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This project develops a computational method to improve searches of the medical literature

by selecting the studies that report reliable evidence of patient-oriented outcomes. These

outcomes include morbidity, mortality, symptom severity, and quality of life. Four machine

learning methods, Support Vector Machines, näıve bayes, näıve bayes multinomial and lo-

gistic regression, achieve over 70% accuracy on the identification of such studies in PubMed

abstracts. The accuracy attainable by hand in this task is about 95%. The best machine

learning results, just over 80% accurate, were obtained with näıve bayes multinomial on a

combination of single words and contiguous pairs of words using WEKA 3.7.5.
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Chapter 1

Background

1.1 Introduction

This project develops a computational method to improve searches of the medical liter-

ature by selecting the studies that report reliable evidence of patient-oriented outcomes.

Such a study is called Patient-Oriented Evidence (POE). The goal of this thesis is

to automate the identification of POEs. This is one step toward the longer term goal of

developing a computational method of selecting Patient-Oriented Evidence that

Matters (POEMs) from the medical literature. POEMs are the most important medical

articles for general practitioners because they represent studies with the potential to change

practice and improve outcomes.

The present study is restricted to articles in PubMed, which contains more than 23 mil-

lion abstracts. Over 800,000 articles are abstracted and added to PubMed per year. It can

be queried by anyone on the Internet based on MeSH terms in certain fields. These include

title, author, first author, publication date, and publication type, abstract, or title

and abstract (tiab).1 The MeSH terms include clinical terms that are not contained in

1PubMed can be accessed at www.ncbi.nlm.nih.gov/pubmed/.
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a small stop words list.2 There is also a National Institute of Health (NIH) search engine,

which can translate common idioms into the appropriate MeSH terms.3

Doctors who want the best clinical outcome for their patients may search PubMed.

However, PubMed’s coverage is wide, so it may return many non-relevant results. My goal

was to apply machine learning techniques to the task of identifying reports with patient-

oriented outcomes based on reliable evidence, i.e., POEs.

To achieve practical results in a reasonable amount of time, I decided not to apply

syntactic analysis to the abstract text as part of my classification algorithms. That is, the

methods considered were limited to shallow classification schemes. A number of different

methods were tested experimentally, since there is no single approach which works well for

all text classification problems. So a best method (among those tested) emerged empirically.

Prior to the experiments I had five expectations for the best classification scheme, as

follows.

(i) Its accuracy should be at least 60% in POE identification. This is based on the findings

of prior studies on shallow classification of biomedical texts.

(ii) It should enable the user to trade off between reducing false positives and reducing

false negatives. This can normally be done in text classification problems. The trade

off would enable a doctor to cast a wider net for the answer to a query by generating

more abstracts to scan.

(iii) Bayesian methods would be uncompetitive with logistic regression and support vector

machines, based on prior experience reported in the text classification literature.

(iv) Feature selection would be important in determining the best classification scheme

for POE identification. This is normal for text classification problems.

2The complete list of PubMed stop words can be found on the website
www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T43/?report=objectonly.

3MeSH is described at www.ncbi.nlm.nih.gov/mesh.
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(v) Algorithms based on binary feature data were expected to outperform those based

on feature frequencies. This would be normal for classification of short texts, and

PubMed abstracts are short by the standards of text classification research.

The experiments turned up several surprises. The best results were obtained with näıve

bayes multinomial (NBM), a method which employs frequency data. With suitable feature

selection NBM achieved 80.4% accuracy in POE identification. This was significantly better

than any of the other methods studied. NBM did allow for trading off between false negatives

and false positives over a fairly wide range with no significant loss of accuracy. As expected,

feature selection was critical to achieving the best results. The highest accuracy was attained

by using words and consecutive word pairs as features, and including only those which

occurred in at least 6 documents and afforded an information gain of at least 0.0010.

1.2 Motivation

It is believed that POE identification by computer is novel and significant. This is impor-

tant because of the focus on the type of outcomes; physicians should be able to restrict their

search to a corpus of abstracts reporting Patient-Oriented Evidence. By hand POE Identi-

fication takes 2–3 minutes per abstract. Considering that 800,000 or so abstracts are added

to PubMed annually, POE identification by computer can save at least a dozen man-years.

Thus, POE identification by computer can help doctors find POEMs. This will advance

one of the key goals in medicine today, which is to aid medical practitioners in finding

the evidence in the literature that they need to treat their patients. Clinical queries in

PubMed only focus on study design. The important improvement in this thesis is the new

focus on the type of outcome.

Simple searches are likely to provide unsatisfactory results. For instance, PubMed searches

for Randomized Controlled Trials (RCTs) return many results based on unreliable evidence,
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not based on randomized controlled trials. Even searches for studies on humans return some

studies on mice and cows.

The evidence must also measure, as a primary or secondary outcome, things patients

care about. Otherwise, the results of the study may not be relevant. There are numerous

examples from the literature of drugs and treatments that improve an intermediate marker,

but do not help the overall patient-oriented outcome. This includes keeping hemoglobin A1C

under 6.5% for diabetics, according to the American Diabetic Association’s 2010 guidelines.

Keeping hemoglobin A1C under 6.5% in diabetics with intensive insulin therapy does not

improve mortality over time. Thus the regime of intensive insulin therapy for diabetic

patients is unwarranted. Also, aggressively lowering Hemoglobin A1C in Type II diabetics

does not lower the risk of mortality. This is an example of a POEM, since it is a POE

which modifies the recommended treatment for diabetics. The earlier studies were not

POEMs, and, as it turned out later, were misleading. See the ACCORD, ADVANCE and

VA Diabetes trials for better Hemoglobin A1C targets (LaBlanche et al. 1997, Kirkman et

al. 2006, Du et al. 2009).

1.3 Problem Description

This thesis’s topic is finding valid patient-oriented evidence (POE) in PubMed abstracts, as

introduced in section 1.1. POEs consist of papers from the medical literature with reliably

measured outcomes that patients care about. These are the papers which satisfy criteria

(i) and (ii):

(i) the findings are based on reliable evidence;

(ii) the outcomes are directly relevant to patients;

(iii) the recommendations change existing practice for doctors.
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Thus, an abstract is a POEM if and only if it is a POE which satisfies criterion (iii).

Conditions (i) and (ii) are discussed below in order.

First, the study must be based on reliable evidence. The most valid evidence comes

from well designed randomized controlled trials (RCTs), in which the patients and

researchers are both masked, allocations are concealed, and placebos are used as controls.

Careful meta-analyses based on several high-quality RCTs can also provide reliable evi-

dence.

Second, the outcomes must be patient-oriented. Patient-oriented results include mortal-

ity, morbidity, bleeding, cardiac events such as heart attacks, length of stay in the hospital,

and costs. Pain scales and quality of life indicators are patient-oriented. Health related

quality of life is patient-oriented, as are numerous quality of life indicators related to a

specific body part or disease. Simply taking someone to the hospital for a certain length

of time, or performing a procedure, is not patient-oriented. The counts of HIV-1 or other

biochemical markers or intermediates in the body, such as triglycerides and cholesterol, are

not patient-oriented. Changes in height and weight are not patient-oriented in our study.

A delay in getting to a hospital or in obtaining care is not considered patient-oriented if

final outcomes are not affected.

Below are examples of outcomes which are patient-oriented followed by examples which

are not patient-oriented.

(a) mortality, morbidity, or bleeding — patient-oriented

(b) cardiac events, including adverse cardiac events — patient-oriented

(c) pain scales — patient-oriented

(d) quality of life, including quality of life of a certain body part or disease — patient-

oriented

(e) duration of hospital stay — patient-oriented
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(f) changes in height or weight — not patient-oriented

(g) delay in treatment, if patient-oriented outcomes are not affected — not patient-oriented

(h) intermediate markers, like blood pressure, HIV-1, or hemoglobin A1C — not patient-

oriented

(i) secondary or safety outcomes, even if they are patient-oriented — not patient-oriented

Not all studies reporting patient-oriented outcomes meet condition (i). The acronym

POE suggests condition (i) by mention of evidence (as opposed to outcome), as was done

in the earlier acronym POEM.

A POEM requires also that the recommendations of the study must change current

medical practice. This can not be determined without extensive clinical experience, so

condition (iii) is not considered here.

The problem for this study is to automate the accurate classification of PubMed ab-

stracts as POE or non-POE. Inaccuracies may be of two types: a Type I Error is also

known as a false positive (FP). This is a paper that is a non-POE, but is classified as

a POE. A Type II Error, also known as a false negative (FN ), is a paper that is a

POE, but is classified as a non-POE. A True Positive (TP) is a paper that is correctly

classified as a POE. A True Negative (TN ) is a paper that is correctly classified as a

non-POE. Sensitivity, also known as recall, is TP/(TP + FN), so a type II error pri-

marily lowers sensitivity. Specificity is the ratio TN/(TN+ FP), so a type I error lowers

specificity. Physicians pay particular attention to sensitivity and specificity, because they

do not depend on the prevalence of disease in a given population.

A cost function determines the balance of the cost between FP and FN, hence

the tradeoff between sensitivity and specificity. Higher cost ratios mean that sensitivity

is preferred over specificity, while lower cost ratios mean that specificity is preferred over

sensitivity. WEKA implements this preference scheme when an appropriate cost matrix file

is supplied to a CostSensitiveClassifier class.
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The True Positive Rate is TP/(TP+FN), and the False Positive Rate is FP/(FP+TN).

Precision, surprisingly, is not the same as specificity. precision is TP/(TP + FP), which

is the same as Positive Predictive Value. Authors often report the performance of a

classification scheme in terms of accuracy, which is simply

(TP+ TN)/(TP+ FP+ TN+ FN).

