subsequent tasks: the 

segmentation task and the registration and enhancement task. In the segmentation task, a 
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benchmark deep learning model for brain tumor segmentation is trained with and 

evaluated on a brain tumor dataset. In the registration and enhancement task, the resulting 

segmentation predictions are registered as images and the data is translated into a visual 

representation intended to enhance discriminatory power and perceptual uniformity 

according to standards of human visual perception. Figure 1 gives an overview of the 

entire study broken down into the segmentation and registration and enhancement tasks. 

Figure 2 explains each of the subtasks.  

 
Figure 1: Study Overview 

 

This chapter focuses on the segmentation task and explains the first three tasks in 

the total five-task overview presented in Figure 2. The intention of the segmentation task 

is to utilize recent innovations in deep learning models such as the U-Net for brain tumor 

segmentation. This, and similar automated architectures for brain tumor segmentation 

complete the task with better time efficiency and accuracy relative to the currently 

popular manual segmentation process.  
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Figure 2: Task Overview 

6.1 DATA 

  This method is trained and validated with imaging volumes provided by the 

Medical Image Computing and Computer Assisted Intervention (MICCAI) society for the 

annual Brain Tumor Segmentation (BraTS) Challenge [43, 48, 49, 50, 57]. The BraTS 

challenge is one of the largest research initiatives for automated and semi-automated 

segmentation of brain tumors. The BraTS challenge dataset is uniquely beneficial for ML 

and DL models as it overcomes several limitations of medical image computing datasets. 

The performance of automated models is directly dependent upon the quality of data that 

is used to train the model. Ideally, an automated model will be able to perform well if 

trained with a data set which is heterogeneous, representative and comprehensive.  
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In reality, such high caliber and robust datasets are rare in the medical field, 

where patient privacy regulations heavily restrict the sharing and distribution of medical 

data. Inter-institutional variation aids the trained models in obtaining better generalization 

by decreasing the learning effect of randomness and increasing objectivity to the imaging 

protocols of specific institutions. Further the BraTS datasets are released with 

segmentation and ground truth labels which have been annotated through expert 

collaboration, reducing the potential impact of human error. Each dataset is annotated by 

1-4 experts following the same established guidelines before ultimately being approved 

by a board-certified neuro-radiologist. It is believed that this effort of clear segmentation 

criterion and collaboration reduces the potential bias of human error in the established 

ground truth. Finally, this dataset is comparatively large, with many volumes of patient 

data available for model training, validation and testing.  

 This implementation uses the 2018 BraTS Challenge set for training and the 2019 

set for validation. Both of these sets consider Glioma tumors, the most widespread 

category of brain lesion. Each set contains both glioblastoma or high-grade glioma 

(GBM/HGG) and low-grade glioma (LGG) volumes which have been pathologically 

confirmed. The 2018 set is sourced from 19 separate clinical institutions and includes 

n=210 HGG patient volumes and n=75 LGG patient volumes totaling to n=285. The 2019 

set contains n=259 HGG patient volumes and n=76 LGG patient volumes for a total of 

335. Each patient volume contains 4 multimodal pre-operative scans of file type NIfTI 

(.nii). Each patient volume contains a single example of four distinct MR imaging 

protocol: native (T1), post-contract T1-weighted with gadolinium (T1Gd), T2-weighted 

(T2) and T2 Fluid Attenuated Inversion Recovery (FLAIR).  
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6.2 PREPROCESSING 

 The BraTS dataset is preprocessed before distribution. This preliminary 

preprocessing performs skull-stripping by utilizing the brain extraction tool from the 

Oxford center for Functional MRI of the Brain (FMRIB) software library, commonly 

known as FSL. This preprocessing also includes re-orienting each scan according to the 

left-posterior-superior coordinate system and co-registering to a uniform T1 anatomical 

template with the Linear Registration Tool (FLIRT) provided by FMRIB. Finally, images 

are uniformly interpolated to a voxel resolution of 1mm^3 [49]. The resulting images are 

annotated with three defined segmentation labels, each differentiating distinct tumor 

regions and attributes. These labels identify the enhancing tumor core (ET, label 4), the 

non-enhancing tumor regions (NET/NCR, label 1) and the peritumoral edema (ED label 

2). To enhance data visualization, this approach renders a volumetric segmentation. The 

imaging volumes are also normalized using mix-max normalization, which rescales the 

imaging data to a refined range based on the minimum and maximum voxel values 

observed.  

 

6.3 MODEL ARCHITECTURE 

 To obtain a segmentation result to enhance, I implemented the approach: 

“3D-ESPNet with Pyramidal Refinement for Volumetric Brain Tumor Image 

Segmentation” proposed by Neuchterlein and Sachin in [93]. This approach awarded 

second in the 2018 BraTS challenge, and the source code is available here [93, 94, 95]. 

