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Abstract

Affective state recognition (ASR) involves using the body’s physiological signals to extract useful infor-
mation about ones mental state. ASR systems are often implemented in highly controlled environments
with cumbersome chest sensors and intrusive facial expression monitoring setups, making it difficult to
translate their performance to real environments. Recently, the widespread adoption of wrist-worn wear-
ables has highlighted a need for further research into practical ASR with commercially available devices.
In this paper, we propose TAASR, an InceptionTime based end-to-end learning architecture augmented
with channel attention and global feature fusion for three-class ASR (baseline vs. stressed vs. amused),
and TAASR-MT, a multi-task version of TAASR that uses mental health self-assessments to improve
basic ASR performance. For practicality, we train these architectures primarily with wrist-based signals
and report a best classification accuracy and F1-score of 81.16% and 70.02, demonstrating noticeable
improvements upon InceptionTime and prior works that employ simpler classification approaches.

Index words: Affective State Recognition, Mental Health, Wearables, Time Series Classification,
Machine Learning, Deep Learning, Convolutional Neural Networks
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Chapter 1

Introduction

1.1 Motivation
In recent years, many have demonstrated interest in wearable devices that shrink the form factor of a
smartphone down to that of a wrist watch. In fact, between 2016 and 2019, the number of wearables in
circulation nearly doubled from 325 million to 722 million, and it is forecast that this total surpassed one
billion devices at the end of 2022 (Laricchia, 2022). Adapa et al. (2018) attribute the rapid adoption of
wrist-worn devices to their overall usability, water resistance, battery life, technological novelty, and most
importantly, the availability of useful fitness tracking features. Common fitness tracking applications
that work in tandem with smartwatches include: irregular heartbeat detection,1 sleep cycle tracking and
identification,2 and activity recognition.3 Many of these applications rely on machine learning models
and are continually being improved through industry research.

Today, commercially available wearables allow for the accurate measurement and analysis of a wide
variety of physiological signals that were once exclusively monitored in a laboratory setting. While many
use these devices for their intuitive form factor, look, and feel, wrist-worn fitness trackers can serve as a
motivational tool for those that wish to improve their quality of life via exercise and positive habit building
(Lyons et al., 2014). Furthermore, devices like the Apple Watch Series 7 and FitBit Versa track their user’s
activities, daily step count, heart rate, and temperature, enabling the average consumer to quantify their
lifestyle choices and overall physical health on a daily basis.

Many have developed wearables that monitor sleep quality and cardiovascular health, whereas few
have explored the idea of a device or software solution that monitors mental health. Since the beginning
of the COVID-19 pandemic, reports of depression and anxiety increased at alarming rates (Hayward,
2022). It is essential that recent increases in instances of anxiety and depression, as well as future influxes
of mental health disorders, be addressed on a broad scale.

1Apple provides FDA approved, native support for irregular heartbeat detection with the Apple Watch.
2For a list of smartwatch enabled sleep tracking applications, visit https://www.nytimes.com/wirecutter/reviews/

best-sleep-tracking-app/
3A third-party application for FitBit activity recognition is detailed at https://github.com/andresquintanilla/

fitbit-activity-recognition.
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Currently, psychiatrists treat mental health issues with prescription medications and cognitive behav-
ioral therapy (CBT), but many do not have the resources to seek professional help.4 Still, there are many
approaches to treating and identifying mental health disorders that are not reliant on access to medical
professionals. The practice of mindfulness is a popular remedy for depression and anxiety (Staff, 2020),
and research suggests that signals like heart rate variance (HRV) and respiration rate (Zhus et al., 2019)
can be sound predictors of ones mood. Importantly, the physiological signals that directly respond to
emotional changes can be easily monitored on everyday fitness trackers, chest sensors, and smartwatches,
creating opportunities for the development of intuitive systems that can monitor the characteristics of
ones affective state.

1.2 Objective
This paper aims to demonstrate that signals collected on widely available wearables can be used to help
identify discrete emotional states. To accomplish this, we train various machine learning models on
multimodal physiological data and evaluate their results based on accuracy and F1-score in an effort to
discover novel ASR approaches. Moreover, this body introduces the Temporally-Aware Affective State
Recognition architecture (TAASR), an InceptionTime based (Fawaz et al., 2019) classification model
for practical affective state recognition (ASR), and explores multi-task learning with discretized mental
health self-assessments to augment our defined ASR objective. We also conduct a series of experiments
to validate the inclusion of specific modules to our proposed architecture in an effort to justify TAASR
as a viable ASR framework.

The next chapter of this paper covers mental health self-assessments and models of emotion, the
intuition behind using physiological signals to identify emotional states, and approaches to affective state
recognition with machine learning. Future chapters thoroughly explore the following:

• a multimodal data set introduced by Schmidt et al. (2018) for Wearable Stress and Affect Detection
(WESAD)

• WESAD based affective state recognition tasks and learning algorithms that can perform them

• TAASR and its individual components

• implications and ethical concerns regarding automatic emotion classification systems and future
research directions

4CBT is a type of question-and-answer based talking therapy that alleviates the symptoms of mental health disorders. It
works by helping patients to learn healthy habits and thought patterns to better cope with stressful circumstances.
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Chapter 2

Background

2.1 Models of Emotion and Mental Health Self-Assessments
Physicians often administer mental health self-assessments to their patients to help identify possible symp-
toms of mental health disorders. These assessments are crucial to modern psychiatric care, as emotions and
mental health conditions often present themselves uniquely across individuals. By using an established set
of questions centered around standardized measures of emotion, mental health self-assessments enable
the medical community to evaluate mental health on a generalized scale, encouraging further research
into emotion recognition and overall well-being.

One such model of emotion - the circumplex model (Russell, 1980) - formulates emotion as a two
dimensional plane, where the x-axis (valence) represents an emotion’s degree of positivty or negativity,
and the y-axis represents an emotion’s magnitude or severity (arousal) (Bestelmeyer et al., 2017). There

Figure 2.1: Circumplex model of emotion (Source: Russell, 1980)

are several dimensional abstractions of emotion, but the circumplex model, among others, is considered
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to be the most widely accepted (Rubin and Talarico, 2009).1 Furthermore, quantitative representations
of emotion have inspired a wide array of mental health self-assessments, such as the Self-Assessment
Manikin (SAM) and the Positive Affect - Negative Affect Schedule (PANAS), which place individuals on
the circumplex plane and its variants.