Another approach to measuring performance is based on likelihood ratios. The Positive

Likelihood Ratio (PLR) is sensitivity/(1.00− specificity). The Negative Likelihood

Ratio (NLR) is (1.00− sensitivity)/specificity. The PLR gives the number of times more

likely it is that an abstract represents POE after the algorithm classifies it as such. The

NLR gives the number of times more likely it is that an abstract represents non-POE

after the algorithm so classifies it. The Diagnostic DOR Ratio (DOR) is defined to

be (positive likelihood ratio)/(negative likelihood ratio), a measure of the information that

a diagnostic test provides.

1.4 Related Work: Text Classification in Medical Ab-

stracts

1.4.1 Determination of Structure

One type of related work involving text classification in medical abstracts is recreating the

logical structure of an abstract that has no labels on its various parts. The target struc-

ture is the classic four part sequence: introduction/objective/purpose, methods/materials,

results/findings, and conclusions/discussion. Increasingly, medical journals are forcing re-

sults into this format, a trend which began around the year 2000. Hirohata et al. (2008)

achieved 95.5% per-sentence accuracy. Per-abstract accuracy is defined as the percentage of

abstracts in which every sentence is put in the correct category. Their experiments yielded

68.8% per-abstract accuracy using Conditional Random Fields (CRFs). The authors
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created their own corpus of over 7 million medical abstracts, of which just about 102,000 had

the prerequisite sections marked and were used in the analysis (51,000 strict and 51,000

more unstructured abstracts). CRFs are a sequencing assignment technique invented by

Lafferty et al. (2001).

The numbers were so high in Hirohata et al. because they only needed to do two things.

The first was to determine whether the introduction comes before the methods, or the

methods come before the introduction. It is usually the former, but not always. The second

was to determine the three break points between the 4 sections of the abstract. There are

earlier schemes involving 5 different sections of the abstract, and using Hidden Markov

Models, but they will not be discussed here due to the superiority of the CRF method.

There is another, more specifically medical, paradigm of abstract organization for PubMed

abstracts; the Problem/Population, Intervention, Comparison, Outcome (PICO) view. Boudin

et al. (2010a, 2010b) wrote two papers about PICO detection in abstracts by means of

SVM-based machine learning. This was done to support evidence based medicine, which

requires a careful search of the clinical literature. One rarely finds PICO elements explicitly

annotated, but Boudin and colleagues explicitly annotated hundreds of abstracts for one

study (2010a), and then used abstracts where PICO was specifically annotated for another

(2010b). They were very conservative in the latter study, intent on not dealing with overly

noisy information. An increase in P@10 of over 70% was reported. P@10 is defined to be the

number of results among the top 10 that are relevant to the query over many runs; P@10

is used in some papers, but it is considered nonstandard even in the information retrieval

literature.

1.4.2 Biomedical Sentiment Analysis

Opinion mining of biomedical abstracts was pioneered by Niu et al. (2006). The authors

defined two tasks. The first was to take a sentence and its position in the abstract and

classify the sentence as an outcome or not an outcome. An outcome sentence is a
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sentence that gives the overall results of a medical RCT. Niu et al. (2006) achieved 82.5%

accuracy for this task using SVMs, improving on a baseline of 65.9% for selection based

solely on position in the abstract. The baseline in Niu et al. was the same for both tasks,

65.9%. Either this is an unlikely coincidence, or an error in the paper’s tables; I do not know

which. The second task was four-way classification of sentiment outcome in the abstract;

positive, negative, neutral, or no outcome were the four possibilities. The outcome is positive

if the results of the research are good overall. Negative results occur if the sentence gives

a result that is not what was wanted. Neutral means there was a result, but the result

sentence may be mixed, or the algorithm simply could not determine if the outcome was

significant. The accuracy was 78.3%, again improving on a baseline of 65.9% provided by

regular expression-based determination and position in the abstract.

Sarker et al. (2011a) continued the supervised sentiment analysis of biomedical abstracts.

Special emphasis was placed on detecting multiple negations. Also, conditions from the

medical literature are labeled as good or bad, and the algorithm determines whether more

of a good thing is happening, or whether less of a bad thing is happening. Either of these

are positive outcomes. For example, raising the I.Q. of babies is more of a good thing,

while lowering mortality is less of a bad thing. The outcome of the polarity analysis is

either positive, negative, or neutral, much as in Sarker et al.’s other paper from last year

(2011b). Sarker et al. (2011a) do not attempt to determine whether there is an outcome

sentence. The maximum accuracy obtained is 74.9%, but the domain is less restricted than

the original 2006 work, the corpus being much larger and more varied. Just because one

supervised machine learning paper reports a lower percentage than another does not mean

the work is necessarily inferior. The choice of data can significantly affect the difficulty of

a given task.
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1.4.3 Semantic Work on PubMed Abstracts

The MEDLINE database is the database of medical abstracts behind the PubMed front end

on the web, and there is semantic work on MEDLINE abstracts (Abacha and Zweigenbaum,

2010). These authors take a corpus of sentences from MEDLINE abstracts that claim a

certain disease is cured by a certain drug class or specific drug. They also determine whether

the sentence states that a drug or drug class has a certain condition as a side effect, or if

the drug prevents a certain disease. They use the UMLS (Unified Medical Labeling System)

to act as a thesaurus, and to identify drug names, which itself is no easy task. There are

two approaches used at this point. One is a hand tuned regular expression system to find

the verbs in the relations. The other is an SVM-based system, which worked better for the

“cure” relationships. The other two relationships (“side effect” and “prevent”) did better

with the hand-tuned system due to small data sets (Abacha and Zweigenbaum, 2011).

The authors combined these two systems to obtain 75.72% precision and 60.46% recall in

the extraction of relationships between medications and diseases. The system improved the

baseline precision, as determined in a previous paper using näıve bayes on the same data for

different purposes, by 19.59%. The baseline precision from the previous paper was around

55.0%.

Abacha and Zweigenbaum enhanced MetaMap for these tests (Aronson, 2001). MetaMap

is an existing noun phrase mapping program from the National Institute of Health that

achieves over 83% recall and 85% precision, compared to hand mapping of noun phrases

into medical concepts. There is also a MetaMap Plus program that extends MetaMap’s

functionality.4

Hansen et al. devised a method of automatically determining the number of trial par-

ticipants from abstracts describing Randomized Controlled Trials with the help of SVMs

(2008). They achieved an accuracy of 97.0% and an F1 Score of 0.84. The F1 Score is

defined to be the harmonic mean of precision and recall.

4More information on MetaMap Plus can be found at www.metamap.com/files/User Guide.pdf
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The ExACT system (Kiritchenko et al., 2010) attempts to automatically find out many

things about a study through shallow machine learning and statistical text mining. They

want to determine, for instance, the amount by which a drug helped or hindered patients’

health directly from the PubMed abstract, or the number of participants in a study, or

the participation rate of a study. ExACT was broken down into two parts. The first part

found relevant sentences, and the second part extracted 21 entities (details), some but not

necessarily all of which are present in any given abstract. ExACT was evaluated using 50

previously unseen abstracts, and 21 details on each one, for a total of 1,050 data items.

Most data items were present. ExACT showed five candidate sentences to the user for each

of the 1,050 pairs. The system was able to recover 88% of the relevant sentences. Precision

was 93% and recall was 91% for the second stage - extracting the relevant details from the

relevant sentences. Six hundred ninety-six of the 1,050 data items represented fully correct

and complete answers from the system in the very first sentence presented to the system’s

users.

1.4.4 Corpora for Biomedical Text Mining

Aggarwal and Zhai (2012) contains an overview of biomedical text mining in chapter 14.

The authors discuss various biomedical corpora, including the historic and widely used

OHSUMED and the highly annotated GENIA MEDLINE corpus. The Collaborative An-

notation of a Large Biomedical Corpus (CALBC) aims to create a “silver standard” (one

step below a near perfect “gold standard”) corpus which has automatically annotated MED-

LINE abstracts. Biomedical entities have been added by initiative participants, and this

new, large corpus is publicly available. The Colorado Richly Annotated Full Text Corpus

is semantically and syntactically annotated, and is designed to be like a “Penn Treebank

for biomedicine.” The Penn Treebank is a large collection of parsed and tagged sentences,

often used to test part of speech taggers and parsers in the natural language processing

arena (Marcus et al., 1993).
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1.4.5 Non-Medical Prescription Drug Abuse

Daniulaityte et al. (2012) studied user opinions of the extra-medical use of three drugs.

Sentiment Analysis and Web 2.0 technologies were used to find the drug users. The authors

consider their work to be an important advance in drug use epidemiology. This study is

another example of how sentiment analysis can be combined with text classification for

data in the medical domain.

1.4.6 Automatically Determining Study Design

I am aware of only one prior study on automatically determining study design in the medical

literature. Lin et al. (2011) developed a computational method for classifying the strength

of evidence of cardiology papers. There were 3 levels of evidence for each of 3180 cardiac

papers. Level A is the highest and level C the lowest, with Level B in between. Level A

was assigned to 1108 papers, level B to 1705, and level C to 367. Finding POEs amounts

to finding level A evidence. There are also levels for meta-analysis and broader questions

only, with 1 being the highest and 3 the lowest level of evidence consistency and validity.

Levels 1 and A are equivalent, but 1 is a level for meta-analyses or groups of studies, while

A is a level for an individual research study. Level A evidence has highest priority when

determining an evidence level of 1 for a disputed question of the body of medical literature.

The authors report over 85% accuracy at determining the strength of evidence, A, B, or

C, for the members of a test set of 900 abstracts (300 of each level). They also achieved

a K-value (representing Cohen’s Kappa) of 0.78. A K-value of 0.40 represents moderate

agreement, a K-value of 0.60 represents good agreement, and a K-value of 0.80 represents

nearly perfect agreement. So, a K-value of 0.78 is considered quite good.