This model is an adapted U-Net architecture, which the authors call 3D-ESPNet. The 

main differentiation between 3D-ESPNet and U-Net, according to the authors is the use 
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of efficient convolutional blocks instead of stacked convolutional layers to learn and 

represent features. A visual model of the 3D-ESPNet network is reproduced from the 

authors in Figure 3.  

 

 
Figure 3: 3D-ESPnet Module 

 

The 3D-ESPNet approach implements an end-to-end system design using a 3-

dimensional adaptation of the Efficient Spatial Pyramid module (ESP) proposed in [94], 

followed by pyramidal refinement.  End-to-End is a system design principle first 

popularized by Saltzer, Reed and Clark’s paper, “End-To-End Arguments in System 

Design”. This principle suggests organizing functions within system modules based on 

rational principles of cost evaluation, where the cost of implementing functions at low 

levels of a system may exceed the value of those functions at the same level [96].  

The ESP module [94] is a deep model designed with convolutional factorization 

in order to reduce the computational cost of deploying the model while maintaining 

accuracy, relative to other deep models for segmentation tasks. Per the authors, ESPNet is 
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“fast, small, low power and low latency, yet still preserves segmentation accuracy” [94]. 

Convolutional factorization is a technique for reducing the computational complexity of 

operations by dividing the convolution operation into multiple steps. The convolution 

factorization used here splits a standard convolution operation into two steps, a point-

wise convolution followed by a spatial pyramid of dialed convolutions. Pointwise 

convolutions refer to a 1 x 1 convolutional layer consisting also of a convolutional filter 

of the same size which considers only a single point per channel at a time [97]. Pointwise 

convolutions are widely used for parameter reduction in deep learning architectures by 

adjusting the number of channels or dimensions in feature maps in order to optimize 

computational efficiency. Dilated convolutions are used for image registration, to 

enhance image resolution by inserting zeroes between voxels in convolutional kernels 

[98]. Dilated convolution operations are determined by a dilation rate which specifies the 

number of zeroes inserted between the image voxels. This network maps the standard 2-

dimensional convolutional operations (n x n) to 3-dimensional convolutions (n x n x n) to 

map the features into volumetric space.  

The convolutions here are employed as an encoder-decoder network, where the 

network learns feature representations in the encoder phase and decodes these 

representations in the following phase. In the encoder phase, the network performs a 

single stride convolution (a convolution operation in which stride=1, the default value 

and stride define the step size of the kernel) followed by three ESP convolution 

operations which use a 3-dimensional kernel and a stride of 2. The ESP module is 

reproduced from the authors for reference in Figure 4 below. The variation in kernel and 

stride values allows the encoder to learn feature representations in multiple scales. It is 
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important to note that the ESP convolution maps features into convolutional blocks as 

opposed to the standard method of stacking convolutional layers. The decoder phase 

upsamples the feature representations output from the encoder with 3 x 3 x 3 de-

convolution kernels followed by trilinear upsampling layer. The decoder outputs a feature 

map to be passed to the following pyramidal refinement module.  

 

 
Figure 4: Efficient Spatial Pyramid 

 

The pyramidal refinement module is comprised of three layers: the projection 

layer, the spatial pyramid pooling (SSP) block, and the pyramid pooling module (PSP) 

block. A visualization of this module is reproduced from the authors in Figure 5. Per the 

authors this module combines techniques for both feature map-based and convolutional 

kernel-based pooling methods, effectively establishing feature representations in 

convolutional blocks opposed to the standard stacking of convolutional layers in order to 

efficiently establish spatial information within the images. In the projection layer, the 

ESP block is mapped into C-dimensional space (where C= number of classes). This is 

done using a 3-dimensional pointwise convolutional layer followed by batch 

normalization and Rectified Linear Unit (ReLU). Batch normalization is used to adjust 
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the means and variances or activations of the input layers. ReLU is an activation function 

which outputs zero if input is negative and outputs identity (the input value) otherwise. 

Following this is the SPP block. In this pooling layer, low dimensional feature vectors 

(resulting from the ReLU operation) are sub-sampled with convolutional kernels of 

varying dimensions. The output of this pooling block is the sum of the varied convolution 

operations. The final PSP block takes as input the feature representation maps and divides 

these maps into C-branches (where C= number of classes). The feature maps are then 

down-sampled, where each separate branch down-sampled with a different pooling rate. 

The feature maps are then transformed with pointwise convolutions and upsampled to the 

resolution of the input feature maps with bilinear interpolation. The resulting feature 

maps are then merged with the input maps (of the same resolution) and an output feature 

representation is returned. A visual model of the SPP and PSP blocks is reproduced from 

the authors in Figure 5. In this network, the pyramidal refinement module (comprised of 

the aforementioned projection, SPP and PSP blocks) is completed with a final layer, 

called the “classification layer”. The classification layer implements an additional SSP 

block and upsamples the output by a factor of two with trilinear interpolation (as opposed 

to bilinear interpolation in the PSP block).  

