
A COMPREHENSIVE FRAMEWORK

FOR THE SNAKE-IN-THE-BOX PROBLEM

by

Christopher A. Taylor

(Under the direction of Don Potter)

Abstract

The snake-in-the-box problem was posed by Kautz [5] in the context of coding theory in

1958 and is essentially the problem of finding the longest path in an n-dimensional hyper-

cube subject to a simple set of constraints. Finding the longest path for dimensions greater

than 7 is an open problem and cannot be solved with exhaustive search techniques due to

explosiveness of the search space. Many interesting and creative techniques have been used

to try to solve this problem, and this thesis continues that tradition by developing a novel

computational and visualization framework aimed to speedily facilitate the evaluation of

computational heuristic ideas.

Index words: Hypercube, Heuristic Search, Graph Theory,
Visualization, Constraint Satisfaction

A COMPREHENSIVE FRAMEWORK

FOR THE SNAKE-IN-THE-BOX PROBLEM

by

Christopher A. Taylor

B.S., Western Carolina University, 1998

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2007

c© 2007

Christopher A. Taylor

All Rights Reserved

A COMPREHENSIVE FRAMEWORK

FOR THE SNAKE-IN-THE-BOX PROBLEM

by

Christopher A. Taylor

Approved:

Major Professor: Don Potter

Committee: Khaled Rasheed

Robert Robinson

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

December 2007

Dedication

To my wife Christa and daughters Sarah and Sage, without them in my life I would be

uninspired.

iv

Acknowledgments

This thesis would not have been possible without the help of many people. I would especially

like to thank Dr. Potter for steering me in a practical direction. Thanks to Dr. Robinson for

taking time to speak with me about some of the mathematical aspects of this problem. Dr.

Rasheed also offered motivational words at a time in which my project was staggering.

I have to thank Dr. Lee Pratt and his wife Dr. Marie-Michele Pratt. They have been so

supportive of my effort to complete this thesis that it is impossible for me to adequately

characterize their support with words. My current employer, Dr. Steven J. Knapp was very

understanding and gave me the time I needed to finish. In the very early stages of the project,

a very nice lady named Jeannie McElhannon allowed me to work in a nice executive office

where I scratched out the initial ideas for the visualization environment.

Finally, my wife has been so patient throughout this entire graduate experience. Her

efforts have kept me balanced during times when balance was incredibly difficult to maintain.

v

Table of Contents

Page

Acknowledgments . v

Chapter

1 INTRODUCTION . 1

2 OVERVIEW OF THE FRAMEWORK 5

2.1 RELEVANT APPROACHES IN THE LITERATURE 9

2.2 INTERACTIVE VISUALIZATION ENVIRONMENT BASICS 11

2.3 ’INTELLIGENT’ FEATURES OF THE FRAMEWORK . . . 14

2.4 PARTIAL PATH BRANCH AND BOUND SEARCH 19

3 BENEFIT OF THE PARTIAL PATH APPROACH 26

4 A CASE STUDY . 36

4.1 GAINING INTUITION . 36

4.2 THE K-CUBE HEURISTIC . 39

4.3 THE ITERATIVE IMPROVEMENT HEURISTIC 41

4.4 THE CASE FOR THE GENETIC ALGORITHM AND SIM-

ULATED ANNEALING . 49

5 CONCLUSION AND FUTURE DIRECTION 52

Bibliography . 55

Appendix

A USER GUIDE . 57

A.1 PPBBSM USER GUIDE . 57

vi

vii

A.2 IVE USER GUIDE . 58

B BASIC MODEL OF THE FRAMEWORK 61

C EXAMPLE INTERFACE IMPLEMENTATIONS 64

C.1 FORWARD NEIGHBOR SELECTOR 64

C.2 UPPER BOUND ESTIMATE 65

D PPBBSM SOURCE CODE . 68

E VALIDATION JUNIT TEST CASE EXAMPLE 70

Chapter 1

INTRODUCTION

The purpose of this research is to develop a comprehensive framework to help future

researchers solve the snake-in-the-box problem. The term “comprehensive” is used because

the framework strives to bridge the gap between theoretical mathematical approaches and

purely heuristic approaches. The snake-in-the-box problem is that of finding the longest

open-path in a multi-dimensional hypercube. In order to understand the contributions of

the framework, it is important to first understand snakes and hypercubes. In [3], Harary

introduces standard hypercube terminology. Qn represents an n-dimensional hypercube.

The vertices of the hypercube can be labeled with binary digits. For dimension n, the Qn

graph has 2n vertices. All edge connected vertices have a hamming distance of 1. Hamming

distance refers to the number of bits in which two binary digits differ. For example, the

binary digits 0001 and 0000 have a hamming distance of 1 while 0001 and 1110 have a

hamming distance of 4. The hypercube is defined recursively.

Q1 = K2; Qn = K2 × Qn−1 (1.1)

Equation 1.1 can be understood by imagining the complete graph on 2 vertices (a line

segment along the x-axis). To get from Q1 to Q2, draw lines from the vertices of Q1 in the

direction of the y-axis. Thus, Q2 is a square with a vertex at each corner. To get from Q2

to Q3 (a 3 dimensional cube), extend the square towards the z-axis. In general, going from

dimension n− 1 to n involves projecting a copy of Qn−1 onto some new axis and connecting

all the vertices between the Qn−1 graph and this projected copy.

1

2

Table 1.1: Moves for an optimal dimension four snake

Snake Move (edge) Skin Set Possible Move
0000-0001 0010,0100,1000 0011,0101,1001
0001-0011 0010,0100,1000,0101,1001 0111, 1011
0011-0111 0010,0100,1000,0101,1001,1011 0110, 1111
0111-0110 0010,0100,1000,0101,1001,1011,1111 1110
0110-1110 0010,0100,1000,0101,1001,1011,1111 1010,1100
1110-1100 0010,0100,1000,0101,1001,1011,1111,1010 1101
1100-1101 0010,0100,1000,0101,1001,1011,1111,1010

The snake-in-the-box problem has been described quite well in [8] and [9], but an example

that shows how hypercube vertices become inaccessible as a result of “moves” of the snake

will serve as a useful reference. Figure 1.1 shows a four-dimensional hypercube in two panels

that are side by side. The image on the left panel shows binary labeled vertices with the

right-most bit being the least significant. The snake starts from vertex labeled ’0000’ and

proceeds to ’0001’. The basic rule of the snake-in-the-box problem is that any vertex adjacent

to a vertex on the snake path is inaccessible. Inaccessible vertices are known as the “skin”.

At times, it will be useful to refer to the collection of inaccessible vertices as the skin set.

Table 1.1 demonstrates a list of moves showing a growing skin set when finding the optimal

dimension 4 snake.

Students learning about the snake-in-the-box problem commonly ask if the choice for

the start vertex makes a difference. The answer is no because of the symmetric nature of

the hypercube. This has led to the definition of a canonical snake. A canonical snake always

starts from the 0 vertex. Another defining characteristic of the canonical snake limits the

number of early choices a snake has. For example, table 1.1 shows that the first move is from

0000 to 0001. Actually, the only choice for a canonical snake is 0001 because the rule states

that if the snake aims to climb to a higher dimension (i.e., flip a bit to 1), and there is a choice

3

Figure 1.1: An example of a 4-dimensional hypercube with binary (left) and integer labeled
vertices (right). All canonical snakes start from 0000. The edges are color coded so that each
color corresponds to a change in a particular bit/dimension. For example, all yellow edges
represent jumps along the 4th dimension. The image to the right shows (in black) the edges
that compose the snake built from Table 1.1. While the path is forming, any vertex that is
adjacent to a vertex on the snake path but is not on the snake path becomes inaccessible.
Inaccessible vertices are referred to as skin, and the white edges connected to skin vertices
are also inaccessible.

4

among higher dimensions that have not been visited (in this case the choices are dimensions

1 (0001), 2 (0010), 3 (0100) and 4 (1000) because no bits have been flipped before the first

move, then the snake must climb to the lowest of the unvisited dimensions (dimension 1). In

[6], Kochut discusses the reduction in search space due to the n! symmetries of the n-cube.

Chapter 2

OVERVIEW OF THE FRAMEWORK

The framework can be thought of as a heuristic development environment. Its goal is to

inspire new heuristic ideas that improve our understanding of the snake-in-the-box problem.

It offers tools and APIs that help researchers gain intuition for snake paths in multi-

dimensional hypercube space. It also offers a branch and bound search module and an inter-

active visualization environment (IVE). Each module can be used independently or can be

made to work together. This thesis will describe how this interaction can take place, but for

now consider only the branch and bound search module as a standalone piece of function-

ality. Wikipedia [11] describes branch and bound perfectly as itp ertains to the framework.

“Branch and bound (BB) is a general algorithm for finding optimal solutions of various

optimization problems, especially in discrete and combinatorial optimization. It consists of a

systematic enumeration of all candidate solutions, where large subsets of fruitless candidates

are discarded en masse, by using upper and lower estimated bounds of the quantity being

optimized” (Wikipedia, 2007). The BB implementation in the framework attempts to opti-

mize the length of the longest snake and supports the ability to pre-define a set of partial

paths in the hypercube through which the snake path is constrained. Henceforth, the search

module will be referred to as PPBBSM to mean the partial path branch and bound search

module. The PPBBSM is effective because the environment around the partial path ends

improves the ability to reason about the upper bound snake length for a given partial path

configuration.

The PPBBSM works by doing a depth first search from a pre-defined start (forward)

path from the 0 vertex and automatically connects and merges with partial paths when

5

6

necessary. A conservatively defined start path is (0-1-3-7); the initial path shared by all

canonical snakes. After each automated move, many constraints are checked and the search

continues if none are violated. The PPBBSM also works with what it calls a backward path.

A backward path can be induced as a result of the systematic forward path moves enumerated

by the PPBBSM. When a partial path is first defined in the initial configuration, one of its

partial path ends may have several accessible neighbors. However, as the PPBBSM grows

the forward path via the depth first search, this partial path end’s neighbors may all become

inaccessible (skin). When this happens, the PPBBSM can recognize that the partial path end

would be a dead end for the snake when the forward path is forced to merge with it. Thus,

what once was a partial path can end up becoming the backward path. Once this happens,

there can be no other dead ends for the other partial paths because the final snake cannot

have two terminal endpoints. It can only have one starting vertex (0 for canonical snakes)

and one terminal vertex. If this were to happen, the PPBBSM could backtrack immediately.