As in this thesis, Lin et al. (2011) used cross validation. However, they employed a C4.5

decision tree algorithm, which is simpler than the näıve bayes multinomial, näıve bayes,

support vector machine, and logistic regression methods of this thesis. My situation differs
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from theirs in only having two classes of evidence, but also in requiring patient-oriented

outcomes.

1.4.7 Identifying Speculative Language and Hedging in Biomed-

ical Abstracts

The amount of work done each year in the area of identifying negation, hedging, and

uncertainty in PubMed abstracts is rapidly growing. Hedging, speculation, and uncertainty

are not all the same thing, but many of the studies on speculation detection in the medical

literature treat them as the same, as will I. The exact definitions of these terms are a matter

of some debate. Speculation detection through hand-written rules or machine learning is

now a major research area within NLP. The usual classification algorithms for automatic

speculation identification are SVMs or CRFs. About 14% of sentences in PubMed abstracts

contain speculation, while about 20% of the sentences in the complete articles on PubMed

Central contain speculation. Finding hedging, uncertainty, and speculation will all be called

speculation identification for the remainder of this discussion.

In subsection 2.4.2, the benefits of negation detection for finding POEs are discussed.

Speculation detection can help find open problems, but speculative language can also be

a problem for POE identification. For instance, a conclusion sentence might say “drug X

may lower mortality in condition Y,” even though mortality itself was not measured in the

study; then that abstract is more likely than it should be to be labeled a POE because

of the speculative conclusion. The last two sentences of PubMed abstracts tend to contain

speculation and uncertainty.

Search engines could also benefit from speculation identification. One might want to

identify open problems or new areas to study. To find things that scientists suspect to be

true but do not know for sure, one can look for speculative sentences. In order to find truths

for knowledge bases, one needs to look for facts. One could pair speculative statements from
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an earlier time with factual statements from a later time to help in automated scientific

discovery through literature mining.

Friedman et al. (1994), for instance, found speculative language in clinical radiology

reports with hand-crafted rules, assigning one of five levels of certainty. They defined the

scope of speculation as narrowly as possible. Szarvas et al. (2008) later took a different

approach, building a corpus for identifying uncertainty and negation, and their scopes, in

PubMed abstracts. The authors tagged specific words reflecting negation and speculative

language by hand using the same sort of syntax as HTML tags. They defined the scope of

the speculative words and phrases as broadly as possible. This broad choice when the scope

of uncertainty is unknown contrasts with previous work, where the scope of uncertainty was

defined as narrowly as possible. The corpus they created is freely available on the Internet

for other researchers to use. The idea was to create a standard corpus, so that the various

approaches to the problem of speculative language detection could be more systematically

studied by researchers.

Light et al. (2004) claim that there are not just facts and speculations in the biomedical

literature. There are also statements of high and low speculation, and they note that one

clause in a sentence may be factual while another may be speculative. Thus, the authors

break the sentences into phrases with a chunk parser, and classify each phrase or clause

as being low speculative, high speculative, or factual. They compared the annotations of

two human experts, and concluded that humans can not distinguish high speculative and

low speculative language consistently. However, the human experts were able to identify

speculative and non-speculative language and their scopes reliably. Humans achieved 68%

precision and 78% recall on two-way classification of clauses. Light et al. attained 71%

precision and 39% recall using SVMs for the same two-way classification task. The SVMs

were never applied to the three-way classification task.

Here are two typical examples of speculation from Light et al. (2004). “Pdcd4 may thus

constitute a useful molecular target for cancer prevention”(pmid 1131400). Here, cancer
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is not actually being prevented; there is just a possibility that cancer is being prevented.

“Curcumin down-regulates Ki67, PCNA and mutant p53 mRNAs in breast cancer cells,

these properties may underlie chemopreventive action” (pmid 14532610). This one is less

medical. In this sentence, there may be a gene-protein link, but the matter is far from

settled. Light et al. have about 20 examples of speculative and factual language from the

literature. One could find thousands more, once one knows what to look for.
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Chapter 2

The Problem

2.1 Testbed Data

In the course of a previous project Ebell et al. (2004) searched PubMed abstracts for POEMs

from 1998–2008 in 161 major medical journals. Difficult cases were decided by examining the

full texts of the articles. In all just over 3,000 POEMs were identified. In the current search

for POEs, articles from the same set of 161 journals were examined. The original data set

was taken from October, 2010, through October, 2011. There was a deemphasis on the last

few months of 2011 due to slow PubMed updating, limiting availability of some abstracts.

Dr. Ebell taught me to classify the PubMed abstracts as POE or non-POE by hand. There

is an original dataset and a revised PubMed dataset, based on careful re-examination of

some abstracts, as explained in subsection 2.4.2. Both Dr. Ebell and I classified a test

set of 200 abstracts, with 95% agreement. I went on to classify 1160 more abstracts with

occasional help from Dr. Ebell, for a total of 1356. These constitute our set of testbed

abstracts. Of these, 713 were originally classified as POE and 644 as non-POE.

I then converted the testbed abstracts to testbed data in a format suitable for import

into WEKA (Hall et al., 2009). First, PubMed abstracts were downloaded, and everything

between tags other than the title and abstract of the paper was deleted. The tags were
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also removed, but each PubMed id was preserved for later reference. The HTML codes for

double quotes and extra space (&quot; and &emsp;) were also suppressed. The abstracts

were written one to a line, with a serial number first, followed by classification, and the

journal impact factor. Each line was completed with the entire title and abstract between

double quotes, and separated by a space.

A separator character was taken to be any numeral, whitespace, or punctuation mark.

A word, or unigram, consists of two or more consecutive letters in a title/abstract

string, bounded at each end by a separator. A bigram, for implementation purposes, is

two consecutive words, with an x placed between them. A trigram is three words in a

row, with the separators between them replaced by two x ’s.

The token beginningtoken was placed at the beginning of the abstract once for bigrams,

and twice for trigrams. This practice captures a paper’s first words, and makes special

bigrams and trigrams from them. Similarly, the token endingtoken was placed at the end

of the text the same number of times. A token consists of a unigram, bigram, trigram,

beginningtoken, or endingtoken. All tokens are lowercased after identification. A feature

is any token, or the impact factor of the journal the abstract came from.

Initially the token set consists of all unigrams appearing at least once in the testbed

data. If bigrams are included in an experiment, then all bigrams derived from the testbed

data are added to the initial token set. Similarly, if trigrams are to be included, then all

bigrams and trigrams derived from the testbed data are added to the initial token set.

Finally, the testbed abstracts were converted to data files in WEKA 3.7.5’s sparse matrix

format, in which the features are listed in order, and feature numbers with values are given.

In this study, the value is always the number of occurrences for a given word or n-gram in

the abstract. Note that näıve bayes always interprets the data as binary. In addition the

journal impact factor, a floating point number, is always included in the feature set.
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2.2 Feature Selection for Text Classification

A common problem for text classification data, shared by our testbed initial feature set, is

that the feature set is too large and needs to be reduced. Selection of features is accom-

plished by removing those features that fail certain threshold tests. In this work, document

frequency and information gain thresholds are used; n–grams below the thresholds are culled

from the data. The Document Frequency Minimum (DFM) is the minimum number

of documents that an n–gram must appear in to be selected as a feature in the experiments.

The Information Gain Minimum (IGM) is the minimum value for the information gain

of an n–gram for that n–gram to be included in the experiments. Information gain itself is

defined below, while the 50 n–grams with highest information gain are provided in Appendix

A.

Information Gain (IG) is a measure of the benefit, for classification purposes, of

including a term in the feature set. It is derived from the difference between entropies with

and without the terms. The paper of Yang and Pedersen (1997) is seminal in the area of

text classification and feature selection. They define the information gain of a term t to be:

IG(t) = −

m∑

i=1

Pr(ci) logPr(ci) + Pr(t)

m∑

i=1

Pr(ci|t) logPr(ci|t) + Pr(t̄)

m∑

i=1

Pr(ci|t̄) logPr(ci|t̄)

(2.1)

The above information gain equation gives the change in entropy that would occur if a

term was used by itself. It’s always between 0.0 and 1.0 in the two-class case. Here, m is

the number of categories in the target space, and {ci}
m

i=1
is the set of classes. In our case

m = 2, and one can take c1 = POE and c2 = non-POE.

(Rogati and Yang, 2002) found that Chi-squared feature selection, combined with an

Information Gain cutoff or a document frequency cutoff, performed best when combined

with either näıve bayes, Rocchio, k-nearest neighbor, or SVM classifier. J. J. Rocchio wrote

a simple text classification method, the first based on continuous user feedback (1971).

Rogati and Yang’s results came from experiments with Reuters-21578 and a small part
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of RCV-1, standard benchmarks for classic text classification research (Rogati and Yang,

2002). Rogati and Yang broke down over 100 feature selection methods and found that they

preferred χ2 in combination with certain cutoffs. They noted that cross-correlation could

be used, but it generally performed only slightly better than other methods, at massive

computational expense.

For a term t and a class c, the χ2 statistic can be calculated as follows. Let A be the

number of times t and c occur together, B the number of times t occurs without c, C the

number of times c occurs without t, and D the number of times neither occurs. Also, let N

be the total number of documents. Then, according to Yang and Pedersen’s seminal paper

on text classification and feature selection (1997):

χ2(t, c) =
N(AD − CB)2

(A + C)(B +D)(A+B)(C +D)
(2.2)

The χ2 statistic is not accurate for relatively rare words; it tends to overestimate their

performance (Dunning, 1993). The χ2 distribution is highly correlated with IG (Forman,

2003). Hence in this study information gain and document frequency cutoffs are used.