 

 

Figure 5: SSP and PSP Blocks 
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6.4 TRAINING 

 As a training set, I used the complete BraTS 2018 set including both HGG and 

LGG volumes. For validation, the BraTS 2019 set was used. I opted to use a separate 

validation set rather than partitioning the training set (as the authors did) in order to 

maximize the quantity of training data for the model to learn from and to maintain class 

balance.  

In this implementation, a GeForce RTX 2080 Ti with 64GB DDR4 Graphics 

Processing Unit (GPU) was used. On this machine, Anaconda version 4.8.2 was built 

with Python version 3.7.4 (released July 2019). Using Anaconda, I created an 

environment for this module to install and access the various Python libraries and 

dependencies which were required. The authors originally deployed this model using 

PyTorch, an open-source machine learning library, version 0.3.1, with Compute Unified 

Device Architecture (CUDA), a parallel computing platform and programming model for 

GPU computing. This was originally done in 2018 for the BraTS challenge. The authors 

recommend using PyTorch version 0.3.1 (released February 2018) which is compatible 

with CUDA 9.1 binaries (released December 2017). In this work, I modified the source 

code for compatibility with more recent Anaconda and Python distributions, as necessary 

for resolving incompatibilities with older libraries. Specifically, I encountered 

incompatibilities with CUDA version 9.1 upon initial install and upgraded to PyTorch 

0.4.1 and CUDA 92. Since the imaging volumes are of file type NIfTI1 (.nii) Python 

package NiBabel (version 2.3.0) was used to gain read and write permissions. For 

scientific computing purposes, Numpy version 1.7.1 Anaconda distribution was installed 
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in the environment. To work in conjunction with Numpy, scikit-image version 0.15.0 was 

used for image processing with Numpy arrays.  

I trained with a class size of 4 (representing the data labels), using a batch size of 

128 images at full resolution with a learning rate of .0005 to 500 epochs. The number of 

parameters used was 3,626,584. With each epoch, a loss function was calculated using 

the mean intersection over union was recorded. Mean intersection over union, also known 

as the Jaccard index, is an evaluation metric for segmentation which reflects the percent 

overlap between the predicted and the target through a quantitative measure of common 

pixels between the two. The mean IoU represents the average over the four class labels at 

each epoch. Training was initiated through a virtual private network (VPN) service and 

lasted slightly under 7 days. Evaluation took under an hour. The authors report a 

significantly shorter training time of approximately 5 hours under different conditions. 

This vast difference can presumably be attributed to a number of contributing factors. 

They train with less data, using the BraTS 2018 training set with an 80:20 split for 

training and validation. They also train at full resolution, with a batch size of 4 where I 

used 128. Additionally, they train to 300 epochs using a learning rate of 10e-4 for the first 

200 epochs and a rate of 10e-5 for the remaining 100 where I trained to 500 with a 

learning rate of 5e-4 constant.  

 

6.5 SEGMENTATION RESULTS 

 The segmentation result is quantitatively evaluated using dice score calculations 

for each class label. The authors report dice scores of .74 for enhancing tumor (ET), 0.88 

for whole tumor (WT) and .81 for core mask. These scores reflect performance on the 
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BraTS 2018 official. test/evaluation set and achieved second place in the official 

challenge. Dice score calculations on my implementation achieve .92 on the WT label, 

.88 for the CM label and .73 for ET and also reflect model performance on the BraTS 

2018 official test set.  

 

6.6 DISCUSSION 

 Relative to manual segmentation as the current standard clinical practice, these 

are promising results. While my initial model training was time-consuming compared to 

a typical manual segmentation session, where model training took a week and a typical 

manual segmentation session lasts 2-3 hours (on average), observed testing times were 

consistently brief at around 20 minutes. Additionally, manual segmentation also observes 

long training windows, where neuroradiologists undergo multiple years of instruction on 

manual segmentation before results are produced. At the same time, testing windows are 

much shorter as observed for automated segmentation methods when compared to 

manual.  

Further, automated approaches have the potential to present more consistent 

results by approaching the segmentation task from a strictly quantitative standpoint. In 

context, this means that automated networks for tumor segmentation use image 

processing libraries, as Numpy and Sci-kit image are used here, to represent image 

properties as values in arrays. Representing the tumor images mathematically enables the 

network to establish tumor features through functional differentiation between numerical 

values. These values can then be attributed to tumor features and matched to labels, 

through repeated exposure in the form of batches of imaging data being “seen” by the 
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model as it learns. Simply put, automated models learn to attribute distinct tumor features 

(and their corresponding labels) mathematically, and in this process, thresholds are 

established for assigning labels and segmentation boundaries, where the threshold is met 

(activated) when the features are observed. It is the fundamental working aspects of these 

models which attribute to them consistency in the segmentation process and consistency 

and reproducibility in the output segmentation results.  