Throughout the discussion thus far, there has been constant mention of an initial partial

path configuration. A fair question concerns the source of the initial partial path configura-

tion. What are the rules that govern a good initial set of partial paths? It seems irrelevant

that the PPBBSM improves the time it takes to find an optimal snake through an initial

configuration if the initial configuration is itself flawed. The same questions also pertain to

the notion of “seeding” found in the literature. In [1] for example, good snakes from lower

dimensions are used as seeds in higher dimension searches. In these cases, researchers are

hypothesizing about what makes a good initial seed. It would be nice to be able to validate

such hypotheses with intuition gained from visual evidence. The k-cube heuristic discussed

in chapter 4 provides an example of how the IVE supports this kind of validation. This

approach offers a generalization of an initial seed which is shown to produce interesting

results.

The issue of partial path placement was another motivating factor for the development

of the interactive visualization environment (IVE). The features of the IVE are discussed in

7

detail in section 2.2, but the main idea is that it is an environment that provides information

about partial path configurations. The IVE visually displays properties that can be of direct

use in the development and validation of heuristics. Users can arbitrarily create any legal

partial path configuration and all defined paths are interactively editable. The IVE does

not allow illegal snake-in-the-box moves and at times provides an informative error message

when the user tries to make such moves.

The framework’s comprehensive label comes from the fact that its main components are

highly extendable in a cooperative fashion. The PPBBSM enables a speedy answer to the

question of the longest possible snake through a given set of partial paths (chapter 3). An

uninformed approach would be to perform a basic depth-first search using nothing more than

an adjacency matrix. Appendix B shows that the PPBBSM relies on a sophisticated object-

oriented model of a hypercube and its paths to give information about the promise of a

particular line of search. The uml class model in appendix B.1 shows that this model has the

vocabulary to check for the satisfaction of many types of constraints. Section 2.4 discusses the

main constraints made possible by the object-oriented model. These constraints are checked

after each forward path move. As such, the PPBBSM can be used as an evaluation measure

for other heuristic search strategies because it significantly improves the time it takes to find

the longest snake through the initially defined paths. This functionality supports viewing

the problem from the perspective of how to evolve the ideal placement of a small number

of initial partial paths. The IVE allows for the meaningful visualization and validation of

a partial path placement strategy. Chapter 4 introduces an iterative improvement heuristic

approach that elegantly solves Q7 and performs respectably in Q8. When solving dimension 7,

the iterative improvement technique evolved partial path configurations containing 3 partial

paths with only 3 vertices specified on each path. This approach was inspired by intuition

gained from working with the IVE. The extension points have been carefully considered so

that the framework can also be of relevant use to future researchers. The PPBBSM can be

extended in two main ways. As previously described, the PPBBSM uses a depth-first search

8

from the forward path through the hypercube. When necessary, it merges with partial paths

along the way. By default, the PPBBSM exhaustively tries every accessible neighbor of every

vertex on the forward path end. The existence of partial paths reduces the branching factor,

but this reduction is still insignificant in higher dimension hypercubes. The framework offers

utility methods that supply valuable information that can be used to limit the number of

choices to consider at each step. For example, figure B.2 shows that the SnakeUtils java

class can return the mean degree in terms of accessible vertices for a given list of vertices.

This could be used as part of a heuristic approach that ranks alternative move choices. The

SubCubeGenerator allows one to track properties of any subcube in the hypercube. This

was useful when implementing the k-cube heuristic, which constrains the snake to follow

an initial path defined by a chain of sub cubes. The framework defines a Java interface

called the ForwardNeighborSelector. Any implementation of the ForwardNeighborSelector

has access to these utilities. The choices can be limited by writing a ForwardNeighborSelector

implementation that returns only a subset of all neighbors from the forward path end. The

PPBBSM visits only the forward neighbors provided by an implementation of this interface.

The k-cube heuristic approach is also an example of how intuition from the IVE can lead to an

informed implementation of the ForwardNeighborSelector interface. This approach allows for

the specification of a high level search plan that defines the initial “shape” of the snake’s start

path. It is the IVE that gives us the ability to meaningfully discuss notions such as the shape

and rationale (see Section 4.1) of successful snakes. This offers an unprecedented vocabulary

to the heuristic development effort. It is in this sense that we refer to the framework as a

heuristic development environment.

The second extension point is the UpperBoundEstimate interface. The PPBBSM back-

tracks when constraints are violated. A thorough treatment of these constraints can be found

in section 2.4, but the upper bound constraint is one such constraint that is checked after

every forward move of the PPBBSM. The PPBBSM is initialized with a configuration file

(see Appendix A.1) that allows for the specification of a desired lower bound. For example,

9

if the lower bound property had the value of 25 for a search in dimension 6, the PPBBSM

would not return a snake with a length less than 25. The idea is that a researcher’s growing

mathematical understanding of the problem can be encapsulated in the implementation of

the UpperBoundEstimate Java interface. Section 2.4.1 shows that the UpperBoundEstimate

implementation can work with properties of a partial path configuration to produce an esti-

mate for an upper bound. When the upper bound estimate falls below the desired lower

bound, the PPBBSM backtracks. A more sophisticated upper bound implementation means

more fruitless regions of the search space can be discarded by the PPBBSM when the esti-

mate falls below the desired lower bound. This is the way in which the framework bridges the

gap between a theoretical mathematical approach and traditional heuristic approach. The

reasoning in section 2.4.1 is an example of the type of theoretical mathematical reasoning

that the UpperBoundEstimate extension point allows.

2.1 RELEVANT APPROACHES IN THE LITERATURE

The idea for the extensible framework has been inspired by some truly creative work from

previous researchers. In [1], Casella and Potter use a population-based stochastic hill-climber

(PBSHC) as an evolutionary approach to finding snakes. The PPBBSM and IVE have been

motivated by the desire to improve fitness evaluation measures for creative approaches such

as the PBSHC.

In [6], Kochut is actually searching for longest coils, which are like snakes but must return

in the end to the start node (closed-path). He discusses pruning snakes that cannot possibly

be closed to form a coil. After each move, he checks the environment to see that it is still

possible to form a closed path. The notion of continuous constraint checking has inspired

many features found in the framework.

In [8], Dayanand Rajan introduces the notion of a reversible snake. He discusses that in

even dimensions d ≤ 6, there is a unique longest d-snake. This longest snake happens to be a

reversal of itself as witnessed by a suitable permutation of d. In order to understand this, it is

10

important to understand the difference between the transition sequence and node sequence

ways to represent the snake. In Table 1.1, the snake that is constructed has a decimal node

sequence of (0, 1, 3, 7, 6, 14, 12, 13). However, if you align the binary labels of vertices of

the snake path from top to bottom, you see that each binary digit differs by one bit from

the digit(s) it is next to. Observe the binary node sequence below, the bit that is flipped

represents the snake move (or edge) in the transition sequence representation. The integers

in parentheses represent the growing snake as a transition sequence.

0000

0001 ... bit 1 is flipped ... (1)

0011 ... bit 2 is flipped ... (1, 2)

0111 ... bit 3 is flipped ... (1, 2, 3)

0110 ... bit 1 is flipped ... (1, 2, 3, 1)

1110 ... bit 4 is flipped ... (1, 2, 3, 1, 4)

1100 ... bit 2 is flipped ... (1, 2, 3, 1, 4, 2)

1101 ... bit 1 is flipped ... (1, 2, 3, 1, 4, 2, 1)

This yields a transition sequence of (1, 2, 3, 1, 4, 2, 1). The unique canonical Q6 optimal

snake has the transition sequence found below ...

1,2,3,4,2,1,5,4,1,6,5,1,2, 4,5,1,3,5,2,1,5,4,2,6,4,5

The gap in the middle is the halfway mark for the snake. Rajan observed that for even

dimensions d ≤ 6, the last half of the snake from right to left is a permutation of the first

half of the snake from left to right. To understand this, reverse the list of transition values

found in the right half and place them under the transition values on the left to get the

following...

1,2,3,4,2,1,5,4,1,6,5,1,2

5,4,6,2,4,5,1,2,5,3,1,5,4

Everywhere there is a one on the top row; there is a 5 beneath it. Everywhere there is

a 2 on the top row, there is 4 beneath it. Everywhere there is 3 on the top row, there is a

6 beneath it. Everywhere there is a 4 on the top row, there is a 2 beneath it. Everywhere

11

there is 5 on the top row, there is 1 beneath it. Everywhere there is a 6 on the top row, there

is a 3 beneath. This shows that the last half of the snake is a permutation of the first half.

Rajan used this idea to develop an algorithm that finds snakes that are “reversible”. The

advantage of his approach is that it narrows the search to a relatively small class of snakes

that can be more easily enumerated. The validation of this approach comes from the fact

that it led to finding a length 97 snake in Q8. After more than five years, this is still the Q8

lower bound.

Table 2.1 shows that the forward and backward snakes are also reversible in the sense

of hamming distance from each end. As the snake grows from the start vertex 0, the 3rd

column in the table below displays the hamming distance of each vertex from 000000. In

the 4th column starting from the bottom, the numbers correspond to the hamming distance

of each snake vertex from the terminal vertex 10 (001010). This could lead to a simpler

algorithm for reversible snakes than the one described in [8].

Finally, in [9], Tuohy et al. take the approach of introducing constraints based on heuris-

tics such as “tightness” that enable considerable pruning of the search space. The PPBBSM

and IVE can help to validate such heuristic ideas.

2.2 INTERACTIVE VISUALIZATION ENVIRONMENT BASICS

The IVE is a modular GUI application written with Java Swing. Appendix A.2 provides a

user guide for the IVE. Along the top and bottom are extensible control panels that respond

to user events. This section contains a brief overview of some of the features and controls of

the IVE, but a detailed account is not necessary in order to understand the following main

contributions the IVE makes to the overall framework.

1. The IVE displays useful information about properties of snakes and hypercubes that

can help a user design and evaluate heuristics for their own research.

12

Table 2.1: This table shows that the optimal snake in Q6 has complete forward and backward
hamming distance agreement. If you read the 3rd column from top to bottom, it is the same
as the numbers in the 4th column from bottom to top.

Decimal Binary Hamming Distance from 0 Hamming Distance from 10
0 000000 0 2
1 000001 1 3
3 000011 2 2
7 000111 3 3
15 001111 4 2
13 001101 3 3
12 001100 2 2
28 011100 3 3
20 010100 2 4
21 010101 3 5
53 110101 4 6
37 100101 3 5
36 100100 2 4
38 100110 3 3
46 101110 4 2
62 111110 5 3
63 111111 6 4
59 111011 5 3
43 101011 4 2
41 101001 3 3
40 101000 2 2
56 111000 3 3
48 110000 2 4
50 110010 3 3
18 010010 2 2
26 011010 3 1
10 001010 2 0

13

2. The IVE provides novel interactive path editing controls that can actually facilitate an

intuition for multi-dimensional hypercube space.

3. This intuition is of practical use when coming up with rules that constitute favorable

initial partial path configurations which can then be submitted to the PPBBSM to

yield the longest snake through such an initial configuration.