2.3 Machine Learning Methods Employed in Experi-

ments

There are five machine learning techniques used in this work; two of them differ only slightly

in pseudocode. The first and simplest is Näıve Bayes (NB), which is based on assuming

that the feature variables conditioned on class membership are independent. The second is

Näıve Bayes multinomial (NBM), a variant and generalization of näıve bayes, which

is still quite basic. In näıve bayes the prior probabilities of each class are taken. Then the

probably that each word or pair of words appears in a given class is computed, and the

logarithms of these probabilities are added, in effect multiplying the probabilities together.
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The most probable class is chosen. The idea behind näıve bayes classification can be traced

back to a book review of Minds, Machines, and Mathematics (Good, 1968). In this review,

näıve bayes is presented in the context of independent processes or machines with results

being combined. Näıve bayes is called “näıve” because it assumes that each feature in the

feature space is independent of all other features. This is in contrast to the more complicated

bayesian belief networks, which assume something is known about the structure of causality

in the problem.

The third type of machine learning employed in this study is support vector ma-

chines (SVMs), which were invented by Vapnik in the late 1970’s. Support vector machines

did not become popular until the mid to late 1990’s. Vapnik (2000) wrote the definitive

book on SVMs, putting the algorithms into polished form. Platt (1998; 1999) went on to

invent an optimization for SVM classification on sparse data. Training an SVM entails

solving a large quadratic programming problem. Platt’s method, sequential minimal

optimization (SMO), breaks the large quadratic programming problem into a series of

smallest possible problems. In this way, large speedups for sparse data sets can be achieved.

This is useful for us because our data is very sparse. SMOs were used in the experiments in

this work. The usual way of referring to SMOs and SVMs is “SVM,” a standard followed

throughout this thesis. The speedup was dramatic. Runs that would have taken hours were

reduced to a couple of minutes each.

The fourth type of machine learning used in this study is logistic regression (LR),

also known as Maximum Entropy (ME). This classification algorithm attempts to find

the least constrained distribution based on the training data. This constraint that is min-

imized is the term to which maximum entropy refers. Berger et al. (1996) was one of the

first papers to use LR in natural language processing.

The fifth type of machine learning employed in this study is the random forest (RF).

RFs are examples of averaging methods in machine learning. There are no RF tables in this

thesis due to the algorithm’s low performance. An RF is a set of complete decision trees
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populated by random variables. There is a maximum depth, and the tree is always filled to

the maximum. The trees should not be correlated with each other very much. There may

be, say, 100 trees and 20 features in each tree. Then, 100 random vectors are chosen, and

the trees are aligned with the vectors. In this way a random weight is assigned to each tree.

RFs work well when there are hundreds or even thousands of features, no one or small group

of which can be used for prediction of the class. RFs are highly parallelizable; they excel

in situations involving 1000s of training examples and 1000s of input variables together

with powerful, multi-core computers. Breiman et al. (2001) introduced random forests, but

there are earlier examples of similar methods, for instance Adaboost (Freund and Schapire,

1996), which Breiman considers inferior to his own creations. RFs are rapidly gaining in

popularity in a number of fields, but still have not overtaken artificial neural networks in

widespread usage.

2.4 Experiments

Ten-fold cross-validation is used for the experiments in this thesis. The data are split into

10 equal parts, and each of the 10 disjoint parts is used as a test set once and as part of

a training set the other 9 times. As noted in the previous section, the learning algorithms

applied in this study are NB, NBM, SVM, and LR, and RFs. For each of these, one fold of a

cross-validation experiment took just a minute or two to complete. ANNs (Artificial Neural

Networks) took several hours per fold to complete, so even though they are implemented in

WEKA 3.7.5, they were not used in this study due to slowness of implementation. We also

do not use GAs (Genetic Algorithms) to optimize the parameters of our system because

they are so time consuming.
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2.4.1 Experimental Procedure

A validation setup consists of a learning setup (learning algorithm + parameter

settings), and a fold grouping (random partition into 10 fold groups of 71 POEs and

64 non-POEs, and one leftover group of 3 POEs and 4 non-POEs). A fold consists of

one experiment in which a fold group is treated as the test set and the rest of the testbed

abstracts form the training set. The algorithm (with any parameters) specified in the vali-

dation setup is run in training mode, then in test mode. A validation experiment is 10

folds, one for each fold group treated as the test set. A validation run is a set number k

of validation experiments based on a common learning setup; the number k of experiments

in the run is called the repetition number. The experiments in a run differ only in the fold

groups of the testbed abstracts. These groupings should ideally be formed independently

and at random. In actuality, all choices which should be random are only pseudo-random,

as they rely on random number generators implemented in Python, Java, and WEKA.

Note that feature selection based on the DFM and IGM values for the learning setup

must be carried out for every fold. However, the impact factor for each journal is constant

for all folds. It was always included in the feature set. Journal impact factors averaged 10.12

over all POEs, and 7.45 over all non-POEs. The journal impact factor had an information

gain of 0.1611 when the average of the POE and non-POE averages was used for a cutoff.

The information gain for the journal impact factor was higher than that of any single n-

gram (1 ≤ n ≤ 4) by more than a factor of 3. The 50 n-grams with the highest IG values

are listed in appendix A.

WEKA 3.7.5 generated confusion matrices for each fold of the cross validation, and then

these 10 were added together to form one confusion matrix. Each of these is a 2× 2 matrix

X with the number (TP) of true POEs in X11, the number (FN) of false non-POEs in X12,

the number (FP) of false POEs in X21, and the number (TN) of true non-POEs in X22.

For each learning setup a validation run with 10 repetitions was performed. The measures

of classification accuracy are defined in section 1.3. Sensitivity, specificity, accuracy, and
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diagnostic odds ratio are computed for each run. For each set of runs each accuracy measure

was averaged and a range for it computed at 95% confidence, assuming a normal distribution

and based on the standard unbiased estimator for its variance. In general, the runs in each

set varied only a little bit in terms of specificity, sensitivity, and accuracy.

Runs were conducted for Support Vector Machines (SVM), Näıve Bayes (NB), and Näıve

Bayes Multinomial (NBM), and Logistic Regression (LR). The complexity parameter of the

SVM and its kernel were systematically varied.

2.4.2 Analysis of Commonly Misclassified Abstracts

The best results on the original dataset were with näıve bayes multinomial on N=2,

IGM=0.001, DFM=4, 5, or 6, and Cost=1:1. The 100 most commonly misclassified ab-

stracts (50 false negatives and 50 false positives) averaged over these three learning setups

were studied. To locate articles misclassified in the original dataset, these 100 abstracts

were precisely reclassified, taking more time to look at each one. This reclassification found

8 positives that should be negatives, and 8 negatives that should be positives. The classi-

fication by hand was about 95% accurate overall, but 16% of the commonly misclassified

abstracts had been misclassified by me the first time around. The revised dataset was

prepared by correcting the 16 misclassifications found, and formed the basis of all subse-

quent experimental results.

A number of comparisons were run with the same learning setup between the original

and revised datasets. In every case the results from the revised dataset were slightly better

than those from the original dataset. For instance, the highest accuracies were attained by

the learning setup noted above with DFM=4; these were 79.5% on the original dataset and

80.4% on the revised dataset. For logistic regression Table 2.11 compares results from the

original and revised datasets.
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Several features appear in abstracts which are commonly misclassified:

(i) a patient-oriented word, but the outcome is a secondary outcome or a safety outcome;

(ii) an implied patient-oriented outcome, such as “clinical outcomes;”

(iii) mixing of patient-oriented outcomes such as mortality with non-patient-oriented out-

comes such as height and weight in the same study;

(iv) diseases that are usually measured with surrogates, like AIDS, diabetes, and asthma,

but the study actually is patient-oriented;

(v) rarely used phrases in the corpus that are too long for the classification algorithm, like

“end stage renal disease;” That’s four words, but usually the classification algorithm

does not look at 4–grams. Most “renal disease” studies use surrogate markers, but

“end stage renal disease” is a dire condition.

Odd study designs also contribute to the difficulty of classifying abstracts. For instance,

there are secondary analyses of other studies in the literature, or, worse, studies that de-

scribe the design of a trial that has not yet been conducted.

Also, some studies use negation in a way that would seem to require parsing to be

interpreted correctly in the classification process. Take for example “neither patients nor

doctors were blinded in this study.” This statement would cause the classification algorithm

to behave as if this were a double blind trial, when in fact it is not even a single blind trial.

Measures that would help some of these cases to be handled correctly in classification

include domain-specific semantic analysis of the data, full parsing, and identification of

negative and speculative language. Some of these measures have been attempted in other

studies, as discussed in subsection 1.4.7.
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2.5 Experimental Results

In this section some experimental results are reported which are based on the original

testbed data, as well as those based on the revised data. The revision procedure is described

in subsection 2.4.2. Since many of the experiments are quite time consuming, only the most

important results were rerun on the revised data. In general the results on the revised data

followed the same pattern as those for the original data, but with slightly better values for

the various accuracy measures.

The first subsection gives an overall comparison of the best results from NBM, LR,

SVMs, and NB. Then for each of these algorithms, a subsection is devoted to presenting

the results obtained.

Random forests did the worst of all the algorithms; at best, the accuracy was 58%.

No tables of results for random forests are included in this thesis. Only the WEKA im-

plementation of random forests was tried, and there was not time to exhaustively check

parameters.

Ten runs with 10-fold cross-validation were used to obtain all experimental results in

this section. Unless otherwise noted, the IGM for all results in this section is 0.0010, a value

that has been found to work well.

2.5.1 Overall Results

From Table 2.1, it is apparent that näıve bayes multinomial has the highest accuracy, and

it is apparent from the 95% confidence intervals that the result is statistically significant.