Developed in 1994 by Bradley and Lang, the SAM asks subjects to simply rate their levels of valence,
arousal, and dominance (level of control over an emotion) on a scale of 1 to 5. The results of this assess-
ment can be visualized via the circumplex model, or its modified counterparts that handle more than two
dimensions. Similarly, the PANAS assessment asks subjects to rate the degree to which they are experienc-
ing a variety of emotions (e.g., interested, distressed, irritable, and active) from very slightly or not at all
to extremely, and the aggregated results of positive and negative questions are used to place subjects on
each axis of the Positive Affect - Negative Affect scale (Watson et al., 1988). 2

Figure 2.2: Self-Assessment Manikin scale (Source: Bradley and Lang, 1994)

Other questionnaire based self-assessments, like the State-Trait Anxiety Inventory (STAI), aim to
evaluate a subject’s anxiousness via personality traits and their ability to handle stressful situations (Bieling
et al., 1998). Subjects rate statements like "I feel jittery" and "I am worried" from very slightly or not at all
to extremely, and the aggregate score of the examination is used to describe the magnitude of their anxiety.
To gather meaningful data regarding a patient’s state and trait level anxiety, the STAI is often administered
after the Trier Social Stress Test (TSST), an interview style examination where subjects are probed with
unseen questions and challenging mental math problems (Allen et al., 2017).

2.2 Physiological Signals as Predictors of Emotion
The ability to systematically classify emotions from physiological signals is reliant on the assumption that
emotions manifest themselves through interactions between human cognition and the autonomic nervous

1The circumplex model of emotion serves as a foundation for dimensional conceptualizations of emotion. The vector and
PANAS models introduce slight variations to the circumplex model, such as additional dimensions to the circumplex plane.

2The Likert scale is commonly used for measuring strength of agreement.
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system (ANS) - an idea thoroughly supported by the Schachter-Singer two-factor theory of emotion. This
theory posits that external factors directly influence heart rate, respiration rate, and perspiration, which the
brain then associates with feelings of fear, happiness, etc. (Schachter and Singer, 1962). Further, Schachter
and Singer assert that our physiological reactions to stimuli and what we associate these reactions with
(e.g., danger, reward) are the foundations of discrete emotional states. Moreover, the ANS plays a critical
role in generating physiological responses aligned with unique emotional experiences (Waxenbaum et al.,
2021), creating a direct link between environmental factors and physiological indicators of emotion.

Recent studies have attempted to identify which physiological modalities are most associated with
changes in moods, such as stress and calmness. In general, a wide array of research suggests that heart
rate variance is closely associated with emotion regulation (Kim et al., 2018). HRV measures the variation
of time between heartbeats - a behavior directly influenced by the vagus nerve and ANS (Christodoulou
et al., 2020). While a high HRV is often considered to be a sign of overall physical and mental health, and

Figure 2.3: A visual representation of HRV (Source: Georgallides, 2021)

a low HRV is considered to be an indicator of stress and emotional turbulence, further research affirms
that HRV is a dynamic measure that cannot purely be interpreted via magnitude (Shaffer and Ginsberg,
2017). For example, a high HRV can sometimes indicate cardiac abnormalities. Nevertheless, individuals
who engage in mindfulness based intervention (MBI) (a meditation centered mental health treatment)
tend to record HRV measurements more closely associated with emotional stability and effective ANS
regulation (Christodoulou et al., 2020). Aside from electrocardiogram (ECG) related measures like HRV,
electrodermal activity (EDA), blood volume pulse (BVP), and skin temperature and moisture are all areas
of focus when it comes to drawing correlations between the mind and body (Karthikeyan et al., 2011).

2.3 Machine Learning for Time Series Analysis
Simply put, time series analysis covers statistical methodologies that aims to extract valuable insights from
sequential data. There exist many machine learning methods that model time series data with the goal
of forecasting future data points (e.g., stock market prediction and weather forecasting), or classifying
windows of time into discrete categories (e.g., activity recognition and anomaly detection). Time series
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classification (TSC) approaches can be broadly categorized into two types: similarity based and learning
based. The former involves projecting sequences into a vector space and using supervised or unsupervised
classification to identify similarities and differences among them. On the other hand, the latter utilizes
more complex techniques, such as machine learning and optimization based algorithms. One possible
similarity based TSC approach is to classify time windows by their k-nearest neighbors according to
Dynamic Time Warping (DTM)3 (Nurwanto et al., 2016).

Additionally, Traditional linear models (e.g., logistic regression) can be used to categorize individual
time sequences from hand-crafted extracted features (mean, minimum, maximum, etc.). Significant im-
provements to the performance of linear models are generally observed when using decision trees and
random forests, but gradient boosted trees often prove to be more effective than most classical machine
learning architectures on a variety of time-series based tasks (Gertz et al., 2020). Still, these models have
little capability to extract meaningful relationships from complex sequences as they lack any sort of recur-
rence mechanism.

Figure 2.4: RNN for time series classification (Source: Amidi and Amidi, 2019)

In recent years, recurrent neural networks (RNN) have achieved state-of-the-art performance across
many tasks in several domains for time series analysis. By allowing previous outputs to influence the
network’s current state, RNNs maintain an "internal memory" that is very powerful when it comes to
understanding sequential data. For example, in a many-to-one RNN (see Figure 2.4), n time steps are
used to generate a single output value; this is a common setup for classification and regression tasks.
Alternatively, many-to-many RNNs can be used for image captioning and machine translation, though
transformers are generally preferred for these types of problems (Lakew et al., 2018).

3DTM measures the similarity between time series of varying lengths and translation as the Euclidean distance between
their optimal alignment (Müller, 2007)
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Figure 2.5: LSTM cell (Source: Hrnjica, 2019). The forget gate discards information from the cell state,
the input gate adds information to the cell state, and the output gate regulates the flow of information
from cell memory.

A popular and more sophisticated adaptation to the vanilla RNN is the Long Short-Term Memory
network (LSTM) (Hochreiter and Schmidhuber, 1997). To combat vanishing and exploding gradients and
the vanilla RNN architecture’s inability to handle lengthy input sequences, LSTM networks incorporate
gates that regulate the flow of information throughout training. In short, gates allow LSTM networks to
discard less important time sequences from their internal memory, and update them with more influential
values as they are observed.

With deep learning architectures, recurrence is not always needed to produce meaningful classification
results. One such non-recurrent architecture, InceptionTime (Fawaz et al., 2019), has the ability to extract
temporal features over multiple time frames with an ensemble of one-dimensional convolutional neural
networks (CNN). InceptionTime is less computationally expensive to train and more performant than
state-of-the-art similarity based time series classifiers (e.g., HIVE-COTE). Some TSC architectures further
boost their performance by combining both LSTM and convolutional layers with one another.

There also exists a wide variety of self-attention based models (e.g., TapNet) that leverage transformers
for TSC (Yoon et al., 2019). While transformers have demonstrated their strengths in natural language
processing and sequence-to-sequence translation, their use for time series analysis is a blossoming area of
research, and it is unclear if they can reliably surpass the performance of RNNs and CNNs. Currently, data
requirements and computational bottlenecks (e.g., quadratic time complexity of self-attention) typically
make transformers a poor choice for simpler time series tasks (Lara-Benıtez et al., 2021).