Figure 2.1 shows a screen shot of the interactive visualization environment. The controls

along the top and bottom are useful for defining a snake and understanding the effects of its

moves. The top panels include the ability to define a snake from the zero vertex (start path),

introduce and track arbitrary partial paths, and optionally define a “Backward” path from

a hypothetical terminal vertex. The benefits of offering this functionality will become clear

in Section 2.3 discussing the specifics of the upper bound estimate. There are other features

that affect the display, but the final button along the top is the “Clone” button. This button

is useful when a user would like to fork a copy of a given situation in order to study the

effects of taking alternative paths. Pressing the clone button also writes the current snake

in text form to the hard drive. This text file can then be used as input into the PPBBSM.

Along the bottom are controls that aid in visualization and display information that may

be used in heuristic calculations. Hypercubes above d = 3 are somewhat confusing to view

on a two-dimensional surface (computer screen). It is considerably less confusing if some

of the edges can be removed. The first two fields on the lower control panel address this

issue. The “PosEdges” box takes a comma separated list of integer values which correspond

to the absolute value of the difference between the decimal label of the vertices the edge

connects. The “NegEdges” field allows control over which inaccessible edges to display. For

example, in figure 2.1 one would ordinarilly expect there to be a negative edge from vertex

1 to vertex 17. This is because the edge from 1 to 17 was made inaccessible by the start

path moves from 0-1-3. If you take the absolute value of the difference between the vertices

that make up the edge |1 − 17| = 16, you will only see that edge if the 16 is among the

comma-separated values in the NegEdges box. The same is true for the PosEdges text box.

14

The “Binary” check box shows all vertices with their binary labels. The “Schema” field

is a very useful way to focus on sub-areas or hyperplanes in the hypercube. The user can

specify a comma separated list of schemata with syntax consistent with that found in [10].

The “Filter” check box toggles the hyperplane filter functionality. Playing with this feature

inspired the k-cube heuristic discussed in section 4.2. “Show Negative” determines whether

the inaccessible edges are white, or if they appear colored like the accessible edges. The

“ShowDist” check box appends a bracketed number to the display of all vertex labels. This

number corresponds to the distance each vertex is from the end of the start path. It was

this distance display that led to the discovery of the forward-backward distance agreement

discussed in section 2.1. “ShowDegree” appends a parenthetical integer to the vertex labels

referring to the number of accessible vertices connected to each vertex.

2.3 ’INTELLIGENT’ FEATURES OF THE FRAMEWORK

When a user edits a path in the IVE, the resulting display offers a window into the complexity

of the PPBBSM. For example, it was previously stated that a backward path can be induced

as part of the enumeration steps of the PPBBSM. When a user edits a path in the IVE that

leaves one of the partial paths with no remaining accessible neighbors, the IVE will actually

delete the partial path from the list of partial paths and show it in the backward path text

field. Both the IVE and the PPBBSM get information from objects that model and abstract

the complexities of the hypercube and its set of partially defined paths (see appendix B. The

impetus to build a snake with three section types (start path, internal path(s), and backward

path) comes from the recognition that global information about the upper bound for a given

partial snake can more easily be derived from analyzing properties local to all partial path

ends. After each move, the local environment is reassessed and both the current snake length

and upper bound estimate are displayed in the upper left corner of the visualization panel.

Feedback from the IVE was very useful when designing and debugging the standard upper

bound estimate implementation used by the PPBBSM.

15

The presence of a backward path offers significant pruning possibilities of the overall

search space. The backward path starts from what is intended to be the terminal vertex of

the final snake, so right away any other accessible vertex that is not on a partial path with

only one accessible neighbor can be pruned. This is because a snake path could only reach

such a vertex through its only accessible neighbor, but will have no outlet once it arrives.

Thus, a vertex with only one accessible neighbor would have to be a dead end. Thus, all

vertices of degree one (i.e., one accessible neighbor) can be pruned given the presence of a

defined backward path. One may think this to be trivial because a backtracking search could

backtrack out of all dead ends immediately. The value comes from the fact that the algorithm

for estimating the upper bound is a function of the number of vertices and properties of those

vertices that remain accessible. The fewer vertices there are to inspect, the quicker the upper

bound estimate can decide to terminate the search because the estimate falls below the

desired lower bound threshold. The beauty of this approach is that there is often a recursive

effect that allows the framework to prune significant regions of the search space.

Figures 2.1 and 2.2 demonstrate advanced pruning functionality that would take place

after the first depth first search expansion of the PPBBSM from this initial configuration. Q5

is easily exhaustively searched and its longest path is actually represented by a set of eight

canonical length 13 snakes. Figure 2.1 shows the result of defining an initial start path of

(0,1,3,7) and an internal partial path containing vertices (10,26,18). This could constitute an

initial configuration supplied to the PPBBSM. The first thing the PPBBSM would do is ask

its implementation of the ForwardNeighborSelector for a list of forward neighbors to put on

the depth-first search stack. The default implementation used by the PPBBSM selects and

returns both canonical forward neighbors of 7 (6 and 15). The PPBBSM would then grow

the forward path to (0,1,3,7,6) by following the first of the two alternatives. Incidentally,

the default implementation of the ForwardNeighborSelector returns the alternatives sorted

in ascending order.

16

Figure 2.1 shows an initial configuration of the standard canonical start path (0,1,3,7)

and a partial path of (10,26,18), which appears in the “Select Partial Path” drop down.

The upper bound estimate is 17. A more detailed discussion of the mathematical basis of

this estimate will be offered in Section 2.4.1. Figure 2.2 shows an incredible difference from

the previous figure. All that remains is one vertex that joins the two paths; the rest of the

accessible vertices have been completely pruned. It seems surprising that as soon as the user

types “6” and hits “enter” in the start path text box, this result is instantly displayed. The

key to why the PartialPathHyperCubeWrapper was able to prune so much lies in the fact

that it recognized that the partial path had to be converted into a backward path. In fact,

the “Select Partial Path” drop down is empty in figure 2.2 and its vertices are now shown

in the “Backward” path text box. The chain reaction started with the removal of vertex

22. Vertex 22 is inaccessible from vertex 6 because the canonical rule states that the snake

must climb to the fourth dimension before climbing to the fifth. This would leave a snake

that reaches vertex 18 with no place to go, thus forcing it to become the first vertex of the

backward path. Look at figure 2.1 and imagine that vertex 22 is inaccessible. This leaves

vertices 20 and 21 connected to each other and to the vertices 28 and 29 respectively. Since

vertices 28 and 29 are also connected to each other, there would be no way for a snake to

reach either vertex 20 or 21 and be able to proceed to other accessible vertices. Given that

reaching 20 or 21 would necessitate the end of the snake path, these vertices can be pruned

in the presence of a defined backward path. The move from 7 to 6 caused vertex 15 to be

inaccessible which makes vertex 31 a dead end so it can be pruned. Vertex 25 is already a

dead end so it can be pruned. This pruning step reveals that vertices 28 and 29 are now

dead ends, thus the same reasoning applied to vertices 20 and 21 can be applied to them.

Once they are pruned, 12 and 13 become dead ends as well. Vertex 15 was made inaccessible

because of the move to 6, so all that remains is vertex 14. This is shown in Figure 2.2.

17

Figure 2.1: This figure visually represents an initial partial path configuration that could
be supplied to the PPBBSM. The start path is (0, 1, 3, 7) and the only defined partial
path is (18, 26, 10). The PPBBSM starts from vertex 7 and proceeds with a depth-first
search throughout the hypercube. Partial paths are appended to the forward path when the
depth-first search takes the forward path to a vertex adjacent to any of the partial path ends.

18

Figure 2.2: After the move from 7 to 6, the upper bound is again adjusted and the partial
path has been converted to the backward path. Amazingly, all accessible nodes except for the
one between the start and end path have been pruned. The PartialPathHyperCube wrapper
is the object that models the properties of the hypercube and keeps track of all partial
paths. It has told the IVE that the only accessible vertex not currently on a path is vertex
14. The PPBBSM is also informed by the PartialPathHyperCubeWrapper. The appendices
more clearly explain how these framework components interact.

19

2.4 PARTIAL PATH BRANCH AND BOUND SEARCH

The partial path branch and bound search algorithm starts with an initially defined partial

path snake as input, and outputs a snake that satisfies defined lower bound criteria if one can

be found through all initial partial paths. All paths except the actual start path are optional.

There is syntax for defining the initial partial path snake. For instance, an initial dimension

7 configuration could be defined as “0, 1, 3, 7;;86, 84, 68;b:75, 73, 72”. This snake starts at

0,1,3,7. It has an internal path with vertices (86,84,68). The snake must end at vertex 75

and get there via (72,73). Multiple colon-separated internal (partial) paths may be specified.

The “b:” denotes the presence of a backward path. The search algorithm starts from the

end of the start path and continues in depth-first fashion. When the start path moves to

a vertex adjacent to either end of an existing partial path, the partial path is appended to

the forward path. When any of its constraints are violated, the algorithm backtracks to the

most recent branch point and continues the depth-first search. There are three main types of

constraints that make this search algorithm much more effective than uninformed depth-first

search. The next three sub-sections detail the way the search algorithm continuously checks

for violations against the constraints and how they are represented and updated after each

move.

2.4.1 UPPER BOUND CONSTRAINT

The upper bound constraint and calculation can best be understood by example. Figure 2.3

shows a situation in Q6 with an initial start path and 3 additional partial path elbows. The

particular snake can be characterized by the string “0, 1, 3, 7;;12, 13, 29;62, 58, 50;37, 53,

49;”. This means that it has a start path of “0,1,3,7” and internal partial path elbows of

“12,13,29”, “62,58,50”, and “37,53,49”. There is no initially defined backward path.

The upper-left corner indicates that the current snake length is 9 and no snake from this

initial configuration can be longer than L = 27. It is important to note that the longest

possible snake in Q6 is 26. The method the framework uses to arrive at the upper bound

20

Figure 2.3: A set of paths (start path with three small partial paths) used to demonstrate the
upper bound estimate employed by the PPBBSM. The vertices highlighted red are neighbors
of various path ends. The vertices highlighted blue are neighbors also, but they are shared
neighbors of two partial path ends (49 and 50). The integers in parentheses beside the integer
vertex label represent the number of accessible neighbors from the given vertex. See the text
for a discussion of the significance of shared neighbors.

21

estimate of 27 will soon be described, but first it is important to establish a vocabulary

for what is shown in the image. In this graph of the hypercube, there are vertices and

edges. Among the edges, there are colored edges (PosEdges), black edges, and white edges

(NegEdges). The black edges are those that have been designated by the user to be included

in the final snake. So those can be called the path edges. The colored edges are edges that are

still accessible and could possibly be included in the final snake. The white edges are attached

to inaccessible vertices and cannot be included in the final snake. To reduce confusion, not

all negative edges are shown. The only white edges are those specified in the NegEdges text

box (0,1,2,4).