One of the greatest benefits of artificial learning models is the ability to process 

large quantities of data quickly and to make objective observations from the data. 

However, these models are not perfect. These models are engineered by humans, as is the 

data that these models learn from, and each of these factors imbeds varying level of bias 

into the models themselves and in turn the results. In addition, automated models are 

constructed to learn from what is observed, meaning that these models fail when tested 

on examples not represented in the training data. Clinicians, on the other hand, are 

adaptable. Clinicians, like all humans, continue to learn their entire lives. Clinicians are 

able to adapt and adjust as necessary and this, combined with expert experience and 

training, is indispensable in the medical field.  

 Still, a concern for overall generalization remains, where automated models can 

be limited by objectivity to the point that they are not (easily) adaptable. In context, the 

model implemented in this study was trained with glioma data sourced from 19 clinical 

institutions with varying head MRI protocols and varying hardware signatures. It could 

be the case that this model, when tested on glioma MRI data sourced from an unseen 

institution, may not perform as well as observed with data sourced from the training 

institutions. This overgeneralization issue happens when the model attributes feature 
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importance to randomness or abstraction in the training data which is not representative 

of the testing data due to variations in imaging protocols, hardware, etc. This issue can be 

resolved or negated by re-training the model with additional data, but that process can 

again be time consuming. However, current trends in hardware and software 

development are working to mitigate the issue of generalization, through faster, and more 

efficient models and computing machinery. It is becoming an increasingly feasibly 

options to ‘retrain’ and adapt models quickly and efficiently.  
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CHAPTER 7 

RESEARCH METHODS PART TWO: VISUALIZATION 

 

Studies in interpretable deep learning applications for clinical diagnosis show that 

data visualization has significant value in enhancing the explanatory content of diagnostic 

models and improving model understanding [22, 36]. In addition, effective visual 

interfaces have been identified as a powerful tool for enhancing visual reasoning and 

model credibility [36] as well as displaying quantitative similarities among class labels 

through color differentiation [87]. The contribution of the registration and enhancement 

module is to present visualizations of the benchmark 3D-ESPNet segmentation result for 

the purpose of exploiting expert domain knowledge.  

This chapter focuses on the main contribution of this study, the registration and 

enhancement task. The following segments outline the process of framing and enhancing 

the segmentation result for the purpose of expert interpretation. The visual representation 

is ‘enhanced’ according to standards of human visual perception and increased 

discrimination power.  The purpose of this approach is to utilize advantages of expert 

interpretation in the manual segmentation by exploiting principles of visual perception to 

maximize the discriminatory power of visual data representations.  

In the registration task, the segmentation prediction from the 3D-ESPNet 

segmentation is visualized as an overlay on each of the four corresponding input images. 

This is done for the purpose of baseline evaluation and standard MR representation. The 
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subsequent enhancement module utilizes three different methods for post-processing the 

monochrome representations in accordance with visual perception and computer vision 

standards. The three enhancement methods implemented use color space translations, 

overlays and contours to modify and ideally the representation of the MR scans and 

segmentation results for the purpose of expert evaluation.  

 

7.1 IMAGE REGISTRATION 

 Provided here is a single patient volume from the BraTS 2018 challenge training 

set. Each patient volume includes single scan from each of the following MRI sequences: 

T1-ce, T2, T1 and FLAIR in Figure 6. Also provided in each patient volume is a 

segmentation volume with labels. The purpose of varying MRI imaging sequences is that 

each sequence is used to enhance visualization of distinct brain and tumor structures. The 

biomedical scans are volumetric, or 3-dimensional, and reproduced here is a 2-

dimensional slice of each 3-dimensional volume.  
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Figure 6: Input Data 

Top row from left: t1, t1-ce 

Bottom row from left: t2, flair 

 

 

The ground truth segmentation for this patient volume is reproduced in Figure 7 

below layered on the FLAIR sequence for context visualization. These figures depict the 

original BraTS files, preprocessed uniformly with the BraTS preprocessing modules with 

the aforementioned skull stripping, co-registration to the same anatomical template and 

interpolation to the same resolution.  

 

   
Figure 7: Dimensional Representation FLAIR 

From left: Coronal slice 104, horizontal slice 47, sagittal slice 79 
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7.2 COLOR SPACE PROJECTION 

The images used for training and testing the deep network are represented in 

grayscale color space. Grayscale images represent information on the dimensions of 

luminance and intensity, where each pixel in the images can be explained with the 

numeric values representing these two factors. In this light, grayscale images are 2-

dimensional, not in reference to volumetric space, but in reference to the two dimensions 

of values along the vectors of luminance and intensity which represent the image voxels. 