2.4 Affective State Recognition
A number of works combine the ideas detailed in Sections 1.1 - 1.3 to classify emotions from multimodal
physiological data. One such study conducted by Guo et al. (2016) involved showing subjects movie clips
with the goal of eliciting five different emotions: sadness, anger, fear, happiness, and calmness. HRV fea-
tures extracted from ECGs recorded during each emotion-specific viewing session were used for principal
component analysis (PCA) and support-vector machine classification. With this approach, an accuracy
of 56.90%was achieved across all five emotions. Similar research conducted by Shu et al. (2020) leveraged
emotional movie clips to gather HRV data corresponding to a subject’s affective state. After extracting
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amplitude and frequency information from 25 subject’s HRV measurements, gradient-boosted trees were
used to achieve an accuracy of approximately 84% when classifying between neutral, happy, and sad.

With WESAD, the data set used later in this paper, Schmidt et al. (2018) used sliding window statistical
feature extraction with various tree based models to classify 60-second physiological signal snapshots
by baseline, stress, and amusement data collection sessions. With chest based inputs, they report a best
accuracy of 80.34%with AdaBoost on their three-class problem. Garg et al. (2021) take a similar approach
to that of Schmidt et al., but they only report a best three-class accuracy of 65.73% with 10-second signal
windows.

With respect to deep-learning based approaches to ASR on the WESAD data set, Huyn et al. (2021)
proposed a CNN optimized with neural architecture search, achieving a state-of-the-art classification
accuracy of83.43%. Alternatively, Rovinska and Khan (2022) employ a support vector machine to classify
latent vectors from a CNN autoencoder, reporting a best accuracy and F1-score of 85.66% and 82.82

respectively, but these results come from an altered preprocessing setup that yields fewer samples of only
one second in length.
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Chapter 3

WESAD: A Multimodal Dataset for
Wearable Stress and Affect

Detection

3.1 Introduction
As mentioned in Chapter 1, advancements in sensing capabilities have created opportunities for the effi-
cient measurement and collection of physiological signals for emotion recognition. While brain wave and
facial-expression based multimodal data sets exist for this very task (Koelstra et al., 2012), practical emotion
recognition systems must be low-profile and reliant on consumer-friendly wearables. After all, electroen-
cephalogram (EEG) sensors for brain wave measurement and constant facial expression monitoring are
quite invasive and simply do not translate to non-laboratory environments.

With WESAD, Schmidt et al. (2018) present a multimodal data set comprised of various physiological
signals collected with non-intrusive, chest and wrist-worn wearable devices. These signals are labeled
by discrete emotional categories (neutral, stressed, amused, calm) from the sessions in which they were
recorded, and the results of mental health self-assessments described in Section 2.1. Further, the inclusion
of periodically collected mental health self-assessments in WESAD allows for novel emotion recognition
approaches that are detailed in future chapters of this work.

3.2 Data Collection

3.2.1 Subjects
15 graduate students participated in the WESAD study. 13 of the 15 subjects were male, and their average
age was 27.5±2.4 years. Participants were rejected from the study due to pre-existing medical conditions,
pregnancy, and heavy smoking habits to prevent the collection of abnormally influenced physiological
signals.

9



3.2.2 Sensors and Signal Modalities

Figure 3.1: WESAD chest and wrist-worn sensors (Source: “E4 wristband | Real-time physiological signals
| Wearable PPG, EDA, Temperature, Motion sensors”, 2020)

Table 3.1: Physiological signal modalities in WESAD and their sensing sources
Signal Source Unit of measurement

Acceleration (ACC) Chest, wrist g
Electrocardiogram (ECG) Chest mV
Temperature (TEMP) Chest, wrist ◦C
Electrodermal activity (EDA) Chest, wrist µS
Blood volume pulse (BVP) Wrist mV
Respiration rate (RESP) Chest bpm
Electromyography (EMG) Chest mV

All signal modalities in WESAD were collected using the RespiBAN Professional and the Empatica
E4 (see Figure 3.1 left and right). Recorded signal modalities and their sensing sources are detailed in Table
3.1. All chest signals were sampled at 700 Hz, while BVP, EDA, TEMP, and ACC signals captured on the
Empatica E4 were sampled at 64 Hz, 4 Hz, 4 Hz, and 32 Hz respectively.

Here, ACC represents the gravitational force (g) applied in each spatial dimension (x, y, and z) and is
limited to [−2g,+2g]. ECG measures electrical activity of the heart over time in millivolts (mV ), TEMP
measures skin temperature in degrees Celsius, and EDA measures electrical conductance of the skin from
sweat gland activity in microsiemens (µS). BVP refers to the rhythmic expansion and contraction of
blood vessels with each heartbeat, and is measured in millivolts. RESP is measured in breaths per minute
(bpm), and EMG measures muscular activity in millivolts.

3.2.3 Methodology
WESAD data collection is comprised of six steps: baseline measurement, amusement measurement, two
meditation sessions, rest, and stress measurement. After being outfitted with chest and wrist wearables,
in order to obtain valid baseline measurements, subjects were first instructed to read for 20 minutes in
a sitting or standing position. Next, to elicit an amused response, subjects were shown 11 funny movie
clips over a span of 392 seconds. To simulate stress, participants took part in an adaptation of the Trier

10



Figure 3.2: WESAD data collection protocol
(Source: Schmidt et al., 2018)

Figure 3.3: Subject 2’s valence and arousal across
data collection Version B

Social Stress Test (TSST). Schmidt et al.’s version of the TSST required participants to deliver a three-
minute speech about their strengths and weaknesses to a panel of three graduate faculty members. After
the speech, subjects were told to count down from 2023 to zero in increments of 17 - any mistake would
restart the countdown. To bring the subjects back down to a neutral affective state, participants took part
in a seven-minute guided audio meditation session after both the stress and amusement portions of the
study. Additionally, subjects were given a rest period after the stress session that was separate from the
guided meditation. In total, data collection lasted around two hours per subject. Slight variations were
made to the data collection schedule in an effort to introduce variance into stressed and amused samples.
The two main WESAD data collection schedules are detailed in Figure 3.2.

The red sections pictured in Figure 3.2 represent times when subjects were instructed to complete
periodic mental health self-assessments. These assessments include: PANAS (see Figure 3.5), STAI (see
Figure 3.4), and SAM. The results of these assessments were then used to verify the goal of each data
collection session (see Table 3.2). Schmidt et al. (2018) note that the average PANAS, STAI, and SAM
scores across subjects indicates higher levels of engagement and distress after the stress session, and lower
feelings of anxiety after the amusement session. For example, as seen in Figure 3.3, Subject 2 experiences
heightened levels of arousal during the stress session that subside after meditation.

11



Table 3.2: Questionnaire evaluation (Source: Schmidt et al., 2018)
PANAS SAM STAI

Session Positive Negative Valence Arousal

Baseline 25.5± 6.0 12.3± 2.0 6.7± 0.9 2.5± 0.9 10.8± 1.9

Stress 31.3± 4.7 22.0± 6.4 4.5± 1.6 6.8± 1.8 18.5± 2.0

Amusement 25.8± 5.1 11.4± 2.1 7.5± 0.6 3.0± 1.6 9.3± 2.0

These findings suggest that the WESAD data collection methodology was mostly successful in eliciting
the emotional states that Schmidt et al. intended to capture with each session. Still, there are only minor
differences in the results of each self-assessment between baseline and amusement sessions. Moreover,
the amusement session was successful in reducing stress levels, but it is unclear whether subjects truly felt
amused with Schmidt et al.’s emotion elicitation approach.