Among the different types of vertices, there are inaccessible (skin) vertices that are

“hollow” (outlined in white). For example, vertices 4 and 5 are inaccessible. Vertices 0 and

1 are also inaccessible, but these are referred to as path vertices because they are connected

by a black path edge. There are two types of accessible vertices; those that are white-filled

(10,20,22,24,27,38,47,40,41,43) and those that are colored. The colored vertices are mostly

red (6,14,18,30,31,25,36,34,44,46,60,63), but there are two blue vertices (48,51). There are

also black-filled vertices (7,12,28,37,49,50,62). These are the partial path ends that can be

extended to further define the snake path. Incidentally, the 0 vertex is a partial path end

but since the framework only deals with canonical snakes that start at 0, a constraint that

all neighbors of 0 are inaccessible is imposed. More will be said about this as a pruning opti-

mization in 2.4.3. In this particular diagram, the red and blue colored vertices are neighbors

of the path ends. The red-filled vertices are neighbors from only a single path end, whereas

the two blue vertices (48,51) are common neighbors to two different path ends (namely 50

and 49). With this vocabulary established, it is now simpler to understand the calculation

for the upper bound estimate.

Phase one of the calculation starts from a completely unrealistic assumption that all

the remaining accessible vertices can be included on the snake path. The only vertices that

cannot possibly be included are the hollow, white outlined skin vertices. Once these are

22

removed from consideration, the vertices that remain are those that are already part of the

snake path, and those that are colored (either white filled, red, or blue).

Let P denote the set of all vertices that are currently defined as snake path vertices. Let

A denote the set of all remaining accessible vertices that are not on any of the defined paths.

Also, let S represent the set of vertices that will compose the final snake.

P = {0, 1, 3, 7, 12, 13, 28, 37, 53, 49, 62, 58, 50}

A = {6, 14, 10, 18, 22, 20, 30, 31, 27, 25, 24, 48, 41, 57, 60, 63, 36, 38, 34, 46, 44, 47, 40, 41, 43}

Note that |P | = 13 and |A| = 25. In an ideal (but unrealistic) scenario, all of the vertices

in A could be combined with the vertices in P to assemble one continuous open path. If

this could happen, these 38 vertices would form a snake of length 37 (It is always the case

the snake path length L is equal to the number of vertices that make up its path minus

one). The upper bound calculation starts with this naive upper bound value. Phase two in

the calculation is to come up with a conservative estimate for the number of vertices that

cannot possibly be included in the final snake S. This is the point at which the red and blue

highlighted vertices are considered.

Let Pe denote the set of partial path ends (black-filled vertices) except the 0 vertex. For

some peǫPe, let Γ(pe) refer to the set consisting of the neighbors of pe. Also, let Ge denote

the set of all neighbors of vertices in Pe. Note that Ge ⊆ A. But when |Γ(pe)| > 1 (for a

single arbitrary peǫPe), it will obviously be the case that |Γ(pe)| − 1 members of A could not

possibly be included in S.

In this example,

Ge = {6, 14, 31, 25, 30, 18, 26, 44, 46, 57, 60, 63, 48, 51}

and the question that this step of the calculation asks (conservatively) is how many of

these vertices of Ge will necessarily have to be left out of the set of vertices in the final snake

S. Table 2.2 shows how these vertices of Pe and all their neighbors Ge are considered.

Phase three adjusts the raw total to take into account common neighbors of partial path

ends. Notice in the table that the neighbors of path ends 49 and 50 have two vertices in

23

common (48 and 51). The proper, but conservative approach is to realize that it could be

the case that the snake will choose to go from 49 to 57. It could also choose to go from 50 to

(18 or 34) and if so, these common neighbors (48 and 51) would be double counted in this

scheme. So to adjust for this, the intersecting neighbors are subtracted from the raw total.

Doing so for this example reduces the total amount subtracted from Ge ⊆ A by 2 (that is,

subtract 8 instead of 10). Next take the naive original number of possible snake path vertices

(38) and subtract 8 to get a new value of 30 possible vertices that can make up the snake

path. This yields an upper bound on L ≤ 29. So why does the visualization application

report that the upper bound estimate is 27? How can it subtract an additional 2 vertices?

Phase four is the phase that holds the most promise for mathematical thinkers trying to

solve this problem. The default implementation of the UpperBoundEstimate interface arrives

at 27 by making the following analysis.

Let M ⊂ [A \ Ge] be defined as the set of monovalent (vertices of degree = 1) among

vertices of A that have not already been considered for subtraction. Thus ...

M = {10, 24, 20}

If any one of these vertices is included in S, the snake will terminate. The snake can only

terminate once; otherwise it wouldn’t be a single continuous path. So we can confidently

conclude that two additional vertices can be taken out of consideration as candidates for

inclusion in S. Thus |S| ≤ 28 which yields a maximum possible snake length L ≤ 27.

There is a subtle but quite useful feature of the framework when a backward path is

present. If a partial path end has an accessible degree of one when a backward path is

present, the partial path can safely be extended to its only accessible neighbor. Once this

happens, the upper bound estimate is able to reduce the upper bound estimate by inspecting

the properties around this new partial path end.

24

Table 2.2: This table shows how to reduce the initial naive estimate of the upper bound
given in phase one of the upper bound calculation. This is phase two of the calculation for
the situational upper bound. It calculates a raw score of what to subtract from the |A| to
reduce the upper bound. The actual amount subtracted from |A| is reduced in a subsequent
phase to reflect the intersection of path end neighbors.

peǫPe Γ(pe) Subtract from |A| (raw)
7 Γ(7) = {6} |Γ(7)| − 1 = 0
12 Γ(12) = {14, 44} |Γ(12)| − 1 = 1
29 Γ(29) = {25, 31} |Γ(29)| − 1 = 1
37 Γ(37) = {36} |Γ(37)| − 1 = 0
62 Γ(62) = {30, 63, 60, 46} |Γ(62)| − 1 = 3
49 Γ(49) = {57, 48, 51} |Γ(49)| − 1 = 2
50 Γ(50) = {18, 34, 48, 51} |Γ(49)| − 1 = 3

Raw Total to Subtract 10

2.4.2 CAN IT REMAIN CONNECTED?

The discussion around figure 2.2 demonstrated a remarkable chain reaction that led to the

pruning of many initially accessible vertices. Occasionally, this chain reaction can prune all

the neighbors of more than one partially defined path. If this situation occurs, the snake

composed of the defined partial paths would have more than one dead end. This would

create a situation that would make it impossible for all the defined paths to come together

to form a single continuous snake path. After each move, the framework checks whether this

illegal condition has taken place, and the search backtracks.

2.4.3 CAN IT STILL BE MAXIMAL AND CANONICAL?

It was previously stated that limiting the search space to truly canonical and maximal

snakes yields a significant reduction of the overall search space. Rajan [8] states that the

maximal snake cannot be extended from either its start or its end vertices. A canonical

maximal snake is a maximal snake that starts (and cannot be extended) from the 0 vertex.

25

To gain an appreciation for the actual reduction, consider the number of Q6 snakes found

with an exhaustive, uninformed depth-first search. There are only 110381 maximal canonical

Q6 snakes compared to 246651 Q6 snakes that could be extended from 0 after the search

routine was finished. The idea for doing this came from Kochut’s coil-searching optimization

described in [6]. For coils, the snake must be able to return to the start vertex. Thus, he

abandons a search when there are no more neighbors accessible from the start. For snakes

however, the rules of the problem prohibit the path from returning to the start. Thus, the

PPBBSM backtracks when it is impossible to prevent a snake from extending from the start.

The idea is pretty simple and is also applied to the backward snake path thus increasing

the opportunity to violate constraints. For any given hypercube Qd, the 0 vertex has d

neighbors. Each of these d neighbors have d − 1 neighbors other than 0. For example, in

Q4 the neighbors of vertex 4 (other than vertex 0) are (5,6,12). In Q4, the snake defined as

(0,1,3,7,15,14,10) makes (5,6,12) inaccessible. Since all neighbors of vertex 4 are inaccessible

to the snake, the snake cannot move in such a way as to make vertex 4 inaccessible. Thus, the

snake will always be extendable from the start (vertex 0) to vertex 4. In higher dimensions,

snakes can create this situation very early in their construction. In such a situation, the

backtracking of the branch and bound module prunes a significant number of possible snakes.

Chapter 3

BENEFIT OF THE PARTIAL PATH APPROACH

This chapter shows the results of an experiment designed to demonstrate how run times of

the PPBBSM differ given various types of initial configurations. The hypothesis is that an

initial configuration with several small initial partial paths compares favorably in algorithm

run time to an initial configuration with only the start path specified. The first figure shows

the final optimal Q7 snake found by the PPBBSM from the various initial configurations

given in later figures. The figures are organized into groups. The first group (figures 3.2, 3.3,

and 3.4) demonstrates the runtimes for initial configurations with only 13 of the 51 longest

path vertices. The second group of figures (3.5 and 3.6) shows how the PPBBSM is affected

by two different initial configurations containing 16 vertices. The final group (figures 3.7 and

3.8) shows an example of how the algorithm runs for an initial configuration in Q8. It is

important to note that all experiments were run on a laptop with 1.5 GHz processor and

512MB of RAM.

These groups of figures validate the utility of the partial path approach. Ideally, there

would exist an approach that facilitates exhaustively searching higher dimension hypercubes

(Q7 and above) in a reasonable amount of computing time. However, the computational com-

plexity in these dimensions is prohibitive. Heuristic approaches have given us current lower

bound snakes in Q8 and above, but it seems reasonable to expect that heuristic approaches

would give better results if they searched over reduced representations of the search space.

These figures suggest that redefining the problem as the search for a small number of com-

patibly placed initial partial paths is a promising way to combine the benefits of exhaustive

26

27

search with heuristic search. Furthermore, the UpperBoundEstimate interface offers a care-

fully designed extension point allowing for sophisticated pruning of the exhaustive search

portion. The current implementation offered by the framework has produced the interesting

run time result found in the comparison of figure 3.4 to figure 3.5. In figure 3.4, the run

time of the PPBBSM is faster for only 13 total initially specified vertices than the initial

configuration found in figure 3.5 with 16 vertices. This happened because the 13 vertices

were distributed as small but well-spaced partial paths whereas figure 3.5 has all the vertices

on the start path. We have proposed that the PPBBSM could be used as a tool to evaluate

heuristic approaches that look for highly fit partial path placements. In the next chapter, we

report the experimental results that put this idea to the test.

28

Figure 3.1: One of the 12 optimal canonical Q7 snakes. Evidence from the subsequent figures
suggest that quickest runs of the PPBBSM seem to be most highly correlated with initial
configurations of several short but well spaced partial paths.