Image computing refers to the field of representing, processing and interpreting images. 

For computing purposes, and in the learning, network used here specifically, images are 

represented as matrices (or NumPy arrays). In these arrays, image pixels are indexed 

individually as numeric values. In grayscale computing, these numeric values represent 

information on the luminance and intensity of each voxel.  

 

7.3 GRAYSCALE SEGMENTATION RESULTS 

 The original segmentation results obtained and reproduced in grayscale are 

reproduced below. Figure 8 (left) depicts the segmentation result alone while Figure 8 

(right) depicts the segmentation result layered with a FLAIR volume of the same patient 

volume. This represents the input data for the color space projection model and serves as 

a base-line representation of the non-enhanced data visualization of the segmentation 

task. For the purpose of interpretation, it is useful to note here that the segmentation 

result is layered with the FLAIR representation in the identical position as the result is 

represented alone.  

 



 

55 

  
Figure 8: Segmentation Results 

 

7.4 COLOR PROJECTION SEGMENTATION 

The following approach converts the gray-scale results into color space using 

palettes descending from the HCL color model proposed in 2005 by Sarifuddin and 

Missaou [59]. The Hue-Chroma-Luminance model was designed to exploit the 

advantages of preexisting Red-Green-Blue and CIELAB (L, a*, b*) color spaces. HCL is 

a perceptually uniform color space, where perceptual uniformity refers to a measure of 

consistency over the perceived similarity/difference of sets of equidistant points across 

the color space [59]. This color space is constructed as a “natural representation of color 

models” centered around the physiological perception of the human eye [59]. Each 

coordinate (pixel value) in HCL space has attributes “Hue”, “Chroma” and “Luminance”. 

Hue is understood to refer to the full color spectrum as the “dominant color” perceived in 

a color experience. Chroma is the “colorfulness” attribute of a color experience, and 

Luminance is the “brightness” attribute [70]. The structure of HCL space and coordinate 

calculations centers on the reasoning that the average human visual experience reacts to 

color intensity logarithmically, rather than linearly as visualized in Figure 9, Reproduced 

from HCI wizard GUI [59, 99].  



 

56 

 
Figure 9: HCL Sequential Perceptually Uniform and RGB Color Spaces 

 

 

To calculate the Luminance value of an HCL coordinate, the L value is calculated 

as a linear combination of Minimum and maximum RBG values (“black” is the min, 

RGB value and “white” the max) Figure 10.   

 
Figure 10: HCL Luminance Calculation 

In this calculation, Q = eαγ   functions as a tuning parameter to account for 

variations in saturated hues and hues with a large white component. Chroma is calculated 

using Figure 11 where elements (R, G, B) are combinations of RGB space components, 

including reg-green, green-blue and blue-red. Finally, the Hue attribute ranges from -900 

to 900 and is calculated as Figure 12. Figure 13 provides a visual reference for Hue, 

Chroma and Luminance attributes and is reproduced here from [70].  
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Figure 11: HCL Chroma Calculation 

 

 
Figure 12: HCL Hue Calculation 

 

 

 
Figure 13: Hue, Chroma and Luminance 

 

 A colormap uses a palette of colors and mapping function to map data values to 

color [69]. Broadly, three classes of color palettes have descended from HCL space; 

qualitative, sequential and diverging. The three classes are differentiated by the 

trajectories of each the HCL components, with the Luminance value carrying the most 

importance in the class distinction. In a qualitative colormap, each color in the palette is 

given the same perceptual weight. This type of colormap distinguishes classes using 

distinct hues with equal chroma and luminance values [70]. This kind of map is useful for 

representing unordered categorical data. A sequential palette uses a monotonic function 
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trajectory for luminance values (increasing or decreasing) to represent ordered numerical 

data as a sequence. Without the chroma attribute, a sequential palette would correspond 

to grayscale [70] as visualized in Figure 14, reproduced from [101]. A diverging palette 

is modeled as a dual-direction monotonic sequential mapping function, where values 

diverge to two extremes from a central point [70]. A diverging palette is used to code 

numerical information around a central value [75]. Figure 15 provides visual reference 

for comparison between the classes of colormaps and is reproduced from [100]. 

  
   Figure 14: Sequential Colormaps                   Figure 15: HCL Map Variations 

 An effective colormap for any task space is dependent upon the structure and 

composition of the dataset, with consideration for factors of numerical ordering, scaling, 

and spatial distribution [79]. A good colormap is a tool for effectively representing and 
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communicating data, and a bad map can lead to misrepresenting or misunderstanding 

data [69]. Principles of design in colormaps consider order, smoothness, uniformity and 

discriminative power [88]. A colormap with order progresses through color values with 

direction. Sequential and divergent are colormaps have order, whereas qualitative maps 

do not. Smoothness is the extent to which a colormap has identifiable boundaries. 