Figure 3.4: Sample STAI self-assessment
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Figure 3.5: Sample PANAS self-assessment (Source: Watson et al., 1988)
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Chapter 4

Methodology

4.1 Tasks
Given the fact that WESAD labels its contents by both data collection sessions (baseline, stress, amusement,
meditation) and mental health self-assessments, it is worth exploring the relationship between the available
signals and a number of target variables and their representations. If we formally define a classification
model as

y = f(x|θ); x ∈ Rn (4.1)

where f is a user defined function that estimates a mapping between an input x and discrete variable y
given some number of learned parameters θ, we can define a WESAD classification task as

Ttask = {0, 1, ..., n} (4.2)

where Ttask represents the set of possible classification outputs that f can map its input feature set x to.

4.1.1 TSession

Consider three WESAD data collection session types: baseline, stress, and amusement. If we map each
session condition to 0, 1, and 2 respectively, we can defineTSession as a multi-class classification task where

TSession = {0, 1, 2} (4.3)

In an effort to preserve the size of our data set, baseline and meditation sessions are combined to make up
class 0.

4.1.2 TPANAS

Consider the PANAS self-assessment pictured in Figure 3.5, where exam results are denoted by two mea-
sures, PA (positive affect) and NA (negative affect), ranging from 10 − 50. We define TPANAS as a
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multi-class multi-output classification task, where PA and NA are each discretized into four equal width
bins and used as subtasks TPA and TNA. Moreover, we define TPANAS as

TPANAS = {TPA × TNA} (4.4)

where bin 0 maps to [10, 19], bin 1 maps to [20, 29], bin 2 maps to [30, 39], and bin 3 maps to [40, 50]

for both TPA and TNA.

4.1.3 TSTAI

Similar to PANAS, the STAI assessment requires subjects to rate statements about their emotional state
on a 4 point Likert scale. The values attributed to each statement are aggregated and used to represent
the overall magnitude of a subject’s stress level. We discretize this aggregated score into three bins that are
used as labels in TSTAI . Formally, TSTAI is defined as a multi-class classification task

TSTAI = {0, 1, 2} (4.5)

where classes 0, 1, and 2 represent the ranges [1, 8], [9, 14], and [15, 24] respectively. Notice that bin 1 is
narrower than bins 0 and 2; due to the skew of STAI responses in WESAD, we chose bin widths that do
not result in empty bins so as to keep TSTAI as a three-class task.

4.1.4 TSAM

In the context of WESAD, the SAM was used to place subjects on the valence-arousal scale (see Figures 2.1
and 2.2). Valence and arousal each range from 1− 9, and for TSAM , these axes are each divided into equal
width bins, where bin 0 maps to [1, 3], bin 1 maps to [4, 6], and bin 2 maps to [7, 9]. We define TSAM

as a multi-class multi-output classification task comprised of subtasks TV alence and TArousal, where the
output of TSAM is denoted by

TSAM = {TV alence × TArousal} (4.6)
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Figure 4.1: Class distribution for each WESAD task. Significant class imbalance is present across all tasks.

4.2 Features and Signals
When selecting input features from WESAD for ASR-related tasks, it important that we consider indi-
vidual signal modalities, their sampling rates, and how easily they can be measured in an everyday setting.
Further, the goal of this work is to introduce a practical framework for evaluating mental health from the
physiological signals collected exclusively via wrist-worn wearables; we focus our feature set on a mixture
of signals collected with both the RespiBAN Professional chest sensor and Empatica E4 wrist sensor to
maximize the number of modalities available, while remaining faithful to wrist measurements whenever
possible. Specifically, we solely rely on the RespiBAN Professional for ECG, EMG, and RESP measure-
ments, while all remaining signal modalities come from the wrist sensor (i.e., ACC, TEMP, EDA, and
BVP). It is true that chest sensors can, and normally do, produce more accurate measurements than wrist-
worn devices, but recent studies suggest that signals measured across the chest and wrist have comparable
predictive power over affective states (Pinge et al., 2022). Moreover, the inclusion of chest-measured signals
in this study can be attributed to data availability constraints. A full list of features and their descriptions
is detailed in Table 4.1.

4.2.1 Signal Preprocessing
To effectively use signals collected from both the chest and wrist, we employ a Fourier based resampling
method to match the sampling frequency of each signal modality to 70Hz.1 This sampling rate was chosen

1Fourier-transform based resampling was accomplished with SciPy, an open source Python library for general signal pro-
cessing. See https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.html for more details.
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to preserve the interpretability of our high-fidelity chest measurements while also keeping signal length
within reason for further processing (Mahdiani et al., 2015).

4.2.2 Feature Extraction
In the context of our time series analysis, feature extraction involves deriving insightful measures from
individual time segments. If we consider ACC to be comprised of three separate signals: ACCX, ACCY,
and ACCZ, the following statistical features are extracted from ECG, RESP, ACC, TEMP, EDA, BVP,
and EMG signals:

• minimum

• maximum

• mean

• standard deviation

Additionally, the peak detection algorithm proposed by Christov (2004) is used to extract individual heart-
beats from the ECG measurements of each subject;2 segmenting signal peaks and beat-to-beat intervals
from an ECG is a crucial initial step towards calculating HRV and a number of HRV-related metrics.
When interpreting an ECG as influxes in voltage during the cardiac cycle over time where periodic voltage
spikes are identified as instantaneous heartbeats, we can use a peak detection algorithm d to identify the
times in which heartbeats occur over the duration of an ECG signal e. Consider

t = d(e) (4.7)

to represent the set of times in which peaks are detected in e; the set of all beat-to-beat intervals in e can
be represented by

Intervals = {ti+1 − ti|1 ≤ i < |t| − 1} (4.8)

We continue by deriving the following signal specific features from Intervals:

SDNN =

√√√√ 1

|Intervals| − 1

|Intervals|∑
n=1

(Intervalsn − Intervalsµ)2 (4.9)

RMSSD =

√√√√ 1

|Intervals| − 1

|Intervals|∑
n=1

Intervals2n (4.10)

2ECG peak detection and HRV metric calculation is performed using pyHRV, an open source Python library for physio-
logical signal processing. Source code is available at https://github.com/PGomes92/pyhrv.

17

https://github.com/PGomes92/pyhrv


SDNN represents the standard deviation of all beat-to-beat intervals and RMSSD represents the root
mean square of all beat-to-beat intervals.

It is worth mentioning that the statistical and signal specific features described in Table 4.1 are extracted
in a sliding window fashion, where the window size is 60 seconds and the window shift is 0.25 seconds
(Kreibig, 2010; Schmidt et al., 2018). With a sampling rate of 70 Hz, our preprocessing schema generates
161886 individual windows of 4200 time steps in length.