29

Figure 3.2: It took 74 minutes to find the snake in figure 3.1 from this initial configuration.
Only 13 vertices are defined in the initial configuration and all are on the start path. This
is essentially an uninformed depth-first search from a length 12 start path. The PPBBSM
takes a long time because the upper bound estimate has limited information and thus doesn’t
backtrack as quickly as an initial configuration with multiple partial paths. The next two
figures illustrate this.

30

Figure 3.3: It took approximately 19.37 minutes to find the snake in figure 3.1 from this initial
configuration of 13 defined vertices. Notice that the length of the start path was shortened
in order to make enough vertices available to define the two partial paths.

31

Figure 3.4: The only difference between this figure and figure 3.3 is that more of the start
path was trimmed in favor of creating an additional internal partial path. However, there is
a significant difference in PPBBSM run time for this configuration. It only took 153 seconds
(2.55 minutes) to find the snake in figure 3.1 from this initial configuration of 13 initially
defined vertices.

32

Figure 3.5: These next two figures show two initial configurations of 16 vertices. This figure
shows how the PPBBSM run time improves after adding 3 more vertices to the start path
of the poorly performing initial configuration in figure 3.2. It took 200 seconds to find the
longest snake from this configuration. But note that an initial configuration of 16 vertices on
the start path is still outperformed by the multiple partial path 13 vertex initial configuration
found in the previous figure 3.4.

33

Figure 3.6: This figure shows how the PPBBSM differs from the previous in that many
vertices were taken off from the start path in favor of defining 4 initial internal partial paths.
It only took 6.81 seconds to find the longest snake from this configuration of 16 initially
defined vertices.

34

Figure 3.7: Q8 currently has a lower bound of 97. This is an example of one of the length 97
snakes.

35

Figure 3.8: It took about 2.88 minutes to find the snake in figure 3.7 from this initial config-
uration of 39 vertices and 8 partial paths. This example shows that it should be possible to
use the PPBBSM as an evaluation function during an evolutionary search for well positioned
initial partial path configurations.

Chapter 4

A CASE STUDY

The main value of the framework is that it offers an environment that inspires the design

of new heuristic approaches for the snake-in-the-box problem. It does this by providing a

wealth of tools to build an intuition for multi-dimensional hypercube space. This chapter

details a specific interaction with the framework that has led to the development of two new

heuristics. The k-cube heuristic allows one to use intuition gained from the IVE to define a

high level plan to which the snake must adhere. We also developed an iterative improvement

approach that starts from random maximal snakes and randomly breaks them into partial

path fragments. These fragments are handed over to the PPBBSM to find better snakes.

This approach quickly found one of the optimal Q7 length 50 snakes. It also managed to

improve a length 87 snake in Q8 to a length of 89. The original length 87 snake was found

by the k-cube heuristic technique. After discussing these experiments, we use insight gained

from our analysis of the results and detail how the Genetic Algorithm (GA) and Simulated

Annealing (SA) can offer improvement.

4.1 GAINING INTUITION

Q6 is a dimension in which the enumeration of all canonical snakes is quite practical. Conse-

quently, it is possible to learn properties that distinguish between optimal and sub optimal

path moves. The source code for all the tools of the framework are in a source code repos-

itory. Included in the repository is a script that takes as input a partially defined snake

and returns the length of the longest snake in Q6 through the partial snake’s vertices. The

script works by doing a regular expression search through a file containing the exhaustive

36

37

enumeration of all maximal and canonical Q6 snake node sequences. It uses regular expres-

sions to abstract the nodes between the specified paths. If the script is called with multiple

arguments (corresponding to multiple partial paths), it tries all the different orders of those

paths and looks for the reversed versions of the paths as well.

This script is flexible in what it allows as input. For instance, a user can see the longest

possible length of a snake that contains “0,1,3,7,6” as path vertices by supplying just that

string as a command line argument. The script is written in a java scripting language known

as groovy [7]. If the “longestsnake.groovy” script is called with the command argument

“0,1,3,7,6”, the script reports that L = 25 is the length of the longest snake containing those

connected vertices. This is interesting because there is only one longest canonical snake in

Q6, and it has length L = 26. The fact that there is a unique L = 26 snake in Q6 is very

helpful when trying to derive properties that characterize mistake moves. The script has

told us that the move from 7 to 6 is a mistake because no L = 26 path can be built with

the rest of the accessible vertices. Armed with this information, the user can bring up the

IVE to visually inspect properties of the hypercube that differ between the two start paths

“0,1,3,7,6” and “0,1,3,7,15”. An ongoing effort should be made to quantify these properties

that only currently provide an abstract intuition, but this case study will show that intuition

alone has led to the design of a heuristic yielding respectable results. The user can supply

multiple arguments corresponding to different partial paths a final snake must include. For

example, when the script is called with “0,1,3,7,6” and “43,41,40” as the arguments, the

return value is L = 25. When called with “0,1,3,7,6” and “48,50,54”, the longest possible

snake in Q6 containing those two connected sets of vertices is L = 24. Thus, the user can

also gain an intuition for properties that make good partial path configurations by inspecting

both of these in the IVE.

Looking at mistakes in Q6 helps a researcher understand important differences in the

properties that distinguish optimal from sub optimal snakes. Over time, one can see general

tendencies that successful snakes share in various dimensions. Successful snakes seem to move

38

Figure 4.1: This is the unique longest 26 length snake in Q6. Its vertices are (0, 1, 3, 7, 15,
13, 12, 28, 20, 21, 53, 37, 36, 38, 46, 62, 63, 59, 43, 41, 40, 56, 48, 50, 18, 26, 10). Notice that
its final vertex is 10 which is on the same 4-cube (vertices 0-15) as its starting vertex 0. The
first time the snake crosses over dimension 6 is when it moves from vertex 21 to vertex 53.
The first 10 vertices of this snake are (0,1,3,7,15,13,12,28,20,21). This is actually a maximal
(but very sub optimal) length 9 snake in Q5. The length of the longest snake in Q5 is 13,
so this initial path that is sub optimal in Q5 is preparing for the snake’s later return across
the sixth dimension when it leaves vertex 50 to get to vertex 18. At that point, the snake
proceeds to vertex 26 and finally to vertex 10.

39

purposefully through the hypercube. They tend to strategically leave behind vertices that

can be used later. Figure 4.1 shows the optimal snake in Q6. The snake leaves the 4-cube

identified by vertices (16-31) after 9 total initial transitions (0,1,3,7,15,13,12,28,20,21). But

when it does so, it leaves behind vertices (18,26) that are eventually used towards the end of

the snake. When watching the moves of this snake step by step in the IVE, one can almost

glean a rationale for why the snake avoids certain vertices. If this can be formalized with

the help of intuition from the IVE, it will significantly help with the effort to filter or rank

possible arbitrary candidate moves.

4.2 THE K-CUBE HEURISTIC

The k-cube heuristic was designed to put intuition to the test. It allows a researcher to

define the high level shape of a path by restricting the initial transitions to conform to a

proposed plan. The shape is defined by specifying an ordered list of sub cubes (or k-cubes)

the snake must initially traverse. The k-cubes are uniquely defined by the schema syntax

discussed in [10]. An example plan in Q5 will show how this works. An example schema

list of (00***,*11**,10***) defines a comma separated plan that represents a chain of three

initial 3-cubes the snake must traverse in the order they appear in the list. Figures 4.2 - 4.4

visually show the 3-cubes that constrain the snake path. Imagine a snake that starts with

the vertices (0,1,3,7,6). Figure 4.2 shows that all of these vertices are contained completely

by the first 3-cube of the plan. At vertex 6, the canonical snake must proceed to vertex 14.

Upon arrival at vertex 14, the snake has reached the second 3-cube in the plan. The k-cube

heuristic works by allowing the snake to make any transition within the current 3-cube, but

if the snake leaves the current 3-cube, it must move to a vertex contained by the next 3-cube

in the plan. In this example, the snake cannot move to vertex 10 from vertex 14 because that

would constitute leaving its current 3-cube. If it leaves the current 3-cube, it must jump to

the third 3-cube in the plan. The vertices of the third 3-cube are shown in figure 4.4. The

40

snake cannot actually get to that 3-cube from vertex 14, so it must move within the second

3-cube.

We use the term k-cube heuristic instead of 3-cube because the k-cube heuristic is imple-

mented in such a way that the user can define a chain of any type of sub cubes. It could

be a chain a 2-cubes or 4-cubes in Q5 for example. The ForwardNeighborSelector Interface

extension point made it incredibly simple to implement this heuristic. The PPBBSM gets a

list of neighbors to visit from the implementation of the ForwardNeighborSelector it is con-

figured to use. The KCubeHeuristic implementation effectively limits the branching factor

in higher dimensions in a significant way.

We experimented with this heuristic by defining a plan for Q8 consistent with the Q6 motif

discussed in Section 4.1. The following schema list (00000***, 000*11**, 0001*0**, 00110***,

0*1111**, 0101*1**, 01*100**, 01*000**, 010*01**, 0*1101**, 0010*1**) establishes a plan

for only eleven initial 3-cubes in a Q8 search. Figure 4.5 highlights the 3-cubes in the plan.

It is difficult to see the 3-cube order in this single figure, but one can see the general idea

behind the plan. It strives to create a snake like the Q6 optimal snake by simply allowing

patches the snake could return to in vertices (0-127). Vertices (0-127) are the first Q7 half

of the Q8 hypercube. This is similar to how a plan for the Q6 optimal snake would have

left vertices for the snake to return to within its first Q5 half (vertices 0-31) . In just over 2

hours and with an initial start path seed of (0,1,3,7,15,14,12,28,29), the PPBBSM returned

a length 87 snake. It is quite interesting that this length 87 snake did in fact return to the

(0-127) 7-cube in an analogous way that the optimal Q6 snake returns to its (0-31) 5-cube.

This result is interesting and respectable, but the snake generated from the plan does not

quite reach the current lower bound of 97. This could be because either the plan is sub

optimal or the initial seed of (0,1,3,7,15,14,12,28,29) has very costly mistakes. It is also the

case that the algorithm’s run time was limited to 24 hours. Perhaps letting the PPBBSM run

longer could have found a longer snake, but we are more interested in using the framework

to gain insight into smarter heuristics that produce longer snakes in short run times. With

41

that in mind, we decided to design a heuristic that can improve upon good quality snakes

while simultaneously exerting tight control over the branching factor.

4.3 THE ITERATIVE IMPROVEMENT HEURISTIC

Iterative improvement refers to a general optimization technique that tries to improve a

candidate solution by performing a local search for better solutions. Dorn’s paper [2] provides

an excellent comparison of iterative improvement techniques applied to a scheduling problem.