Perceptual uniformity is a measure of constancy between equidistant values, where two 

pairs of distinct values with the same difference measure also have the same impression 

of “sameness”. Finally, discriminative power refers to the range of the map, and is 

measured by a count of ‘just noticeable difference’ (JND) instances [88]. JND refers to 

the average minimum threshold by which two values can be consistently differentiated 

form one another.  

7.5 COLORIZATION AND VISUAL ENHANCEMENT METHODS 

 In this study, the goal is to enhance the visualization of brain imaging data and the 

original data representation is grayscale. A brain/head MRI maps grayscale as a 

representation of signal intensity produced by the mechanical reaction of the tissue within 

the imaged region to the strong magnetic forces emitted by the MR scanner. Since 

distinct tissue compositions (more or less dense tissue/healthy or tumorous tissue) also 

have distinct mechanical reactions to the magnetic fields, signal intensity in the resulting 

image reflects anatomical features. In the same scope, grayscale images are represented 

computationally as numerical arrays. In this representation, anatomical features then also 

use numerical representation. An effective colormap for this data enhances the 

visualization while also retaining predetermined structure. The intent is to attain 
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information gain though enhanced visualization while preventing information loss in the 

translation.  

 Grayscale is a single-channel scalar representation for imaging data and contains 

only a single luminance value for each voxel. This means that grayscale is a single-hue 

sequential colormap where the hue is gray. Since the grayscale image has ordered 

numerical values, a sequential colormap can be used to translate the values into a multi-

value color space with a uniform function for mapping one-dimensional luminance 

values into three-dimensional HCL coordinate space. The purpose of doing this is to 

maintain the inherent distribution of the data and represent the same distribution with 

more color values across over the same range to increase the discriminatory power of the 

color space by using values with the same distribution but with greater distance between 

them. Using a wider color-space distance between pixel values applies the concept of just 

noticeable difference, where the distance between pixels is increased to enhance the 

difference between visually similar color impressions. Mapping one-dimensional 

grayscale values into 3-dimensional HCL space exponentially affects the quantity of JND 

instances within the image.  

 For this study, five distinct sequential and perceptually uniform color-mapping 

functions are applied to volumes from the 3D-ESPNet segmentation results in an effort to 

enhance the visualization of the segmentation result to increase interpretability and 

establish model credibility. Each of the mapping functions is a variant using the HCL 

model, but the parameters of the methods differ slightly and can be used to enhance 

different image features, similar to the use of separate MRI sequences for distinct contrast 

enhancement. The colormaps used in this study are reproduced in Figure 16 as 
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reproduced from [102] and come from the ‘viridis’ package, including ‘viridis’, ‘magma’, 

‘plasma’, ‘inferno’ and cividis’ [102]. These maps are designed to be both sequential and 

perceptually uniform. In addition, these maps account from the most common forms of 

color blindness (all 5) and color vision deficiency (the cividis map). The cividis map is a 

2018 variation of the 2015 viridis package, adapted for color deficiency [66, 104].  

 

 
Figure 16: The Viridis Package 

 

 This color-mapping method uses Python 3.7 and Python libraries OpenCV, 

NumPy, Nibabel and Matplotlib for image processing. This method processes a single 

patient volume in each iteration. For each patient directory, 5 Nift1 files are read using 

Nibabel into separate 3-dimensional [240] x [240] x [155] Numpy arrays. A linear 

normalization is then used to scale the grayscale voxel values from (min)(max) into 32-

bit floating point format range 0.0-1.0. The normalization is necessary for properly 

assigning input-output values to the colormap since the HCL conversion relies on RGB 

value calculations, and the 32-bit float RGB assignment requires 0-1 input. At this point, 

Matplotlib is used to store n=1000 equidistant values from each color space into a look-
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up-table (LUT) for each space. For reference, the color spaces used are represented in 

with n=3 and n=20 colors respectively in Figure 17 reproduced from Pypi Palettable 

[103] (the cividis map was not available through this source).  

 

  

  

  

  
Figure 17: Colormap Reference 

 

All 5 volumes (t1, t1-ce, t2, flair and segmentation result) are then input into the 

conversion function which uses the stored color values as reference to supply the values. 

With each color space (n=5) processing each image in a single patient volume (n=5), the 

output is 25 distinct volumetric scans, or 3,875 (25 images with a depth of 155 in 

dimension 3) two-dimensional image slices. The automated segmentation result is 

processed along with the MRI scans to this point. The result is 4 MR sequence images 

and 1 automated segmentation image which have undergone visual enhancement 
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individually. Slices from the resulting images from this stage of enhancement are 

reproduced in Figure 18.  