The N in the table represents whether 2–grams or 3–grams did best. DFM is the document

frequency minimum, the minimum number of documents an n–gram must appear in to be

selected in the feature set. Cost is the cost ratio supplied to WEKA. Positive predictive

value (PPV) is the probability that something the algorithm selects as a POE is one; the

formula, given in section 1.3, is the same as for precision in information retrieval. The table
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Algorithm N DFM Cost Sens Spec PPV Accuracy

Näıve Bayes Multinomial 2 6 1:1 0.826±0.005 0.779±0.004 0.805 0.804±0.003
Logistic Regression 2 4 1:1 0.784±0.007 0.735±0.007 0.766 0.760±0.003
Näıve Bayes -K 3 6 1:1 0.794±0.006 0.701±0.009 0.746 0.750±0.006
SVM 2 4 1:1 0.749±0.002 0.730±0.003 0.754 0.740±0.002

Algorithm N DFM Cost PLR NLR DOR

Näıve Bayes Multinomial 2 6 1:1 3.74 0.223 16.764±0.576
Logistic Regression 2 4 1:1 2.96 0.294 10.083±0.392
Näıve Bayes -K 3 6 1:1 2.66 0.294 9.104±0.576
SVM 2 4 1:1 2.77 0.344 8.135±0.175

Table 2.1: Summary of best overall accuracy on the revised data for each algorithm with
95% confidence intervals for sensitivity, specificity, accuracy, and diagnostic odds ratio

Algorithm Cost Accuracy

Näıve Bayes Multinomial 1:15 0.804±0.002
Näıve Bayes Multinomial 1:1 0.804±0.003
Näıve Bayes Multinomial 15:1 0.803±0.003

Table 2.2: Best overall accuracy on revised data for NBM — 2–grams — DFM 6 — Cost
set at 1:15, 1:1, and 15:1.

is sorted by performance from highest to lowest. A distant second is logistic regression,

followed by näıve bayes in third place. SVMs bring up the bottom of the stack, which

is surprising, considering their widespread popularity. SVMs use the polynomial kernel in

this case; WEKA’s other possibility is the gaussian kernel. The kernel of an SVM is an

embedded distance algorithm that an SVM system can swap out, but that is crucial for its

functioning. The kernel does not matter much in text classification, but it can be crucial

with non-textual data. The näıve bayes family did best with a DFM of 6, while the other

algorithms performed better with a DFM of 4. Bigrams were dominant in most of the

experiments, but näıve bayes did better with trigrams. The best accuracy achievable in any

experiment was roughly 80.4%. This is up from 79.5% with the original data. Hence, the

revised dataset improves the maximum accuracy by about 0.9%.

26



N DFM Cost Sensitivity Specificity Accuracy DOR

1 4 1:15 0.800±0.004 0.797±0.003 0.798±0.003 15.675±0.613
2 4 1:15 0.807±0.004 0.790±0.004 0.799±0.003 15.779±0.729
3 4 1:15 0.802±0.004 0.795±0.005 0.798±0.003 15.702±0.700

1 5 1:15 0.804±0.005 0.798±0.002 0.801±0.003 16.166±0.579
2 5 1:15 0.812±0.004 0.791±0.003 0.802±0.004 16.438±0.745
3 5 1:15 0.807±0.005 0.793±0.002 0.801±0.003 16.103±0.630

1 6 1:15 0.802±0.004 0.803±0.004 0.802±0.004 16.578±0.803
2 6 1:15 0.806±0.004 0.801±0.002 0.804±0.002 16.771±0.531
3 6 1:15 0.796±0.004 0.806±0.002 0.801±0.002 16.208±0.447

Table 2.3: Näıve Bayes Multinomial — revised data — Cost 1:15 — DFM and N vary

N DFM Cost Sensitivity Specificity Accuracy DOR

1 4 1:1 0.824±0.004 0.765±0.005 0.796±0.003 15.316±0.574
2 4 1:1 0.825±0.004 0.772±0.003 0.800±0.003 15.948±0.555
3 4 1:1 0.819±0.004 0.778±0.003 0.799±0.003 15.857±0.588

1 5 1:1 0.825±0.005 0.767±0.004 0.798±0.003 15.634±0.566
2 5 1:1 0.831±0.004 0.771±0.002 0.802±0.003 16.577±0.601
3 5 1:1 0.822±0.004 0.775±0.003 0.800±0.003 15.956±0.612

1 6 1:1 0.823±0.005 0.777±0.004 0.801±0.004 16.287±0.710
2 6 1:1 0.826±0.005 0.779±0.004 0.804±0.003 16.764±0.576
3 6 1:1 0.814±0.004 0.786±0.003 0.801±0.003 16.096±0.592

Table 2.4: Näıve Bayes Multinomial — revised data — Cost 1:1 — DFM and N vary

Table 2.2 shows the highest accuracies found over all learning setups when the cost ratio

is set to 1:15, 1:1, and 15:1. These were all produced by NBM with N=2 (bigrams) and

DFM=6. The accuracies are indistinguishable given the 95% confidence intervals. In the

next subsection there are tables showing sensitivity and specificity. For those performance

measures the effect of changing the cost ratio is highly significant.

2.5.2 Results with Näıve Bayes Multinomial

The best overall result, reported on the first line of table 2.1, is expanded on in table

2.4. There the additional performance measures of sensitivity, specificity and diagnostic
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N DFM Cost Sensitivity Specificity Accuracy DOR

1 4 15:1 0.847±0.004 0.731±0.005 0.792±0.003 15.085±0.548
2 4 15:1 0.840±0.004 0.751±0.004 0.798±0.003 15.936±0.532
3 4 15:1 0.834±0.004 0.758±0.004 0.798±0.002 15.702±0.392

1 5 15:1 0.849±0.004 0.732±0.005 0.793±0.003 15.401±0.491
2 5 15:1 0.845±0.004 0.749±0.003 0.800±0.002 16.325±0.522
3 5 15:1 0.837±0.003 0.753±0.004 0.797±0.002 15.689±0.455

1 6 15:1 0.847±0.003 0.738±0.007 0.796±0.004 15.719±0.636
2 6 15:1 0.842±0.003 0.760±0.004 0.803±0.002 16.898±0.469
3 6 15:1 0.830±0.005 0.767±0.003 0.800±0.003 16.119±0.570

Table 2.5: Näıve Bayes Multinomial — revised data — Cost 15:1 — DFM and N vary

Cost Sensitivity Specificity Accuracy DOR

1:20 0.762±0.006 0.778±0.005 0.770±0.004 11.298±0.447
1:15 0.768±0.005 0.774±0.005 0.771±0.003 11.367±0.385
1:10 0.773±0.005 0.770±0.005 0.771±0.003 11.395±0.327
1:5 0.779±0.007 0.759±0.005 0.760±0.003 11.125±0.440
1:1 0.801±0.004 0.736±0.004 0.770±0.002 11.255±0.330
5:1 0.823±0.004 0.715±0.007 0.771±0.004 11.640±0.470
10:1 0.830±0.005 0.704±0.006 0.770±0.003 11.630±0.411
15:1 0.834±0.006 0.698±0.006 0.769±0.003 11.649±0.452
20:1 0.836±0.005 0.693±0.007 0.769±0.004 11.605±0.464

Table 2.6: Näıve Bayes Multinomial — original data — 3–grams — DFM 6 — cost varies.

odds ratio are reported. Also the effect of ranging N over 1, 2, 3 and DFM over 4, 5, 6 is

displayed and seen to make only slight differences for NBM. Most of these differences are

not statistically significant.

Tables 2.3, 2.4, and 2.5 differ in their parameters only in setting the cost ratio at 1:15, 1:1,

and 15:1 respectively. Tables 2.3 and 2.5 exhibit the same near constant behavior as N and

DFM are varied as does table 2.4. Significant differences are seen between the tables in that

sensitivity increases and specificity decreases as the cost ratio increases. This variation offers

the opportunity to trade one for the other, as needed by the particular application. For POEs

doctors would probably prefer sensitivity over specificity, as provided by the 15:1 cost ratio.
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IGM Cost Sensitivity Specificity Accuracy DOR

0.001 1:15 0.842±0.003 0.760±0.003 0.803±0.002 16.898±0.413
0.002 1:15 0.850±0.003 0.744±0.003 0.800±0.001 16.527±0.302
0.003 1:15 0.838±0.007 0.742±0.008 0.792±0.002 14.933±0.313
0.004 1:15 0.836±0.007 0.730±0.010 0.785±0.003 13.835±0.476
0.005 1:15 0.825±0.009 0.726±0.013 0.778±0.003 12.606±0.392
0.006 1:15 0.824±0.009 0.728±0.011 0.779±0.002 12.656±0.314
0.007 1:15 0.821±0.010 0.720±0.013 0.773±0.003 11.935±0.403
0.008 1:15 0.816±0.012 0.721±0.015 0.771±0.002 11.603±0.368
0.009 1:15 0.807±0.013 0.721±0.016 0.766±0.003 10.951±0.445
0.010 1:15 0.801±0.017 0.720±0.018 0.762±0.002 10.520±0.439
0.011 1:15 0.786±0.020 0.718±0.020 0.754±0.003 9.625±0.470
0.012 1:15 0.778±0.023 0.715±0.025 0.748±0.002 9.095±0.340

Table 2.7: Näıve Bayes Multinomial — revised data — 2–grams — Cost 1:15 — DFM 6
— IGM varies

Table 2.6 shows the dependence of sensitivity and specificity on a range of cost ratios

for NBM on the original data with 3–grams and DFM=6. The dependence is smooth over

the whole range of cost ratios, from 1:20 to 20:1. The effect seems to flatten out a little

at the higher ratios. The diagnostic odds ratio seems to be non-significant in many cases

where the other measurements are more significant. The accuracy varies only a little bit,

and the differences are mostly non-significant.