One iterative improvement technique is randomized modification and search. The PPBBSM

lends itself perfectly to this approach. Our k-cube heuristic produced a length 87 snake

that was thought to have room to grow. It has been shown in chapter 3 that the PPBBSM

can quickly find optimal snakes through specified partial paths if enough partial paths are

supplied in the initial configuration. With that in mind, we designed an iterative improvement

algorithm that wraps the PPBBSM by chopping a snake into random partial path fragments

and submitting the fragments to the PPBBSM. The idea behind this method is that a snake

can make mistakes that eliminate vertices that are necessary to build longer paths. Section

4.1 discusses tools the framework offers that demonstrate this phenomenon. By cutting the

snake into random fragments, the transition responsible for such a mistake could be removed.

The PPBBSM takes the fragments and tries to build a longer snake with the freedom it gets

from the gaps that have been randomly selected. The following subsection details how our

iterative improvement approach produced a length 50 optimal Q7 snake.

4.3.1 ITERATIVE IMPROVEMENT EXPERIMENTAL PROCEEDURE

First we used the RandomSubsetSelector (see appendix C.1) implementation of the For-

wardNeighborSelector interface to produce a random Q7 snake with length 35. The path the

PPBBSM found was (0, 1, 3, 7, 15, 14, 12, 28, 24, 26, 27, 59, 63, 55, 54, 52, 116, 84, 86, 70,

66, 98, 96, 104, 108, 110, 111, 103, 101, 69, 77, 73, 89, 81, 83, 115). We then start the iterative

procedure to grow the snake to length 50. The procedure works by breaking this snake into

42

Figure 4.2: This image shows the first 3-cube in the plan defined by (00***,*11**,10***).
The decimal vertex labels for the vertices in this 3-cube are (0,1,2,3,4,5,6,7). The canonical
snake’s first 3 transitions are always contained by this initial 3-cube. The k-cube heuristic
allows the snake to make as many moves as possible within the current k-cube, but if the
snake jumps off of the current k-cube, it must jump to the next k-cube in the plan.

43

Figure 4.3: This 3-cube is represented by the schema *11**. Its decimal vertex labels are
(13, 14, 15, 12, 29, 28, 30, 31). This is the second schema in the plan designated by
(00***,*11**,10***). When the canonical snake is at vertex 7, it has a choice to go to
vertex 6 or vertex 15. The k-cube heuristic would allow the move to either 6 or 15. If the
snake goes to 6 and then 14, it would be in the second k-cube of the plan.

44

Figure 4.4: This is the final 3-cube in the plan defined by (00***,*11**,10***). The decimal
vertex labels of this k-cube are (20,21,22,23,16,17,18,19). Once the snake gets here, it is no
longer restricted.

45

Figure 4.5: This figure shows how the IVE can be used to develop plans for the k-
cube heuristic. Highlighted in this figure are vertices from the 3-cubes defined by the
plan (00000***, 000*11**, 0001*0**, 00110***, 0*1111**, 0101*1**, 01*100**, 01*000**,
010*01**, 0*1101**, 0010*1**).

46

Figure 4.6: This is the length 87 snake found by the k-cube heuristic when given the
plan (00000***, 000*11**, 0001*0**, 00110***, 0*1111**, 0101*1**, 01*100**, 01*000**,
010*01**, 0*1101**, 0010*1**). This snake was found in approximately 2 hours and started
with the initial path of (0,1,3,7,15,14,12,28,29).

47

Figure 4.7: This is the length 89 snake found by the improvement heuristic when given as
input the length 87 snake from figure 4.6. It took the PPBBSM less than 1 minute to find
this snake once we found an initial configuration that kept only the common vertices between
the two. It did, however, take 153 random tries to come up with this initial configuration.

48

random partial path configurations each with three partial paths plus the initial start path.

For example, one random configuration from this snake could be (0,1,3,7;; 28,24,26; 55,54,52;

66,98,96). For diversity, we created 5 of these initial partial path configurations and asked the

PPBBSM to find a length 44 snake from each of the 5 initial partial path configurations. We

restricted the PPBBSM’s run time by imposing a 2 minute time limit. The program iterates

by fragmenting the resulting length 44 snakes and feeding those partial path configurations

to the PPBBSM to get length 45 snakes. We increased the time limit to 5 minutes in order

to allow the PPBBSM to find length 45 snakes. This procedure continued until we were left

with one length 48 snake. At this point, we decided to try to focus on growing this length 48

snake into an optimal length 50 snake. We generated 40 different partial path configurations

and kept the time limit to 5 minutes. The initial length 48 snake had the vertices: (0, 1, 3,

7, 6, 14, 12, 28, 29, 25, 27, 26, 18, 50, 48, 56, 40, 42, 43, 47, 45, 37, 53, 55, 119, 118, 86, 94,

95, 79, 77, 69, 68, 100, 108, 124, 125, 121, 105, 97, 99, 98, 66, 74, 72, 88, 80, 81, 83). One

of the forty partial path configurations randomly generated was (0,1,3,7,6,14,12;; 29,25,27;

88,80,81; 124,125,121). From this initial configuration, the PPBBSM managed to find (0, 1,

3, 7, 6, 14, 12, 13, 29, 25, 27, 26, 18, 50, 48, 49, 53, 37, 36, 100, 68, 69, 85, 81, 80, 88, 72, 73,

75, 79, 95, 94, 86, 118, 119, 103, 99, 98, 106, 122, 123, 121, 125, 124, 60, 62, 63, 47, 43, 41,

40), which is one of the length 50 optimal snakes for Q7.

Figure 4.7 shows that this idea also has merit in Q8. The strategy for this experiment

was to limit each run of the PPBBSM to less than 1 minute. If after 1 minute the PPBBSM

could not improve on the length 87 snake, another random configuration was generated and

passed to the PPBBSM. This experiment managed to produce a length 89 snake from the

pieces of the initial length 87 snake, but it did take 153 different initial configurations in

order to do so. It was also necessary to experiment with different fragmentation strategies.

The fragmentation strategy refers to the issue of how to break a complete snake into the

partial path fragments that make up the initial partial path configuration submitted to

the PPBBSM. The goal of a fragmentation strategy is to produce an initial partial path

49

configuration with the fewest possible total number of vertices that allow the PPBBSM to

give a quick answer. In dimension 7, it was sufficient to produce a configuration with only 3

partial paths with each partial path containing only 3 vertices. In dimension 8, we used the

result in figure 3.8 as a basis for our strategy. It shows that an initial start path of length

14 and 8 partial paths each with length 2 (or containing 3 vertices) allows the PPBBSM to

find the length 97 snake in 2.55 minutes. Experimentation showed that reducing the number

of vertices on the start path and increasing the length of some of the partial paths to 3

(4 total vertices) instead of 2 improves the average time it takes the PPBBSM to find the

optimal path from the initial configuration. We finally settled on a strategy to randomly

choose between length 3 and length 4 partial paths. We found that it was necessary to create

at least 8 partial paths in order to get an answer from the PPBBSM within 1 minute. The

configuration that produced the length 89 snake shown in figure 4.7 was ”0, 1, 3, 7, 15, 14,

12, 28, 29;;87, 83, 81, 113;62, 126, 94, 95;18, 50, 51;147, 151, 159;98, 66, 70;52, 36, 37, 45;42,

170, 138;107, 111, 239”. Notice that we also had to include 9 vertices from the start path

of the length 87 snake. The nice quality of this method is that the experiment designer has

tight control over the branching factor. If many vertices are removed from the initial snake,

one would expect the PPBBSM to need longer to find the better snake. The original length

87 snake was produced by the k-cube heuristic method. We tried a variety of experiments to

grow a length 89 or better snake with the random scheme used to find the optimal snake in

Q7. This did not produce a snake longer than 85. The next section discusses how one might

want to incorporate other search techniques to improve the Q8 performance.

4.4 THE CASE FOR THE GENETIC ALGORITHM AND SIMULATED

ANNEALING

Using the iterative improvement technique, we found a length 50 Q7 snake from a randomly

generated length 35 snake. The random snake that started the iterative process was actually

our third initial random snake. The previous two snakes did not produce a length 50 snake

50

within the PPBBSM time limit we imposed. One very nice attribute of Q7 is that there

is a list of 12 canonical length 50 snakes. This allowed us to compare the random partial

path configurations from various stages of the iterative algorithm to the list of optimal Q7

snakes. We looked at partial path configurations from the late iterative rounds for each of

the 3 initial random snake experiments. We noticed that many partial path configurations

had individual partial paths that were completely found on the optimal snakes. The Genetic

Algorithm (GA) would be an approach that could start with an initial population of individ-

uals represented as a partial path configuration. Each gene could correspond to one of the

partial paths in the initial partial path configuration passed to the PPBBSM. The fitness of

the individual could be the longest snake the PPBBSM could find through the individual’s

partial paths. Crossover could be achieved by taking two partial path configurations and

swapping individual partial paths to form the offspring. Holland’s book [4] gives the original

formulation of the GA.

Further comparisons showed that sometimes all partial paths for a single partial path

configuration had vertices that could be found on a single length 50 Q7 snake. We noticed

that if some of the configurations were barely modified, the PPBBSM would have been

able to find the optimal path. For example, some of the partial paths within an individual

configuration had two of the three vertices from an optimal snake. The GA is a population-

based approach during which different individuals of the population are combining genetic

material to produce better fit offspring. Simulated Annealing (SA) on the other hand, works

to optimize an individual solution by generating a neighboring candidate solution similar

to it and probabilistically decides whether to adopt it as the current solution [12]. “The

name and inspiration come from annealing in metallurgy, a technique involving heating and

controlled cooling of a material to increase the size of its crystals and reduce their defects”

(Wikipedia, 2007). The following is a brief sketch of how SA could be used to optimize a

candidate solution.

51

The initial solution could be a random partial path configuration (e.g. 0,1,3,7,6,14,12;;

29,25,27; 82,80,81; 124,125,121). This configuration is very similar to the one that led to

finding the length 50 snake in Q7 described above, except that the (82,80,81) partial path

is instead (88,80,81). We can imagine that the PPBBSM manages to find a length 40 snake

through our initial configuration less than 1 minute, but it doesn’t find a length 41 snake.

Thus, we can consider that the Energy (E) of our current solution (or state) is 40. Next,

we could modify our solution to generate a “nearby” state (e.g. 0,1,3,7,6,14,12;; 29,25,27;

88,80,81; 124,125,121). This is the configuration that led to a length 50 snake, but it took

longer than 1 minute for the PPBBSM to find it. Let’s say that we are restricting the run

time to 1 minute, and that the PPBBSM managed to find a length 48 snake. The probability

of accepting a solution (or moving to the next state) is e−∆E/T . E in the equation would

correspond to the maximum length that could be found by the PPBBSM through an initial

configuration. T refers to a synthetic temperature parameter. The SA algorithm starts with a

high temperature and employs a gradual cooling schedule. At the highest temperatures, the

probability is almost 1.0 that we will accept the neighboring state. As temperature decreases,

accepting a neighboring state depends more on whether ∆E is significant. In practice, if the

candidate solution is much worse than the existing solution, a researcher may want to use a

default ∆E value that minimizes the probability of accepting that state.