 

     

     

     

     

     
Figure 18: Color Space Results 

from left → right viridis: magma, plasma, inferno, cividis 

from top to bottom:t1, t1-ce, t2, flair, segmentation 

image slice 71/155 
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This represents the first stage of enhanced visualization. At this stage, the tumor 

segmentation result and brain scans can be compared side-by-side with an enhanced 

view. The purpose of providing the segmentation result beside the full brain scan, without 

any overlay or label is to provide a baseline enhancement for expert analysis. The 

intention of this study is to address current limitations of automated tools for 

implementation in the real-world clinical sector. Current limitations of automated tools 

for brain tumor segmentation are associated with a lack of established clinical trust and 

approval of the validity and reliability of these methods. This stage of image 

enhancement seeks to establish clinical trust through quantitative analysis and ease-of-

transition from manual to automated segmentation. The manual segmentation process has 

been a clinical “gold standard” for many years, and this process relies totally on expert 

image analysis and interpretation. Expert neuroradiologists endure many years of training 

and education to interpret these images and annotate both brain and tumor structures. For 

many clinical processionals, the manual segmentation process is not only a standard, but 

also a trustworthy process. It is a process though which an expert uses training and 

logical reasoning to assign tumor labels. The result of a manual segmentation session is 

not only a segmentation result, but also hours of reasoning and explanation to support or 

defend this result.  

 While the processes for manual and automated segmentation are fundamentally 

different, processing and evaluation of the produced segmentation results can be done 

with relative similarity. This allows the expert reading the segmentation result to judge 

the result similarly to how they would might judge their own segmentation work.  In a 

traditional manual session, an expert will sit at a screen, view the patient MRI scans, and 
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carefully read the scans, identify points of interest and eventually determine tumor 

landmarks. With automated segmentation models powered by deep learning 

architectures, it is possible to streamline the often hours-long process of drawing the 

tumor segmentation. At the same time, it is not necessary to streamline the evaluation 

steps. With enhanced visualization of both the MR scans and predicted segmentation 

boundaries, resident expert clinicians can carry out segmentation evaluation and 

critiquing as would be done with manual segmentation, but with enhanced visual 

representation to support the segmentation.  

 

7.6 ENHANCEMENT USING CONTOURS 

 In the second phase of image registration and enhancement, an edge detection 

algorithm is run on the predicted segmentation result for each of the patient volumes. 

Using OpenCV (open source computer vision for python) a Canny edge detection 

algorithm is run on the segmentation files. This edge detection uses thresholding of pixel 

values to establish edges. This is done for the grayscale segmentation files, ignoring the 

color segmentations temporarily. For each segmentation, a binary image mask is output 

containing the edges. From these binary masks, a function is then run to learn contours 

with an established hierarchy from the images. The hierarchy considers the segmentation 

regions separately so that contours can be drawn to reflect the three distinct segmentation 

labels. Once the contours are learned, the contours are then drawn onto the colorized 

image using a line size of n=0.25 so as to highlight and define the segmentation regions 

without obscuring the enhanced data in and around the regions. This allows the clinician 

to visualize the segmentation result with exact reference to extent and boundaries 
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throughout the entire image volume (all 3 dimensions). The contour representations of 

the images from Figure 18 are visualized in Figure 19.  

 

     

     

     

     

     
Figure 19: Contour Results 

From left: viridis, magma, plasma, inferno, cividis 

From top: t1, t1-ce, t2, flair, segmentation mask binary output edge detection 
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7.7 ENHANCEMENT WITH OVERLAYS 

 In the final visual perspective enhancement, the colorized segmentation result is 

presented as an overlay in a merged image. The base image in each of these cases is the 

color-mapped projection of the input image with an opacity of 100%. For the 

segmentation overlay, the background of the image is unweighted in this case. It was 

necessary to “unweight” the segmentation background so that the pixel values did not 

obscure/alter/negatively affect the values and presentation of the brain and relevant 

structures under the segmentation. This is because the segmentation dimensions (since 

they consider only the tumor regions) are much smaller than the dimensions of the entire 

brain, so merging the two images without accounting for the difference in size and extent 

would overlay background pixel values (black) onto the full extent of the brain not 

included in the tumor segmentation. This would negatively affect the context of the result 

and the integrity of the intensity distribution of the image pixels. To determine the most 

visually intuitive segmentation overlay representation, I experimented with segmentation 

overlays at opacity=25%, opacity=50% and opacity=75%. The resulting images were 

subjectively similar, but it was eventually decided that an opacity level of 75% in the 

overlay presented the clearest visualization of the automated segmentation result inside 

the brain scan, with a trade-off at the expense of any image data under/behind/obscured 

by the segmentation overlay. For this reason, the contour method is ideal for presenting 

the segmentation without information lost or obscured by the segmentation overlay. This 

is from the perspective that evaluating the segmentation result might require visualizing 

the scan both with and without the segmentation in order to determine if the segmentation 

labels are appropriate. This enhancement is visualized in Figure 20 below.  
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Figure 20: Segmentation Overlay 