Tables 2.7, 2.8, and 2.9 show the effects of changing IGM for 2–grams for cost ratios

of 1:15, 1:1, and 15:1 and DFM 6, respectively. All three show that accuracy decreases as

IGM increases. Specificity is highest for the lowest values of IGM. This table contains the

best accuracy values from the original data. As it stands, table 2.9 does not show the same

trends for sensitivity and specificity as tables 2.7 and 2.8. It has flat sensitivity as IGM

increases, versus falling for tables 2.7 and 2.8. Also, as IGM increases, specificity goes up

(slowly) in table 2.7, is flat in 2.8, and up in 2.9. It is true that for fixed IGM, going from

cost ratio 1:15 to 1:1 and 1:1 to 1:15 gives significant increases in sensitivity, significant

decreases in specificity, and little change in accuracy.
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IGM Cost Sensitivity Specificity Accuracy DOR

0.001 1:1 0.806±0.003 0.801±0.002 0.804±0.002 16.771±0.468
0.002 1:1 0.812±0.003 0.797±0.004 0.805±0.002 16.914±0.356
0.003 1:1 0.845±0.007 0.733±0.015 0.792±0.004 15.122±0.655
0.004 1:1 0.835±0.010 0.724±0.021 0.782±0.005 13.551±0.689
0.005 1:1 0.832±0.012 0.716±0.021 0.777±0.004 12.754±0.506
0.006 1:1 0.828±0.015 0.721±0.022 0.777±0.003 12.714±0.408
0.007 1:1 0.821±0.021 0.713±0.027 0.770±0.003 11.843±0.325
0.008 1:1 0.815±0.027 0.711±0.030 0.766±0.003 11.386±0.418
0.009 1:1 0.811±0.032 0.706±0.032 0.761±0.003 10.946±0.350
0.010 1:1 0.804±0.037 0.702±0.036 0.756±0.004 10.453±0.490
0.011 1:1 0.799±0.043 0.695±0.040 0.749±0.004 9.913±0.411
0.012 1:1 0.790±0.049 0.696±0.043 0.745±0.006 9.622±0.409

Table 2.8: Näıve Bayes Multinomial — revised data — 2–grams — Cost 1:1 — DFM 6 —
IGM varies

IGM Cost Sensitivity Specificity Accuracy DOR

0.001 15:1 0.825±0.004 0.778±0.003 0.802±0.002 16.526±0.493
0.002 15:1 0.831±0.004 0.769±0.003 0.802±0.002 16.419±0.401
0.003 15:1 0.817±0.008 0.773±0.008 0.796±0.002 15.317±0.369
0.004 15:1 0.810±0.007 0.766±0.007 0.789±0.003 13.990±0.437
0.005 15:1 0.790±0.011 0.770±0.010 0.780±0.003 12.723±0.458
0.006 15:1 0.785±0.012 0.774±0.011 0.780±0.003 12.622±0.392
0.007 15:1 0.774±0.013 0.773±0.012 0.773±0.003 11.772±0.458
0.008 15:1 0.752±0.016 0.776±0.014 0.764±0.003 10.707±0.370
0.009 15:1 0.736±0.019 0.783±0.014 0.758±0.004 10.188±0.366
0.010 15:1 0.716±0.023 0.786±0.015 0.749±0.006 9.451±0.407
0.011 15:1 0.693±0.025 0.790±0.015 0.739±0.007 8.703±0.428
0.012 15:1 0.674±0.027 0.796±0.015 0.732±0.008 8.269±0.443

Table 2.9: Näıve Bayes Multinomial — revised data — 2–grams — Cost 15:1 — DFM 6
— IGM varies

Cost Sensitivity Specificity Accuracy DOR
1:20 0.804±0.003 0.804±0.003 0.804±0.002 16.803±0.462
1:15 0.806±0.004 0.801±0.002 0.804±0.002 16.771±0.531
1:10 0.809±0.004 0.798±0.003 0.804±0.003 16.840±0.629
1:5 0.814±0.004 0.793±0.003 0.804±0.003 16.766±0.584
1:1 0.826±0.005 0.780±0.003 0.804±0.002 16.815±0.555
1:5 0.814±0.004 0.793±0.003 0.804±0.003 16.766±0.584
5:1 0.835±0.004 0.766±0.003 0.802±0.002 16.526±0.488
10:1 0.840±0.004 0.762±0.003 0.803±0.002 16.862±0.487
15:1 0.842±0.003 0.760±0.004 0.803±0.002 16.898±0.469
20:1 0.844±0.004 0.758±0.004 0.803±0.002 17.003±0.549

Table 2.10: Näıve Bayes Multinomial — revised data — 2–grams — Cost Varies
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D N Sensitivity Specificity Accuracy DOR

O 1 0.727±0.008 0.701±0.009 0.715±0.005 6.286±0.331
O 2 0.737±0.005 0.725±0.008 0.731±0.005 7.407±0.363
O 3 0.741±0.007 0.732±0.005 0.737±0.004 7.869±0.320

R 1 0.753±0.008 0.734±0.007 0.744±0.006 8.509±0.545
R 2 0.688±0.003 0.831±0.007 0.756±0.003 10.947±0.537
R 3 0.857±0.004 0.625±0.006 0.747±0.003 10.048±0.406

Table 2.11: LR — Cost 1:1 — DFM 6 — original and revised data — N varies

Table 2.10 shows NBM with 2–grams on revised data, with varying cost. As the cost

ratio increases, sensitivity increases, while specificity decreases. The diagnostic odds ratio

is as good as for any experiment. Accuracy varies little from condition to condition in this

table.

2.5.3 Results with Logistic Regression

In Table 2.11, it can be seen that both the accuracy and diagnostic odds ratios are higher

in the revised dataset versus the original dataset. The variation is higher for sensitivity,

specificity, and accuracy on the unigrams versus the bigrams and trigrams. The highest

sensitivity in the table is on the revised dataset with trigrams, while the revised dataset

with bigrams has the highest specificity in the table. The changes in accuracy between

the original dataset and the revised dataset, as well as the changes in the diagnostic odds

ratios, are statistically significant. The accuracy increases by a percent or more, as in the

case of revised bigrams. These two datasets do not always exhibit the same patterns. In the

original dataset N equals 3 is best for everything, while in the revised dataset, N equals 2

is best for accuracy and diagnostic odds ratios.

The revised dataset’s numbers are given in more detail in tables 2.12, 2.13, and 2.14,

which give the revised numbers for 1–3–grams. In Table 2.14, a DFM of 5 and a cost ratio

of 1:1 give the highest sensitivity, while in table 2.13, a DFM of 4, again with cost ratio
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DFM Cost Sensitivity Specificity Accuracy DOR

4 1:15 0.704±0.003 0.793±0.007 0.746±0.004 9.130±0.448
4 1:1 0.773±0.005 0.721±0.006 0.748±0.004 8.816±0.402
4 15:1 0.827±0.004 0.647±0.008 0.742±0.004 8.838±0.417

5 1:15 0.703±0.005 0.787±0.007 0.743±0.003 8.796±0.364
5 1:1 0.765±0.005 0.723±0.008 0.745±0.006 8.551±0.544
5 15:1 0.822±0.006 0.647±0.008 0.739±0.005 8.513±0.446

6 1:15 0.690±0.005 0.794±0.007 0.739±0.005 8.625±0.430
6 1:1 0.753±0.008 0.734±0.007 0.744±0.006 8.509±0.545
6 15:1 0.805±0.007 0.672±0.011 0.742±0.008 8.529±0.656

Table 2.12: LR — revised data — 1–grams — Cost and DFM vary

DFM Cost Sensitivity Specificity Accuracy DOR

4 1:15 0.774±0.007 0.743±0.009 0.759±0.006 9.986±0.597
4 1:1 0.784±0.007 0.735±0.007 0.760±0.003 10.083±0.392
4 15:1 0.779±0.007 0.725±0.007 0.753±0.003 9.301±0.307

5 1:15 0.758±0.007 0.749±0.006 0.754±0.005 9.383±0.471
5 1:1 0.776±0.009 0.735±0.008 0.757±0.005 9.696±0.568
5 15:1 0.764±0.008 0.752±0.006 0.758±0.005 9.860±0.573

6 1:15 0.668±0.005 0.843±0.004 0.751±0.003 10.833±0.429
6 1:1 0.688±0.003 0.831±0.007 0.756±0.003 10.947±0.537
6 15:1 0.686±0.008 0.819±0.009 0.749±0.004 9.982±0.534

Table 2.13: LR — revised data — 2–grams — Cost and DFM vary

1:1, gives the highest sensitivity. The highest diagnostic odds ratio in these three tables is

in table 2.13, with a cost ratio of 1:1 and a DFM of 6. For 1–grams, the highest sensitivity

comes with a cost ratio of 15:1 and a DFM of 4.