Chapter 5

CONCLUSION AND FUTURE DIRECTION

Artificial Intelligence offers heuristic search for problems whose computational complexity

overwhelm today’s computing technology. The snake-in-the-box problem is an example of

such a problem. A heuristic search technique is only as good as the heuristic behind it.

The framework from this thesis addresses the source of heuristic ideas. It provides what

could be considered a novel heuristic development environment. The main components of

the framework are its Interactive Visualization Environment (IVE), Partial Path Branch and

Bound Search Module (PPBBSM), and extensible APIs and utility methods that facilitate

rapid implementation and evaluation of heuristic ideas.

The experimental results from chapter 3 show that the PPBBSM can speedily (only

3 minutes on a slow laptop) find a length 50 path in Q7 through an initial configuration

consisting of several partial paths defined over a total of only 13 vertices. Actually, four of

these vertices were the vertices that begin the start path for every canonical snake (0,1,3,7).

In a sense, the PPBBSM allowed the Q7 problem to be redefined as the search for three

small partial paths that make up a total of 9 vertices. The fact that the PPBBSM performs

best when the initial partial paths are well-spaced is actually an advantageous feature of its

approach. It means that the actual placement of the initial partial paths can be constrained

by defining disjoint regions from which the initial small paths are sampled. Section 4.1

describes how the framework offers tools that can be used to derive rules that govern useful

initial partial path placements.

Chapter 4 presents a case study showing how interaction with the framework can yield

interesting heuristic ideas. The k-cube heuristic allows a researcher to use intuition gained

52

53

from the IVE to define high a level plan that constrains the snake’s initial moves and limits

the branching factor. Continued and focused use of the IVE can lead to a formalization of

what makes a good plan. If this happens, the plan can confidently be extended to include

more k-cubes. This would impose more constraints thereby reducing the overall time to find

snakes consistent with the defined plan.

A random iterative improvement heuristic technique was devised to try to grow the snake

found by the k-cube heuristic. It works by chopping a given snake into random fragments

and submits the fragmented snake to the PPBBSM to try to find a longer path. The results

show that the technique has potential but could be improved if the modifications were more

intelligently targeted. For instance, the individual partial paths that are submitted to the

PPBBSM could be more rigorously inspected and modified according to a new heuristic.

This would make the iterative improvement technique more informed which could lead to

quicker convergence to a local or global optimum.

The framework described in this thesis will be increasingly useful as the PPBBSM takes

less time to search higher dimensions with as few initial partial paths defined as possible. It

has anticipated relevant heuristic approaches that future researchers should consider. It has

anticipated these approaches by defining extension points that can have significant impact

on the PPBBSM’s performance. It also provides a wealth of tools in the form of Java utility

methods that future implementations of the interfaces can freely make use of. The appendices

aim to make it as easy as possible to understand the details of how to immediately start using

the significant features of the comprehensive framework. Appendix A gives a basic user guide

for the PPBBSM and IVE. Appendix B attempts to familiarize a future developer with the

basic model of the framework and demonstrates the wealth of utilities the framework offers.

Appendix C shows how easy it is to implement the interfaces that make up the extension

points. Appendix D shows the main recursive method of the PPBBSM. It also shows how

the PPBBSM interacts with the PartialPathHyperCubeWrapper, the implementation of the

ForwardNeighborSelector, and the UpperBoundEstimate implementation. Finally, Appendix

54

E shows a set of test cases that offer support for the correctness and reliability of the

framework itself.

Bibliography

[1] Casella, D., and Potter, W. New lower bounds for the snake-in-the-box problem: Using

evolutionary techniques to hunt for snakes. In Proceedings of the 18th Florida Artificial

Intelligence Research Society Conference. Clearwater Beach, FL. (2005) 264-269.

[2] Dorn, J. , Girsch, M., Skele, G., and Slany, W. (1996) Comparison of Iterative Improve-

ment Techniques for Schedule Optimization, European Journal of Operational Research,

pp. 349-361 Vol 94, No 2.

[3] Harary, F.; Hayes, J.; and Wu, H. 1988. A survey of the theory of hypercube graphs

Computational Mathematics Applications 40:277-289.

[4] Holland, J.H. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor: The

University of Michigan Press.

[5] Kautz, W. H. 1958. Unit-Distance Error-Checking Codes. IRE Trans. Electronic Com-

puters 7:179-180.

[6] Kochut, K. 1996. Snake-in-the-box codes for dimension 7. Journal of Combinatorial-

Mathematics and Combinatorial Computations 20:175-185.

[7] Konig, Dierk (2007) Groovy In Action. New York, NY: Manning Publications.

[8] Dayanand S. Rajan and Anil M. Shende. Maximal and reversible snakes in hypercubes.

In 24th Annual Australasian Conference on Combinatorial Mathematics and Combina-

torial Computing, 1999. http://citeseer.ist.psu.edu/rajan99maximal.html

[9] D.R. Tuohy, W.D. Potter and D.A. Casella, “Searching for Snake-in-the-Box Codes

with Evolved Pruning Methods”, in Proceedings of the 2007 International Conference

55

56

on Genetic and Evolutionary Methods. (GEM ’07) pp 3-9, Las Vegas, Nevada June

25-29, 2007.

[10] D. Whitley. A Genetic Algorithm Tutorial, Statistics and Computing (4):65-85, 1994.

[11] Wikipedia contributors, ”Branch and bound,” Wikipedia, The Free Encyclopedia,

http://en.wikipedia.org/w/index.php?title=Branch and bound&oldid=174256538

(accessed December 3, 2007).

[12] Wikipedia contributors, ”Simulated annealing,” Wikipedia, The Free Encyclopedia,

http://en.wikipedia.org/w/index.php?title=Simulated annealing&oldid=174716983

(accessed December 3, 2007).

Appendix A

USER GUIDE

This thesis has discussed how the PPBBSM and the IVE are main components of a com-

prehensive framework for the snake-in-the-box problem. Section A.1 describes how to install

and run the PPBBSM for the initial configurations described in the experimental results.

Section A.2 explains how to set up the IVE by discussing how to modify its configurable

properties. Currently, the binary distribution of the framework comes as a single file called

“snakedist.zip”. Unzipping the snakedist.zip file reveals that there are four files inside.

The snake.jar is all the compiled java code for the entire framework. “search.properties”

is the property file for the ppbbsm. “snake.properties” is the property file for the IVE. The

ppbbsm.bat file will run the PPBBSM in a windows environment. This script is just a one

line call to get the java virtual machine to run the main PPBBSM class, so it can easily be

ported to a Unix/Linux environment. If a user is using the IVE and wants to run a given

configuration through the PPBBSM, Appendix A.2 shows how this can quickly be done using

the “Clone” functionality within the IVE.

A.1 PPBBSM USER GUIDE

The PPBBSM gets its initial configuration from the “search.properties” properties file. In

order to run the PPBBSM, the user must edit the search.properties file and run the windows

script “ppbbsm.bat”. An example search.properties file from the experimental results will

help understand how to set up custom searches.

initialSnake=0, 1, 3, 7;;43, 59, 63; 96, 104, 72; 116, 118, 119;80,81,85

57

58

dimension=7

minimumLength=50

UpperBoundEstimateImpl=snakes.graph.compute.StandardUpperBound

ForwardNeighborImpl=snakes.graph.compute.options.ExhaustivedNeighborSelector

ForwardNeighborImplProps=2

greedy=true

Section 2.4 introduced the syntax used to define an initial configuration. The initial-

Snake in this example starts with the canonical (0,1,3,7) and has four internal partial paths.

Next the hypercube dimension the PPBBSM will search is specified. The “minimumLength”

property represents the user’s defined lower bound. Appendix C will go into more detail for

the next three fields, but for now it is important to note that the UpperBoundEstimateImpl

and ForwardNeighborImpl are the properties that make up the primary framework extension

points. The “greedy” property controls whether the framework seeks to automatically extend

paths that can legally be extended. For instance, after a forward path move a situation in

which there is only one forward neighbor can arrive. If greedy is true, it will always extend

the snake automatically. The option exists because sometimes it is annoying when working

with the IVE for the IVE to extend a path without the user’s awareness of how it was able

to be done.

A.2 IVE USER GUIDE

Section 2.2 gave an overview of the basic controls of the IVE. This Appendix will build on

that overview by discussing the IVE’s config file (snake.properties).

As mentioned in the introduction, one way to render Qn from Qn−1 is to project a copy

of Qn−1 onto a new axis. A computer screen is only a 2D surface, so it can quickly get

confusing visualizing a 7 or 8 dimensional hypercube. One thing that helps is to divide the

screen into disjoint regions and render smaller Qk for k < n in non-overlapping regions.

The sample “snake.properties” file below corresponds to the IVE display found in figure

3.6. The “gd=5” in the file means that the user will need to specify the locations of the

four disjoint 5-cubes. The “originLocations” property is what the IVE uses to place the zero

59

vertex for each 5-cube. The value of the “originLocations” property is a comma separated

list of integer pairs. This helps to see how the IVE is reading this list of integer pairs to get

the (x,y) location of the zero vertex for each of the four zero vertices of the 4 disjoint 5-cubes.

In Java Swing, the (0,0) coordinate is the top left corner of the display. Thus, a smaller value

for x puts the zero vertex closer to the left side of the screen. A smaller value for y puts a

zero vertex closer to the top of the screen. The zero vertices are (0, 32, 64, 96). The edge

distances property allows the user to control the number of pixels of each edge transition

type. The comma-separated list values have an order. The first integer (55) corresponds to

the pixel length of edges for the bit 1 transition. This means that all the red edges will be 55

pixels long. The following edges are examples from figure 3.6: (20,21),(72,73),(48,49). All bit

2 transition edges will have a pixel length of 50. These are the vertical edges such as (14,12),

(15,13), (28,30), etc. For this properties file example, only the edge lengths for the disjoint

5-cubes need to be specified because the edges connecting the different 5-cubes have lengths

that are necessary products of where they are placed (via the originLocations property). The

easiest way to understand how to do it is by just changing one of the numbers and seeing

how that affects the display.