From left: viridis, magma, plasma, inferno, cividis 

From top: t1, t1-ce, t2, flair, segmentation grayscale 
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CHAPTER 8 

RESULTS AND CONCLUSION 

 

 The motivation of this study is to recognize clinical and general industry concerns 

for transparency and understanding in real-world deep learning applications. Significant 

research indicates transparency and understanding [34, 36, 82] as major limitations for 

non-expert use of deep learning applications. In the clinical domain, and specifically in 

high stakes diagnostic situations such as brain tumors, a premium is placed on 

transparency and interpretability. This dual-phase tumor segmentation process presented 

in this study is constructed to overcome the limitations of manual segmentation while 

also maintaining the advantages. The segmentation task trains a benchmark deep learning 

model, the 3D-ESPNet to segment brain tumor regions from labeled MR scans and tests 

model predictions. Relative to the clinical “gold standard” manual segmentation, state-of-

the-art deep learning networks complete the segmentation task with improved time-

efficiency and consistently, but lack the clinical transparency observed in manual 

segmentation. The registration and enhancement module proposes an approach for 

attributing transparency to deep learning brain tumor segmentation approaches as part of 

a semi-automated process which provides expert clinician with a standard by which to 

evaluate the automated model through enhanced and human-centered data visualization.  

A standard for accepting or denying a diagnostic result need not rely on 

understanding the specific methodologies used to obtain the result. Pregnancy tests, blood 
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tests and strep throats swabs are prime examples of this idea. Clinicians do not need to 

understand the underlying chemical processes of these exams in order to interpret the 

results since the tests have established guidelines for interpretation of exam results. This 

study works to establish the same idea in the scope of semi-automated and automated 

models for biomedical analysis and brain tumor segmentation. The technique used in this 

study proposes a dual-part method for establishing clinical trust and reliability in 

consideration for automated diagnostic models. This approach first uses an automated 

model to obtain brain tumor segmentation results with increased speed and accuracy 

related to current methods and follows with a post-processing of the results for the 

purpose of expert evaluation as used in current practice.  

Translating the gray-scale MRI segmentation results in color space takes 

advantage of expert radiologist segmentation knowledge by using the human visual 

spectrum as a guideline for enhancing the contrast of different tumor regions for manual 

visual analysis and interpretation. Allowing clinical experts to consider the segmentation 

results through a presentation which is tailored to take advantage of the human visual 

spectrum as opposed to grayscale allows the experts to differentiate between differing 

MRI signal levels which they would not have been able to do in a traditional manual 

segmentation setting.  

 Several studies have indicated the value of enhanced data visualization for 

interpretation of images. Studies have produced similar findings on the value of 

automated models in general and deep learning architectures specifically in achieving 

very high accuracy in image processing tasks with fast computation times. The 

contribution of this work is applying human-visual and perceptual scientific findings 
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along with benchmark model results for a combined semi-automated approach to 

establishing clinical trust in automated brain tumor segmentation models. The 

overarching goal is to establish a collaborative relationship between research and the 

realities of clinical situation to engineer methods to improve patient care and prolong 

prognosis of brain cancer patients.  

 

8.1 FUTURE WORK 

 The major contribution of this work is a semi-automated brain tumor 

segmentation process which uses the image registration and enhancement module to post-

process automated tumor segmentation predictions for expert evaluation. The registration 

and enhancement module creates a baseline monochrome representation of the MR scans 

and the segmentation, and then three additional enhanced visualizations for the purpose 

of integrating domain knowledge into the segmentation process. The first representation 

translates the monochrome standard representations into multi-chrome color space which 

is both sequential and perceptually uniform. The second uses thin contours to identify 

segmentation boundaries on the MR scans for perspective. The final representation 

overlays the segmentation prediction in monochrome on the multi-chrome MR 

representation. The enhanced visualizations are intended for use as a model evaluation 

metric, where clinical professionals with relevant domain knowledge evaluate model 

performance on the segmentation task. The purpose of enhancing the standard visual 

representations is to increase the explanatory value of the predictions according to the 

human visual spectrum. 
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 As the end users of tumor segmentation tools, the clinical perspective is crucial to 

determining their value and overall use. Future work should be done to implement these 

methods into clinical practice in order to determine the value of these enhancements. This 

evaluation would provide crucial insight into the effective information gain of each 

enhancement both in combination and individually, such that more precise visual 

enhancements might be made in the future. The resulting data would then show which 

enhancement methods are more or less effective relative to the distinct MR parameters 

used. It may be found that colorization, contours and overlays vary in explanatory value 

for MR parameters, or that colorization methods vary in the same way. Further work 

could consider these methods over multiple brain tumor classifications in addition to the 

Glioma group, or other tumor locations throughout the body.  
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