2.5.4 Results with Support Vector Machines

Table 2.15 shows our results for SVM on the revised data set. This table shows results on

a Polynomial Kernel, with an exponent of 1.01, and 1–3 grams and a DFM of 4–6. The

accuracy for most of the experimental conditions is between 73 and 74 percent. Sensitivities,

except for trigrams with a DFM of 6, are higher than the specificities. That result is
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DFM Cost Sensitivity Specificity Accuracy DOR

4 1:15 0.671±0.006 0.829±0.006 0.746±0.004 9.905±0.506
4 1:1 0.678±0.006 0.834±0.006 0.752±0.004 10.636±0.519
4 15:1 0.667±0.008 0.836±0.007 0.747±0.006 10.339±0.765

5 1:15 0.862±0.003 0.623±0.007 0.749±0.004 10.369±0.382
5 1:1 0.863±0.004 0.618±0.007 0.747±0.003 10.224±0.301
5 15:1 0.858±0.006 0.621±0.007 0.745±0.003 9.918±0.453

6 1:15 0.833±0.006 0.655±0.007 0.748±0.004 9.495±0.420
6 1:1 0.857±0.004 0.625±0.006 0.747±0.003 10.048±0.406
6 15:1 0.843±0.006 0.652±0.008 0.752±0.005 10.137±0.573

Table 2.14: LR — revised data — 3–grams — Cost and DFM vary

N DFM Cost Sensitivity Specificity Accuracy DOR

1 4 1:1 0.753±0.002 0.720±0.003 0.738±0.002 7.908±0.151
1 5 1:1 0.755±0.002 0.712±0.002 0.734±0.002 7.631±0.124
1 6 1:1 0.745±0.002 0.728±0.003 0.737±0.002 7.894±0.139

2 4 1:1 0.749±0.002 0.730±0.003 0.740±0.002 8.135±0.175
2 5 1:1 0.746±0.002 0.727±0.002 0.737±0.001 7.860±0.110
2 6 1:1 0.735±0.002 0.733±0.002 0.734±0.002 7.660±0.140

3 4 1:1 0.736±0.002 0.733±0.002 0.735±0.001 7.689±0.113
3 5 1:1 0.741±0.002 0.727±0.002 0.734±0.001 7.645±0.097
3 6 1:1 0.727±0.003 0.739±0.002 0.733±0.002 7.585±0.147

Table 2.15: SVM Polynomial Kernel — Revised Data — Cost 1:1 — DFM and N vary
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statistically significant. SVMs have enjoyed wide popularity in recent years, but they did

not perform as well with the POE data set as NBM and LR.

2.5.5 Results with Näıve Bayes

Table 2.16 shows the results from the best three experimental conditions for the näıve

bayes algorithm on the original dataset. Näıve bayes with bigrams has a sensitivity of 0.840

and a specificity of 0.620, for an accuracy of over 73% in two cases. It was the third most

successful algorithm in the tests, followed by SVMs coming in last place.

In the tests discussed below, lower values of the IG cutoff achieved the highest accuracy.

This fact was less true for the SVM algorithm than for other algorithms, where the IG cutoff

of the three best is 0.05 rather than 0.00 or 0.025 for the others. Note that the minimum

value of IG is 0.00, which would include 11, 000 or so features for unigrams, which is far

too many.

Table 2.16 shows what happens with 3-grams with the –K option turned on in WEKA.

The –K option represents distribution estimation, a process that complicates the original

Näıve bayes models by modeling the means of many normals instead of assuming a single

normal distribution; the –D option represents classic Näıve bayes. Here, the minimum

information gain remains fixed at 0.005, as it does for Table 2.17. If information gain is

set reasonably, it does the work of DFM. If information gain is varied, the performance

of the system varies more than if DFM is set to different values between 1 and 9. DFM

was also varied between 1 and 19 for unigrams and bigrams, but the data reveals no new

insights. Interestingly, the balance between sensitivity and specificity varies by option. The

sensitivity is higher than the specificity with the –K option, while the specificity is higher

than the sensitivity with the –D option.

In Table 2.16, accuracy never increases above 75.0%, at a DFM of 6. The DFM of 1, at

74.8% accuracy, is also quite competitive.
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DFM Sensitivity Specificity Accuracy DOR

1 0.787±0.004 0.705±0.006 0.748±0.004 8.837±0.383
2 0.786±0.007 0.703±0.007 0.746±0.006 8.715±0.538
3 0.786±0.007 0.700±0.007 0.745±0.005 8.600±0.443
4 0.790±0.005 0.699±0.006 0.747±0.006 8.747±0.423
5 0.787±0.009 0.700±0.008 0.746±0.004 8.649±0.360
6 0.794±0.006 0.701±0.009 0.750±0.006 9.104±0.576
7 0.780±0.005 0.703±0.005 0.744±0.004 8.412±0.363
8 0.777±0.010 0.704±0.009 0.742±0.008 8.371±0.669
9 0.779±0.008 0.706±0.007 0.745±0.006 8.529±0.508

Table 2.16: NB — original data — 3–grams –K Option — DFM varies

DFM Sensitivity Specificity Accuracy DOR

1 0.711±0.004 0.746±0.005 0.728±0.003 7.231±0.250
2 0.709±0.005 0.748±0.006 0.728±0.004 7.253±0.273
3 0.715±0.007 0.744±0.003 0.729±0.004 7.301±0.283
4 0.715±0.007 0.744±0.005 0.729±0.005 7.305±0.357
5 0.714±0.006 0.744±0.006 0.729±0.004 7.299±0.312
6 0.717±0.006 0.750±0.006 0.732±0.004 7.585±0.351
7 0.716±0.007 0.749±0.006 0.732±0.003 7.526±0.201
8 0.712±0.007 0.743±0.006 0.726±0.005 7.162±0.326
9 0.712±0.007 0.750±0.004 0.730±0.005 7.434±0.341

Table 2.17: NB — original data — 3–grams –D Option — DFM varies

Table 2.17 shows näıve bayes with trigrams and the –D option and an information gain

of 0.001. There is not much variation in accuracy, sensitivity, or specificity in this table.

The accuracy never rises above 73.2%.

The above Table 2.18 shows what happens when only the cost matrix varies in näıve

bayes, with both the –D and the –K options. The highest sensitivity in the table is –D

with cost ratio 5:1, at 0.819, while the highest specificity is –D with the same cost ratio,

for a specificity of 0.821. This is all on the original dataset. The overall trend is that as the

cost ratio increases, sensitivity increases. As the cost ratio decreases, specificity increases.
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Opt Cost Sensitivity Specificity Accuracy DOR

D 1:5 0.588±0.008 0.821±0.006 0.699±0.004 6.585±0.303
D 1:1 0.713±0.005 0.745±0.005 0.728±0.003 7.250±0.246
D 5:1 0.819±0.003 0.662±0.007 0.745±0.003 8.881±0.309

K 1:5 0.760±0.008 0.733±0.008 0.747±0.005 8.689±0.417
K 1:1 0.789±0.009 0.704±0.008 0.748±0.006 8.923±0.616
K 5:1 0.814±0.007 0.677±0.008 0.749±0.006 9.228±0.634

Table 2.18: NB — original data — 3–grams — –D or –K Option and Cost vary
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Chapter 3

Conclusions and Future Work

The PubMed abstracts appearing in the selected set of 161 journals between October, 2010

and November, 2011 were divided into POE and non-POE, and a corpus was built. N–grams

from the abstracts and the impact factor of each journal were extracted from the corpus.

The algorithms NBM, LR, NB, SVM, and RF were tested on the corpus, and the results

were averaged over several runs.

The experiments turned up several surprises; for instance, näıve bayes multinomial

(NBM) was not expected to do well, nor were methods which employ frequency data.

With suitable feature selection NBM achieved 80.4% accuracy in POE identification. This

method had significantly higher accuracy than any of the other methods studied. NBM

allowed for trading off between false negatives and false positives over a fairly wide range

with no significant loss of accuracy. As expected, feature selection was critical to achiev-

ing the best results. The highest accuracy was attained by using bigrams as features, and

including only those meeting the DFM=6 and IGM=0.0010 thresholds.

A minor objective for future work is to improve on POE classification. Detection of

negatives is not too hard, and it should be a significant help. The main objective for future

work should be a method for finding POEMs.
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Future work should focus on identifying evidence that matters for medical practice, i.e.,

evidence which satisfies criterion (iii) from the Introduction. Deeper linguistic techniques

and/or full text analysis appear to be required for an acceptably accurate computational

approach to recognizing criterion (iii) evidence. It is likely to be much harder to find POEMs

than POEs.

First, full-parsing and a richer understanding of medical texts should be investigated.

There are methods for deeply parsing medical language based on existing English parsers

and novel dictionaries, and there are techniques for manually or automatically generating

these parser dictionaries. Medical language parsing has its own literature. Parsing the med-

ical literature (Lease and Charniak, 2005) and other deep linguistic methods such as chunk

parsing might help significantly to identify POEMs.

PubMed Central contains the full text of some articles a year after they are published.

The current study does not use PubMed central, but free, full text access is increasingly

common in the medical literature, and it could well be exploited to help find POEMs.

Data from the thesis project will be made publicly available soon after the results are

published in a research paper. Addition of POE detection capabilities to the Clinical Query

search engine is planned for PubMed.
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Szarvas, György, Veronika Vincze, Richárd Farkas, and János Csirik. 2008. The Bioscope

Corpus: Annotation for Negation, Uncertainty, and their Scope in Biomedical Texts. In

BioNLP 2008: Current Trends in Biomedical Natural Language Processing, pages 38–45.

Vapnik, Vladimir Naumovich. 2000. The Nature of Statistical Learning Theory. Springer,

New York.

Yang, Yiming and Jan O. Pedersen. 1997. A Comparative Study on Feature Selection in

Text Categorization. In Fourteenth International Conference on Machine Learning, pages

412–420.

43



Appendix A

Top 50 Terms for Information Gain

Tables A.1 and A.2 show the highest terms by information gain. Of these Table A.1 shows

the top 25 terms and Table A.2 the next 25. Information gain favors common terms. The

mention of pain and patients are strong indicators of a POE, while glucose and insulin are

strong predictors of a non-POE. For the grouping chosen, the information gains for each

term were averaged over all 10 folds.