Table 4.1: Signals and features used after feature selection and preprocessing
Signal Source Feature Description

ACC Wrist

ACCX,Y,Zµ

ACCX,Y,Zσ

ACCX,Y,Zmin

ACCX,Y,Zmax

Mean acceleration in the x, y, or z axis
Standard deviation of acceleration in the x, y, or z axis

Minimum acceleration in the x, y, or z axis
Maximum acceleration in the x, y, or z axis

ECG Chest

ECGµ

ECGσ

ECGmin

ECGmax

SDNN
RMSSD

Mean electrocardiogram voltage
Standard deviation of electrocardiogram voltage

Minimum electrocardiogram voltage
Maximum electrocardiogram voltage

Standard deviation of Intervals
Root mean square of Intervals

TEMP Wrist

TEMPµ

TEMPσ

TEMPmin

TEMPmax

Mean temperature
Standard deviation of temperature

Minimum temperature
Maximum temperature

EDA Wrist

EDAµ

EDAσ

EDAmin

EDAmax

Mean electrodermal voltage
Standard deviation of electrodermal voltage

Minimum electrodermal voltage
Maximum electrodermal voltage

BVP Wrist

BV Pµ

BV Pσ

BV Pmin

BV Pmax

Mean blood volume pulse
Standard deviation of blood volume pulse

Minimum blood volume pulse
Maximum blood volume pulse

EMG Chest

EMGµ

EMGσ

EMGmin

EMGmax

Mean electromyography voltage
Standard deviation of electromyography voltage

Minimum electromyography voltage
Maximum electromyography voltage

RESP Chest

RESPµ

RESPσ

RESPmin

RESPmax

Mean respiration rate
Standard deviation of respiration rate

Minimum respiration rate
Maximum respiration rate
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Additionally, prior to being used as inputs to any statistical models, these windows undergo z-score
normalization.

xnormalized =
x− µ

σ
(4.11)

4.3 Baseline Classification Algorithms
In accordance with the approaches of Schmidt et al. (2018) and Garg et al. (2021), we train the following
machine learning classifiers to learn a mapping between the manually extracted features in Table 4.1 and
the labels in TSession for comparison with deep learning models:

1. k - nearest neighbors

2. Decision tree

3. Random forest

4. AdaBoost

5. Linear discriminant analysis

6. Gradient boosting

Relevant hyperparameter and training details specific to each model are covered in the next chapter.

4.4 Our Approach
While using manual extracted features for supervised TSC can certainly yield favorable results, perfor-
mance on downstream tasks is often reliant on one’s domain expertise and the quality of the input features
in question. Deep learning architectures, on the other hand, circumvent this issue by learning to extract
meaningful features from raw input signals, instead of these features being specified beforehand. We
propose an end-to-end network that takes raw, 60-second ACC, ECG, TEMP, EDA, BVP, EMG, and
RESP windows as inputs.
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Figure 4.2: Overview of TAASR, our proposed classification architecture. It consists of a modified Incep-
tionTime module (d) with efficient channel attention (e) and a global feature fusion branch (b).

Each signal modality is normalized separately before being fed into a feature extraction network (Fig-
ure 4.2.a) comprised of three InceptionTime modules (Figure 4.2.d) (Fawaz et al., 2019) with Efficient-
Channel-Attention based feature refinement (Figure 4.2.e) (Wang et al., 2019), joined by a residual con-
nection. When combined, these layers enable TAASR to learn which features from which time frames
are the most important at increasingly complex levels of abstraction. Next, global average pooling is used
to produce a translation invariant vector vI from InceptionTime feature maps encoding physiological
information extracted over 1, 5, and 10 second windows. vI is then fused via concatenation with vG, a
vector of globally extracted features from Table 4.1, to form vF , a multi-level, temporally-aware, signal
representation vector. vG is comprised of SDNN , RMSSD, and the min and max values of each input
modality. Mean and standard deviation are excluded from vG since their values remain constant across
normalized windows (µ = 0, σ = 1). vF is passed through an MLP classification head (Figure 4.2.c)
with one hidden layer before the softmax activation function is used to generate output class probabilities.
In total, TAASR is comprised of 489726 trainable parameters. We train this architecture to specifically
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perform the TSession three-class classification task, but we also explore augmenting the TSession training
process via multi-task learning with mental health self-assessments. Experiments and results are detailed
thoroughly in the following chapter.

4.4.1 InceptionTime
Classifying 60-second windows of raw physiological signals poses an interesting challenge - with a length
of 4200 time steps per input sequence, any model applied to our data set must be able to efficiently capture
extraordinarily long-term dependencies. While LSTM networks have been historically championed as
long time lag task solvers (Hochreiter and Schmidhuber, 1997), recent empirical evaluations of sequence
modeling approaches suggest that CNNs are more adept at handling lengthy input sequences (Bai et
al., 2018). We follow this intuition by building upon a vanilla InceptionTime network for the feature
extraction backbone of TAASR.

Fawaz et al.’s proposed InceptionTime architecture consists of three InceptionTime modules joined
by a residual connection. Each InceptionTime module is comprised of:

1. a bottleneck layer that reduces the dimensionality of the input time series from M to m < M .
This reduces model complexity and should encourage generalization. Max pooling is also used to
feed a down sampled version of the inputs through another bottleneck layer, making the model
invariant to small perturbations (Fawaz et al., 2019). We tested several different bottleneck sizes and
found that a dimensionality of 16 yields the most favorable results. It may seem counter intuitive
that our bottleneck layer increases model complexity, rather than decreasing it, but any attempts
to set its size < 16 resulted in training instability and reduced performance.

2. a CNN ensemble layer. Three one-dimensional CNNs with varying kernel lengths are used for
hierarchical feature extraction. Fawaz et al. (2019) set their kernel sizes to 10, 20, and 40 with 32

filters each. We set our InceptionTime module kernel sizes to 70, 350, and 700 with 16 filters each
- these expanded kernels help TAASR capture dependencies over lengthy input sequences. With
fewer output classes compared to the tasks covered in the original InceptionTime paper, fewer
features are needed to learn TSession, hence our decision to reduce the number of filters to 16.

3. hierarchical feature map concatenation. The outputs of the bottleneck and CNN ensemble layers
are concatenated depth-wise to form a final feature map with 4× number of filters dimensions.

Stacking InceptionTime modules atop one another enables the network to gradually extract high and
low-level features from the input time series, and the residual connection permits easy flow of information
throughout the architecture as a whole.

4.4.2 Channel Attention
The concept of attention, or the brain’s ability to "focus on what’s important", has recently gained pop-
ularity among deep learning researchers. In practice, a multitude of neural attention mechanisms have
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been used to improve the performance of natural language processing (Vaswani et al., 2017) and computer
vision (Woo et al., 2018) systems.