The “initialSnake” property gives the user a quick way to get the IVE to display an

initial set of partial paths without having to manually enter the paths in each of the path

edit boxes. However, when the user wants to edit paths, all he or she needs to do is to edit

the path fields with valid node values and hit return. The user may also delete a partial

path by selecting the path from the partial path combo chooser, and then hitting the delete

button. When the user wants to introduce a new partial path, the IVE knows that if the

user types something entirely new in the “Edit Path” field, the user is adding a path rather

than editing an existing one. This may seem confusing, but it only takes a little practice to

get the hang of working with the IVE.

initialPositiveEdges=0,1,2,4,8,16

initialNegativeEdges=0,1,2,4,8

showDistance=false

60

drawNegativeSpace=false

showSnake=true

showBinary=false

showDegree=true

nodeDim=10

gd=5

pd=7

originLocations=(345,655), (350,320), (760,655), (765,325)

edgeDistances=55,50,65,95,90

initialSnake=0, 1, 3, 7;;43,59,63;96,104,72;116,118,119;80,81,85

Appendix B

BASIC MODEL OF THE FRAMEWORK

Figure B.1 shows a basic uml diagram of the object-oriented model of the framework. This is

intended to give a programmer wanting to extend the framework the idea for how the snake-

in-the-box problem and hypercube are modeled together under one framework. The main

recursive method (findSnakes) of the PPBBSM is found in Appendix D. The object that is

passed to the findSnakes method is of type PartialPathHyperCubeWrapper. Figure B.1 shows

how the PartialPathHyperCubeWrapper can serve as the main abstraction for the PPBBSM.

It is the glue that holds together hypercube information with partial path information. The

uml diagram includes method names as conceptual information that the object model pro-

vides. The diagram can be interpreted linguistically as a PartialPathHyperCubeWrapper

that extends the functionality of a basic HyperCube. The PartialPathHyperCubeWrapper

is an aggregate of a collection of HyperCubePaths. PathFromStart and PathFromEnd are

derived from HyperCubePath. HyperCubePath itself, extends the java.util.LinkedList. Par-

tialPathHyperCubeWrapper is also associated with an EndPointCoveringTest. The End-

PointCoveringTest deals with the constraint checking described in Section 2.4.3.

Figure B.2 shows a group of utility classes that offer static utility methods. These utility

methods proved very useful when implementing the functionality to check constraints. The

PathMergeUtility handles the complicated task of merging the forward path to partial paths.

The PathSetUpdateManager handles the job of knowing when the IVE of PPBBSM is

wanting to extend an existing path, redefine an existing path, or create a new path. It then

takes care of updating the working version of the PartialPathHyperCubeWrapper instance.

61

62

Figure B.1: A display of the object-oriented model of partial paths and the hypercube. The
main class is the PartialPathHyperCube wrapper. The PPBBSM works primarily with it
for its representation of potential solutions. It keeps track of all partial paths and initiates
all the constraint checking that has been described in this thesis. Each box has a sample of
some of the most useful methods that characterize each class. As this is just a conceptual
diagram, the method full method signatures are not displayed. The “?” symbol at the end
of method name denotes a boolean return value method.

63

Figure B.2: A display of the static Java Utility Classes that help make extension from exten-
sion points a simpler task. This diagram shows that these utility classes provide information
about an instance of a PartialPathHyperCubeWrapper. In some cases, the PartialPathHy-
perCubeWrapper instance passes itself to these utility classes so that they can inspect and
update the instance.

Appendix C

EXAMPLE INTERFACE IMPLEMENTATIONS

Appendix B shows the basic model of the framework and utility methods that can be useful

for anyone wanting to extend the framework from the previously mentioned extension points.

The Sections of this Appendix will show how simple it is to implement the interfaces that

designate the framework extension points.

C.1 FORWARD NEIGHBOR SELECTOR

Any implementation of ForwardNeighborSelector Java Interface must implement two

methods.

public List<Integer> selectForwardNeighbors(

PartialPathHyperCubeWrapper ppGraphWrapper);

public void setProperties(String commaSepProperties);

Imagine a scenario in which a researcher wants to limit the branching factor by only

selecting at most 2 forward neighbors for the PPBBSM to consider. Furthermore, imagine

that the researcher wants to come up with a way to identify the 2 “best” forward neighbors

to try. In order to validate their approach, let’s say the researcher wants to compare it to

a baseline method of using 2 random vertices. Given the framework, it would be a simple

matter to implement such a scheme. In fact, the Java code below is all it takes in order to

do so.

package snakes.graph.compute.options;

64

65

import java.util.HashSet;

import java.util.List;

import java.util.Random;

import java.util.Set;

import math.utils.CollectionUtils;

import snakes.graph.PartialPathHyperCubeWrapper;

import snakes.graph.PathFromStart;

public class RandomSubsetSelector implements ForwardNeighborSelector {

protected int max;

Random random;

public RandomSubsetSelector () {

random = new Random();

}

public List<Integer> selectForwardNeighbors(

PartialPathHyperCubeWrapper ppGraphWrapper) {

PathFromStart fPath = ppGraphWrapper.getForwardPath();

Set<Integer> fNeighbors = new HashSet<Integer>(fPath.getForwardNeighbors());

List<Integer> randomForwardNeighbors =

CollectionUtils.convertSetToList(fNeighbors);

if (randomForwardNeighbors.size() > max) {

do {

if (random.nextBoolean()) {

int toDelete = random.nextInt(randomForwardNeighbors.size());

randomForwardNeighbors.remove(toDelete);

}

}

while (randomForwardNeighbors.size() > max);

}

return randomForwardNeighbors;

}

public void setProperties(String commaSepProperties) {

String[] props = commaSepProperties.split(",");

max = Integer.parseInt(props[0]);

}

}

C.2 UPPER BOUND ESTIMATE

The following source code implements phase 3 described in 2.4.1.

66

package snakes.graph.compute;

import java.util.HashSet;

import java.util.Iterator;

import java.util.Set;

import snakes.graph.PartialPathHyperCubeWrapper;

public class ShallowUpperBound implements UpperBoundEstimate {

public int estimateUpperBound(PartialPathHyperCubeWrapper

partialPathHyperCubeWrapper) {

Set<Integer> ppEnds = partialPathHyperCubeWrapper.getPartialPathEnds();

int upperBoundLength =

partialPathHyperCubeWrapper.computeUpperBoundSnakeLength();

if (partialPathHyperCubeWrapper.getForwardPath().isMaximal()) {

return partialPathHyperCubeWrapper.getForwardPath().size()-1;

}

else {

Set<Integer> processedNeighbors = new HashSet<Integer>();

// prevents double counting

int necessaryHyperCubeSubtraction = 0;

for (Iterator iter = ppEnds.iterator(); iter.hasNext();) {

Integer ppEnd = (Integer) iter.next();

try {

Set<Integer> neighborsCopy = new HashSet<Integer>(

partialPathHyperCubeWrapper.getAdjacentNodes(ppEnd));

neighborsCopy.removeAll(processedNeighbors);

necessaryHyperCubeSubtraction += Math.max(0,neighborsCopy.size()-1);

processedNeighbors.addAll(

partialPathHyperCubeWrapper.getAdjacentNodes(ppEnd));

}

catch (Exception e) {

e.printStackTrace();

return -1;

}

}

upperBoundLength -= necessaryHyperCubeSubtraction;

}

return upperBoundLength;

}

67

}

Appendix D

PPBBSM SOURCE CODE

The source code below is the main recursive method of the PPBBSM. It is basically a

standard depth-first search, but the search space and backtracking comes from information

sources offered by the framework. The PPBBSM stops if the snake is maximal and its length

is greater than the user defined lower bound.

public void findSnakes(PartialPathHyperCubeWrapper ppGraphWrapper) {

String currentSnakeString = ppGraphWrapper.toString();

PathFromStart startPath = ppGraphWrapper.getForwardPath();

List<Integer> lstOfForwardNeighbors =

forwardNeighborSelector.selectForwardNeighbors(ppGraphWrapper);

if (lstOfForwardNeighbors != null) {

for (int i=0; i<lstOfForwardNeighbors.size(); i++) {

try {

List<Integer> newElements =

getNewElements(startPath, lstOfForwardNeighbors.get(i));

PathSetUpdateManager.modifyPath(startPath, newElements);

if (ppGraphWrapper.getForwardPath().isMaximal() &&

(ppGraphWrapper.computeCurrentSnakeLength()>=lowerBound)){

System.out.println("FOUND GOAL!!" + ppGraphWrapper.toString());

return;

}

else {

if (!ppGraphWrapper.getForwardPath().isMaximal() &&

(ppGraphWrapper.computeUpperBound() >= lowerBound)) {

findSnakes(ppGraphWrapper); // recursive call

if (ppGraphWrapper.getForwardPath().isMaximal() &&

(ppGraphWrapper.computeCurrentSnakeLength()>=lowerBound)){

return;

68

69

}

}

}

}

catch (Exception e) {

e.printStackTrace();

}

ppGraphWrapper.reset();

ppGraphWrapper.loadSnake(currentSnakeString);

startPath = ppGraphWrapper.getForwardPath();

}

}

}

Appendix E

VALIDATION JUNIT TEST CASE EXAMPLE

Putting in all the framework functionality involved a significant programming task with

numerous possibilities for bugs to emerge. The JUNIT test framework was immensely helpful

to ensure that new functionality didn’t break existing functionality during the development

effort. There are several Test classes similar to the following. There are a total of 40 test

cases included in the JUnit test suite.

package test;

import snakes.graph.HyperCubePath;

import snakes.graph.PartialPathHyperCubeWrapper;

import snakes.graph.PathFromStart;

import snakes.utils.PathSetUpdateManager;

import snakes.utils.SnakeUtils;

import junit.framework.TestCase;

public class BasicPartialPathTest extends TestCase {

PartialPathHyperCubeWrapper ppGraphWrapper;

PathFromStart forwardPath;

protected void setUp() throws Exception {

super.setUp();

ppGraphWrapper = new PartialPathHyperCubeWrapper(6, true);

forwardPath = new PathFromStart(

SnakeUtils.parseIntegerList("0,1,3,7"), ppGraphWrapper);

}

public void testPPathAdd() {

HyperCubePath aPath =

new HyperCubePath(

SnakeUtils.parseIntegerList("53,37,36"),ppGraphWrapper,true);

70

71

System.out.println(ppGraphWrapper.getAllDefinedPaths());

assertTrue(ppGraphWrapper.getPartialPathEnds().contains(36));

}

public void testPartialPathMerge() {

HyperCubePath aPath =

new HyperCubePath(

SnakeUtils.parseIntegerList("37, 36, 38"),ppGraphWrapper,true);

HyperCubePath aPath2 =

new HyperCubePath(

SnakeUtils.parseIntegerList("62, 63, 59"),ppGraphWrapper,true);

try {

PathSetUpdateManager.modifyPath(

aPath, SnakeUtils.parseIntegerList("37, 36, 38, 46"));

assertEquals(ppGraphWrapper.getForwardPath().getLast().intValue(), 13);

assertEquals(ppGraphWrapper.getAllDefinedPaths().size(), 2);

System.out.println(ppGraphWrapper.getAllDefinedPaths());

} catch (Exception e) {

e.printStackTrace();

}

assertFalse(ppGraphWrapper.getForwardPath().isAtDeadEnd());

}

}

}