Figure 4.3: Squeeze-and-Excitation Block (Source: Hu et al., 2017)

One such attention mechanism, Squeeze-and-Excitation (SENet)(Figure 4.3), serves as a CNN feature
refinement module that uses global channel interdependencies to accentuate important features and
suppress less informative ones (Hu et al., 2017). The first component of SENet, squeeze, uses global average
pooling to spatially compress a CNN’s outputU of sizeC×W×H into a global information embedding
vectorS of size 1×1×C . Next, in the excitation phase,S is passed through a multi-layer perceptron with
ReLU activations to capture non-linear dependencies between channels before the sigmoid function is
used to generate channel weights, forming a recalibrated global information vector E. Finally, channel-
wise multiplication between E and U results in a recalibrated set of CNN feature maps X̃ .

While Hu et al. (2017) demonstrate that SENet achieves state-of-the-art performance across many tasks,
with Efficient Channel Attention (ECANet) (Figure 4.2.e), Wang et al. (2019) suggest that capturing cross-
channel dependencies with a multi-layer perceptron adds unnecessary complexity to the overall channel
attention architecture. Moreover, ECANet improves upon the computational efficiency of SENet by
modeling cross-channel interactions in S with 1D convolutions of size k, where k represents the number
of neighboring channels that can impact a given channel’s predicted attention weight (Wang et al., 2019).
This convolution is depth preserving, eliminating the need for dimensionality reduction to produce E
as performed in SENet’s bottlenecked MLP (excitation). The kernel size k of ECANet is adaptively
determined by

k =

∣∣∣∣ log2(C)

γ
+

b

γ

∣∣∣∣
odd

(4.12)

where C is the number of channels and γ and b are manually determined hyperparameters. The result of
this calculation should be rounded to the nearest odd number. Wang et al. set γ and b to 2 and 1 respec-
tively. In a similar fashion to SENet, ECANet produces a pseudo-global information embedding vector
of size 1× 1× C that is passed through the sigmoid activation before being used to recalibrate its input
feature maps. With 64 output channels from TAASR’s InceptionTime backbone, we use the aforemen-
tioned hyperparameters with Equation 4.12 to get a k of three for TAASR’s channel attention module.
As depicted in Figure 4.2.d, ECANet is the terminal architectural component of each of TAASR’s In-
ceptionTime modules, outputting refined feature maps that are batch normalized and fed through the
ReLU activation function before being propagated through successive InceptionTime layers.
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4.4.3 MLP Classification Head
The final component of TAASR, an MLP classification head, uses vF , a multi-level, temporally-aware
representation vector generated via global average pooling on InceptionTime feature maps, to output class
probabilities for any given training task. As depicted in Figure 4.2.c, our classification head is comprised
of an input layer, one hidden layer, and an output layer. vF is compressed from 84 features to 32 features
in the hidden layer before being further reduced to the number of classes in the output layer. ReLU
activation is used in the hidden layer to help the classification head learn non-linear relationships between
affective states, and dropout (p = 0.5) between layers helps mitigate overfitting during training (Srivastava
et al., 2014).

4.5 Evaluation

Figure 4.4: Example of leave-two-subjects-out cross-validation with 8 subjects

Due to the imbalanced nature of our classification tasks, both accuracy and F1-score are used to evaluate
each model’s performance. In the multi-class setting,F1-score is calculated for each individual class and av-
eraged to obtain a final measurement. Evaluation is performed via leave-two-subjects-out cross-validation
to ensure generalization to unseen subjects (see Figure 4.4). Prior works (Schmidt et al., 2018; Rashid et al.,
2021; Huynh et al., 2021) utilize LOSO (leave-one-subject-out) cross-validation, but due to computational
restraints we reserve two subjects for each cross-validation fold, resulting in seven training splits. Since
there are 15 subjects in WESAD, the last fold includes three subjects.
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Chapter 5

Experiments and Results

5.1 Experimental Setup

5.1.1 Software and Hardware
All experiments described in this section were conducted with Python on an NVIDIA V100 GPU pro-
vided by Google Cloud Computing Services. PyTorch was used for the development of TAASR and
Scikit-learn was used for all baseline classification algorithms.

5.1.2 Baseline Hyperparameters
We employ a grid-search based hyperparameter optimization scheme to tune each baseline classification
algorithm in a brute-force fashion. For kNN, we find that classification accuracy and F1-score are fairly
resistant to any changes in k, the number of neighbors to be considered for any given prediction. A grid
search over [1, 10] results in an optimal k of 5. Conversely, for our data set, AdaBoost, random forest,
and gradient boosting are significantly more sensitive to hyperparameter tuning. We train and evaluate
each of the aforementioned learning algorithms with ensemble sizes n_estimators between 10 and 100

in increments of 10, resulting in tuned ensembles sizes of 30, 90, and 100 for AdaBoost, random forest,
and gradient boosting respectively (see Figure 5.1). For each tree based algorithm, the minimum number
of samples required to split a node is set to 20 (Schmidt et al., 2018).
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Figure 5.1: Ensemble classification algorithm performance when varying n_estimators. Optimal perfor-
mance for AdaBoost is reached at 30 estimators, while larger ensemble sizes (i.e., 90 and 100) are needed
to reach optimal performance for random forest and gradient boosting.

5.1.3 Training TAASR
In order to make consistent comparisons and highlight any architectural improvements between TAASR
and InceptionTime, we borrow numerous hyperparameter values vital to training from the original Incep-
tionTime paper (Fawaz et al., 2019). This includes optimizer (Adam), learning rate (0.0001), and batch
size (64). TAASR is trained with categorical cross-entropy loss for 10 epochs to satisfy the multi-class
nature of TSession. Early stopping is used to terminate training after three consecutive epochs of increas-
ing loss. To remedy class imbalance in TSession, each term of categorical cross-entropy is scaled by a class
weight given by

wc =
num_samples

num_classes× num_samplesc
(5.1)

Furthermore, the loss of some sample o is calculated by a weighted sum of cross-entropy for each class c,
where classes with fewer samples are increasingly penalized by wc, and only the ground truth class term
(yc = 1) contributes to the overall total. By scrutinizing predictions for minority classes we prevent
TAASR from overfitting to overrepresented training examples.

L(o) = −
C∑
c=1

wcyc log(f(o)c) (5.2)
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5.2 Incrementally Modifying InceptionTime for TSession

Table 5.1: Accuracy and F1-score for each InceptionTime variant trained to highlight the benefits of our
contributions. ksmall denotes k ∈ {10, 20, 40}, klarge denotes k ∈ {70, 350, 700}, and d denotes the
depth of the network.

InceptionTime variant TSession

Accuracy (%) F1-score

ksmall, d = 1 64.91± 1.82 48.18± 2.19

klarge, d = 1 66.80± 1.34 53.77± 0.93

ksmall, d = 3 71.47± 0.84 57.32± 0.99

klarge, d = 3 72.99± 1.24 59.06± 1.20

klarge, d = 3, w/ fusion 75.05± 1.08 62.09± 0.87

klarge, d = 3 , w/ fusion and attention 81.12± 1.40 68.95± 0.85

To demonstrate the effectiveness of TAASR as an end-to-end learning architecture for TSession, we begin
by experimenting with a vanilla InceptionTime network with 1 layer and train models of continually
increasing complexity until the full TAASR setup is reached. The results of these experiments are listed
in Table 5.1

A single InceptionTime module with basic kernel sizes k ∈ {10, 20, 40} is less accurate than sophis-
ticated guessing (64.91% vs. 66.17%), but this is expected, since: (1) with a sufficiently large data set,
deeper networks are better at generalizing (LeCun et al., 2015) and (2) the kernel sizes proposed by Fawaz
et al. (2019) have little capacity to capture meaningful patterns given our input sampling frequency of 70
Hz. By simply increasing the kernel sizes to k ∈ {70, 350, 700} to cover 1, 5, and 10 second windows,
we observe a ≈ 2% increase in accuracy and a ≈ 5% increase in F1-score. Still, with just one layer, this
basic architecture learns feature maps at only one level of abstraction. To remedy this shortcoming, we
chain three InceptionTime modules together and perform two separate training runs - one with small
kernels and one with large kernels - to demonstrate the importance of network depth and proper receptive
field sizes. This results in significant increases in both accuracy and F1-score for each model - we report an
accuracy of 71.47% and an F1-score of 57.32 for InceptionTime with three layers and basic kernels and
an accuracy of 72.99% and an F1-score of 59.06 for InceptionTime with three layers and large kernels.
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Figure 5.2: InceptionTime (klarge) performance for TSession when varying network depth

It is worth noting that any attempts to train InceptionTime variants with more than three layers
resulted in noticeable drops in both accuracy and F1-score, highlighting a distinct trade-off between
model complexity and performance when optimizing for TSession (see Figure 5.2).

In our next experiment, we build upon a three layer InceptionTime network with big kernels by fusing
its output representation with manually extracted global statistics. Each InceptionTime module learns
to extract meaningful features over three individual time scales, and while we can always incorporate
additional CNNs into the InceptionTime ensemble to expand the architecture’s degree of multi-level
awareness, this could lead to over-parameterization and longer training times. For simplicity, we leverage
a number of the features in Table 4.1 to give the model understanding over a 60-second time frame. More-
over, when combining learned features with global window summary statistics via vector concatenation,
and providing the network with explicit HRV information, we observe a ≈ 2% increase in accuracy and
a ≈ 3% increase in F1-score over the previous best InceptionTime variant with minimal increases to
network complexity.

Finally, we explore the effect of incorporating an attention module into each of the three Incep-
tionTime modules in TAASR’s feature extraction backbone. By enabling InceptionTime to recalibrate
extracted features at several stages of abstraction, we anticipate that a more nuanced understanding of
TSession will be propagated through the network as a whole, resulting in compounded performance bene-
fits from TAASR’s individual components. The full TAASR architecture sees increases of ≈ 6% to both
accuracy and F1-score when augmented with ECANet. Interestingly, training converged after six epochs,
close to double the average training length of our previous experiments, demonstrating that TAASR’s
superior classification performance comes from an improved ability to recognize affective states which
emerges further along in training.
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5.3 Multi-Task Learning
Multi-task learning (MTL) describes a paradigm for training machine learning models where individual
but related tasks are learned simultaneously so as to improve task-specific performance (Caruana, 1998).
Here, to make use of the MTL framework, we make the assumption that data collection sessions in
TSession are inherently related to the outcomes of mental health self-assessments (i.e., TSTAI , TPA, TNA)
collected in WESAD. For example, subjects participating in a stress session may systematically report
higher levels of stress in each self-assessment, whereas average levels of valence and arousal may be exclu-
sively reported during baseline sessions. Further, when considering these cross-task relationships, it is
certainly worth exploring modifying a single TAASR model to handle multiple classification tasks to
augment the performance of our main focus, TSession.

Figure 5.3: High-level overview of TAASR-MT

TAASR-MT (see Figure 5.3), our proposed multi-task version of TAASR, consists of a shared trunk
with task-specific MLP classification heads - a setup commonly referred to as hard parameter sharing
(Ruder, 2017). This architecture enables feature extraction to be learned jointly, producing a task-agnostic
representation vector vF that can be tuned for further use in any number of independent classification
branches.

Given the multi-class nature of the tasks we derive from WESAD, each classification head’s task-
specific understanding is given by weighted categorical cross-entropy, while the sum of losses across tasks
is used to optimize the network as a whole. We formally define TAASR-MT’s loss function, LMT , as a
multi-task loss where the multi-task cross-entropy of a sample o is given by the sum of the losses of each
task t in some global task set T .

LMT (o) = −
T∑
t=1

C∑
c=1

wt,cyt,c log(f(o)c) (5.3)

After training TAASR-MT according to the experimental setup described in Section 5.1.3 with a re-
vised loss function, we observe convergence after an average of 6.85 ± 0.47 epochs, which is slightly
longer than a specialized TAASR architecture’s training time. TAASR-MT’s multi-task learning ob-
jective yields a ≈ 1% increase in TSession F1-score, indicating a degree of positive transfer between the
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Table 5.2: Accuracy and F1-score for each task used to train a multi-headed TAASR architecture with
multi-task loss

Task TAASR-MT

Accuracy (%) F1-score

TSession 76.54± 1.28 70.02± 0.74
TPA 54.07± 2.23 51.19± 2.40
TNA 84.67± 1.16 80.72± 0.99
TSTAI 33.15± 3.48 16.70± 2.67
TV alence 90.43± 0.91 90.33± 1.88
TArousal 81.16± 1.59 74.57± 1.37

knowledge needed to classify WESAD data collection sessions and mental health self-assessments from
physiological signal snapshots. Conversely, we see a ≈ 5% dip in TSession accuracy attributed to negative
transfer from poorly learned tasks (i.e. TPA and TSTAI). Moreover, self-assessment results vary only sub-
tly across WESAD data collection sessions, making class separation difficult (Schmidt et al., 2018). Our
assessment discretization scheme may further contribute to assessment-specific learning challenges and
negative transfer by removing any useful information provided by continuous assessment representations.
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5.4 Results

Table 5.3: Accuracy and F1-score of models trained for the TSession classification task (baseline vs. stressed
vs. amused)

Classification algorithm TSession

Accuracy (%) F1-score

AdaBoost 75.11± 0.69 51.44± 1.15

LDA 76.56± 0.88 58.07± 0.83

kNN 57.90± 1.05 42.99± 2.24

Decision tree 66.97± 1.27 52.48± 0.98

Random forest 74.90± 1.12 51.93± 0.90

Gradient boosting 73.88± 0.64 51.24± 0.71

InceptionTime 71.47± 0.84 57.32± 0.99

TAASR 81.12± 1.40 68.95± 0.85

TAASR-MT 76.54± 1.28 70.02± 0.74

Random guess 33.33 29.42

Sophisticated guess 66.17 26.68

A full comparison between baseline classification algorithms, InceptionTime, TAASR, and TAASR-MT
is detailed in Table 5.3. With an accuracy of 76.56 ± 0.88% and an F1-score of 58.07 ± 0.83, LDA
trained with hand-crafted inputs performs better than vanilla InceptionTime across each classification
metric, indicating that end-to-end learning techniques for TSC are not necessarily sufficient for task-
specific performance improvements. Conversely, while AdaBoost, kNN, decision tree, random forest,
and gradient boosting outperform InceptionTime in terms of accuracy, their F1-scores indicate poor
classification robustness on TSession. In this case, the benefits of end-to-end learning are immense, but
only observed after incorporating channel attention, properly sized receptive fields, and multi-task learning
(optionally) into InceptionTime.
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Figure 5.4: TAASR confusion matrix for TSession

Table 5.4: TAASR’s class-specific performance
Class Accuracy (%) F1-score

Baseline/Calm 90.85 90.83

Amusement 44.47 42.31

Stress 71.38 73.71

Depicted in Figure 5.4 is the confusion matrix for TAASR’s TSession predictions over each cross-
validation fold. As shown in Table 5.4, 90.85% of all baseline samples and 71.38% of all stress samples
were positively identified, but just 44.47% of amusement samples were classified correctly. While TAASR
often confuses amusement samples for baseline ones, our amusement-specific accuracy outperforms that
of Schmidt et al. (2018) by≈ 10%. It is worth noting that Schmidt et al. report a superior overallF1-score
to both TAASR and TAASR-MT (72.51±0.17) with AdaBoost trained exclusively on manually extracted
chest based sensor inputs, and inferior performance when wrist based signals are included. We use signals
collected on the wrist whenever possible to present results consistent with practically collected data (i.e.,
everyday affective state recognition is most practically accomplished with wrist based wearables; chest
sensors can be cumbersome and uncomfortable) and report a higher classification accuracy by ≈ 1% and
an F1-score within 2% of their best performing chest based model. Additionally, TAASR and TAASR-
MT outperform Schmidt et al.’s best wrist based model by ≈ 5% for accuracy and ≈ 4 for F1-score,
but direct comparisons should be interpreted with caution given our mixed feature set and altered cross-
validation scheme.

Huynh et al. (2021) also applied deep learning methods to WESAD with StressNAS, a chest based
deep CNN optimized with a neural architecture search. They report a best classification accuracy of
83.43% forTSession, outperforming both TAASR and Schmidt et al.’s AdaBoost, but only after a 50 hour
architecture ranking process. Huynh et al. also train and evaluate a fully connected MLP and a ResNet-
like architecture on chest based ACC, EDA, BVP, and TEMP signals for comparison with StressNAS.
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They report accuracies of 78.11% and 79.48% for each of the aforementioned models, narrowly under-
performing TAASR. Nevertheless, Huynh et al. fail to include F1-scores for any of their StressNAS
experiments, so it is unclear whether their ASR approach holds any merit.
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Chapter 6

Concluding Remarks

6.1 Conclusion
In this work, we investigated deep learning approaches with primarily wrist based input features for af-
fective state recognition, and compared their performance with alternative machine learning approaches.
Through training a modified InceptionTime network - TAASR - we were able to successfully capture
hierarchical temporal dependencies from ECG, RESP, EMG, TEMP, ACC, BVP, and EDA signals for
various emotion classification tasks.

To justify TAASR as an improvement over Fawaz et al.’s (2019) InceptionTime, we conducted a series
of experiments that built upon a single InceptionTime module, highlighting the performance benefits
of TAASR’s individual components. Our experiments explored network depth, convolutional kernel
sizes, incorporating globally extracted features, and attention for iterative feature refinement. Further,
we improved TAASR’s TSession classification robustness with TAASR-MT, a multi-task network that
uses hard parameter sharing and multi-task loss to transfer knowledge across session and mental health
self-assessment classification tasks.

In a three-class setting, TAASR demonstrates a strong ability to recognize baseline/calm and stress
samples, whereas identifying amusement samples proves to be a more difficult undertaking. Nevertheless,
results indicate that our end-to-end learning approach is more accurate than various baseline architectures
that make use of similar input features - and comparable to those that make exclusive use of high fidelity
chest signals. Moreover, by evaluating TAASR and TAASR-MT with a leave-two-subjects-out cross-
validation scheme, we demonstrate that generalization to unseen subjects is possible with learned feature
extraction.

6.2 Implications and Ethical Concerns
Portable ASR systems can help physicians and public health officials easily gather important characteristics
about their patients and subjects of study. For example, TAASR-MT’s ability to predict the binned
outcome of certain self-assessments could enable physicians to rapidly identify and diagnose, or confirm
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the diagnosis of mental health disorders like depression and anxiety. Further, should wearables detect
increased levels of stress or calmness in certain populations, public health officials can use this information
to develop policies and programs catered to specific communities. Hospitals could also use automatic
ASR monitoring to track their patient’s pain levels after a risky procedure (Campbell et al., 2019). In a
commercial setting, mobile applications could be integrated with TAASR, permitting smartwatch owners
to use their devices to reinforce healthy lifestyle choices.

Despite these use cases, many see mental health as something that should remain private. In an age
where society is hyperfocused on data privacy and digital rights, the idea that wearables have the ability
(to some degree) to understand how you feel would likely be unsettling to most. Any physiological data
used for such an application should be treated with the utmost care to ensure privacy and prevent misuse,
and those with access to sensitive records should be diligently screened. Further, concerns over misuse
could hinder widespread public adoption of wearables, making it difficult to improve ASR systems with
larger and more informative data sets.

6.3 Limitations and Future Work
Although TAASR demonstrates reasonably good performance onTSession, the limited number of subjects
(n = 15) contained in WESAD highlights a need for further ASR data collection studies with wearable
devices. Additionally, given the fact that the baseline, amusement, and stress sessions were conducted
in accordance with specific activities, TAASR may have difficulty generalizing to new environments,
even if they are associated with predictable affective states. For example, when participating in physically
demanding activities, a high heart rate and excessive skin moisture should not necessarily be equated with
stress. This shortcoming could be addressed by incorporating both location data and activity recognition
systems (Yazdansepas et al., 2016) into the complete ASR pipeline.

Future work should be concerned with several topics. First, differentially private federated learning
could be used to train TAASR in a safe and responsible manner, thus addressing several ethical concerns.
Next, on top of pseudo-global channel attention provided by ECANet (Wang et al., 2019), spatial attention
could be incorporated with TAASR’s InceptionTime modules to give the network localized focus of
individual CNN feature maps. Additionally, learned weighting of TAASR-MT’s multi-task loss (Kendall
et al., 2017) could remedy negative transfer so that poorly learned tasks contribute less to the model’s
learning objective. Investigating new self-assessment representation schemes could also be an easy way to
further optimize TAASR-MT training. Given the relatively fuzzy differentiation between amusement
and baseline samples in WESAD, pre-training TAASR with supervised contrastive loss (Khosla et al.,
2020) could result in better class separability without the need for further data collection sessions.
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