44



Info Gain Word PoeYes PoeNo Total
0.047 pain 89 7 96
0.035 patients 476 308 784
0.034 glucose 7 61 68
0.034 primary 264 122 386
0.033 life 98 19 117
0.029 ofxlife 79 13 92
0.029 trial 445 288 733
0.029 thexprimary 178 69 247
0.027 insulin 9 57 66
0.025 qualityxofxlife 68 11 79
0.025 survival 81 17 98
0.025 efficacy 188 82 270
0.023 c 44 108 152
0.023 scale 78 17 95
0.023 patientsxwith 295 167 462
0.022 free 78 18 96
0.022 thexefficacy 111 36 147
0.020 treatment 350 219 569
0.020 fat 4 36 40
0.020 symptoms 100 32 132
0.020 secondary 146 61 207
0.018 death 79 22 101
0.018 score 121 47 168
0.018 fasting 3 31 34
0.017 events 148 66 214

Table A.1: The top 25 terms in 1-4 grams by information gain for a sample grouping of
the data.
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Info Gain Word PoeYes PoeNo Total
0.017 freexsurvival 40 5 45
0.017 protein 16 55 71
0.017 thextreatment 82 25 107
0.017 overallxsurvival 38 4 42
0.016 postoperative 44 7 51
0.015 endxpoints 44 8 52
0.015 overall 104 41 145
0.015 thextreatmentxof 42 7 49
0.015 qualityxof 75 23 98
0.015 quality 89 31 120
0.015 randomized 381 259 640
0.015 serum 19 56 75
0.014 diabetes 26 66 92
0.014 scores 95 36 131
0.014 costs 24 1 25
0.014 hazardxratio 64 18 82
0.014 no 302 192 494
0.014 concentrations 15 49 64
0.014 treatmentxof 83 29 112
0.014 improvement 93 35 128
0.014 typexdiabetes 14 47 61
0.014 concentrations 15 49 64
0.014 dietary 3 26 29
0.014 patientsxwere 145 70 215
0.014 levels 66 117 183

Table A.2: Terms 26–50 in 1–4 grams by information gain for a sample grouping of the
data.
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Appendix B

Additional Näıve Bayes Multinomial

Tables

In Table B.1, the highest sensitivity is achieved with an information gain of 0.002. The best

specificity, however, comes with an information gain of 0.001. The differences in sensitivity

are not statistically significant. Specificity, accuracy, and diagnostic odds ratios decrease

while IGM increases.

Table B.2 shows the results for näıve bayes multinomial with 4 grams, a cost ratio of

1:1, and a DFM of 5. Using 4–grams does not produce increases in accuracy. Accuracy falls

as IGM rises, and specificity falls as IGM rises.

IGM Cost Sensitivity Specificity Accuracy DOR

0.001 1:15 0.792±0.014 0.787±0.007 0.789±0.010 14.406±2.272
0.002 1:15 0.796±0.010 0.772±0.009 0.784±0.004 13.251±0.679
0.003 1:15 0.789±0.008 0.763±0.013 0.777±0.004 12.123±0.529
0.004 1:15 0.787±0.013 0.750±0.015 0.769±0.003 11.195±0.336

Table B.1: Näıve Bayes Multinomial — original data — 4–grams — Cost 1:15 — DFM 5
— IGM varies
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IGM Cost Sensitivity Specificity Accuracy DOR

0.001 1:1 0.808±0.012 0.770±0.007 0.790±0.008 14.334±1.842
0.002 1:1 0.810±0.004 0.759±0.007 0.786±0.003 13.506±0.472
0.003 1:1 0.805±0.006 0.746±0.005 0.777±0.003 12.109±0.420
0.004 1:1 0.810±0.007 0.728±0.008 0.771±0.004 11.473±0.482

Table B.2: Näıve Bayes Multinomial — original data — 4–grams — Cost 1:1 — DFM 5
— IGM varies

IGM Cost Sensitivity Specificity Accuracy DOR

0.001 15:1 0.824±0.010 0.752±0.009 0.790±0.008 14.493±1.639
0.002 15:1 0.827±0.007 0.735±0.004 0.784±0.004 13.336±0.616
0.003 15:1 0.825±0.005 0.718±0.003 0.774±0.003 12.050±0.468
0.004 15:1 0.826±0.013 0.711±0.022 0.771±0.005 11.833±0.524

Table B.3: Näıve Bayes Multinomial — original data — 4–grams — Cost 15:1 — DFM 5
— IGM varies

In Table B.3, which is the same as the last table except that the cost ratio is 15:1,

accuracy and specificity decrease as IGM increases.

Table B.10 provides results with 4–grams, information gain of 0.0005, the usual 1:15,

1:1, and 15:1 cost ratios. The accuracies in this table vary from 0.784–0.790. The best

accuracies are found with a DFM of 5, but the DFM of 4 at the 15:1 cost ratio also comes

in at a hair over 14.0 for the diagnostic odds ratio. These results are some of the most

accurate for the original dataset - 79%.

In Table B.11, näıve bayes multinomial with 4–grams, an information gain of 0.0010,

and DFMs of 4, 5, 6, and 7 are explored. The cost ratio varies in the usual 1:15, 1:1, and

15:1 pattern. Sensitivity is lower at higher DFM values, and it varies a lot more at a DFM

of 4. DOR ratios vary from 13.4–14.1 (roughly) in this table. The best values are for a DFM

of 5, and a cost ratio of either 1:1 or 15:1.

In Table B.12, näıve bayes multinomial with 4–grams, information gains of 0.0015, and

DFMs of 4, 5, 6, and 7 are explored. The accuracy is highest with a DFM of 6, across the

varying cost ratios. All of the accuracies in this table are between 78% and 79%, varying
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IGM Cost Sensitivity Specificity Accuracy DOR

0.0005 1:15 0.779±0.003 0.792±0.004 0.785±0.003 13.482±0.481
0.0010 1:15 0.790±0.017 0.778±0.010 0.785±0.005 13.467±1.099
0.0015 1:15 0.786±0.005 0.782±0.005 0.784±0.003 13.184±0.433

0.0005 1:1 0.796±0.003 0.781±0.004 0.789±0.003 13.991±0.485
0.0010 1:1 0.807±0.016 0.761±0.013 0.785±0.004 13.575±1.008
0.0015 1:1 0.806±0.004 0.763±0.005 0.786±0.003 13.376±0.495

0.0005 15:1 0.809±0.004 0.767±0.003 0.789±0.002 14.014±0.382
0.0010 15:1 0.823±0.013 0.746±0.011 0.786±0.004 13.850±1.020
0.0015 15:1 0.821±0.005 0.742±0.004 0.783±0.003 13.210±0.437

Table B.4: Näıve Bayes Multinomial — original data — 4–grams — DFM 4 — IGM and
Cost vary — Sorted by Cost

IGM Cost Sensitivity Specificity Accuracy DOR

0.0005 1:15 0.779±0.003 0.792±0.004 0.785±0.003 13.482±0.481
0.0005 1:1 0.796±0.003 0.781±0.004 0.789±0.003 13.991±0.485
0.0005 15:1 0.809±0.004 0.767±0.003 0.789±0.002 14.014±0.382

0.0010 1:15 0.790±0.017 0.778±0.010 0.785±0.005 13.467±1.099
0.0010 1:1 0.807±0.016 0.761±0.013 0.785±0.004 13.575±1.008
0.0010 15:1 0.823±0.013 0.746±0.011 0.786±0.004 13.850±1.020

0.0015 1:15 0.786±0.005 0.782±0.005 0.784±0.003 13.184±0.433
0.0015 1:1 0.806±0.004 0.763±0.005 0.786±0.003 13.376±0.495
0.0015 15:1 0.821±0.005 0.742±0.004 0.783±0.003 13.210±0.437

Table B.5: Näıve Bayes Multinomial — original data — 4–grams — DFM 4 — IGM and
Cost vary — Sorted by IGM

IGM Cost Sensitivity Specificity Accuracy DOR

0.0005 1:15 0.785±0.004 0.789±0.006 0.787±0.004 13.677±0.567
0.0010 1:15 0.791±0.005 0.786±0.006 0.789±0.004 13.978±0.659
0.0015 1:15 0.788±0.005 0.780±0.004 0.784±0.003 13.189±0.510

0.0005 1:1 0.805±0.004 0.774±0.006 0.790±0.003 14.153±0.508
0.0010 1:1 0.811±0.007 0.767±0.008 0.790±0.005 14.177±0.869
0.0015 1:1 0.807±0.005 0.759±0.005 0.785±0.004 13.329±0.658

0.0005 15:1 0.819±0.005 0.756±0.006 0.789±0.004 14.065±0.615
0.0010 15:1 0.827±0.008 0.746±0.006 0.789±0.006 14.171±1.012
0.0015 15:1 0.822±0.005 0.740±0.005 0.783±0.003 13.160±0.456

Table B.6: Näıve Bayes Multinomial — original data — 4–grams — DFM 5 — IGM and
Cost vary — Sorted by Cost
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IGM Cost Sensitivity Specificity Accuracy DOR

0.0005 1:15 0.785±0.004 0.789±0.006 0.787±0.004 13.677±0.567
0.0005 1:1 0.805±0.004 0.774±0.006 0.790±0.003 14.153±0.508
0.0005 15:1 0.819±0.005 0.756±0.006 0.789±0.004 14.065±0.615

0.0010 1:15 0.791±0.005 0.786±0.006 0.789±0.004 13.978±0.659
0.0010 1:1 0.811±0.007 0.767±0.008 0.790±0.005 14.177±0.869
0.0010 15:1 0.827±0.008 0.746±0.006 0.789±0.006 14.171±1.012

0.0015 1:15 0.788±0.005 0.780±0.004 0.784±0.003 13.189±0.510
0.0015 1:1 0.807±0.005 0.759±0.005 0.785±0.004 13.329±0.658
0.0015 15:1 0.822±0.005 0.740±0.005 0.783±0.003 13.160±0.456

Table B.7: Näıve Bayes Multinomial — original data — 4–grams — DFM 5 — IGM and
Cost vary - Sorted by IGM

IGM Cost Sensitivity Specificity Accuracy DOR

0.0005 1:15 0.774±0.004 0.797±0.003 0.785±0.003 13.470±0.502
0.0010 1:15 0.776±0.003 0.796±0.006 0.786±0.003 13.624±0.586
0.0015 1:15 0.778±0.007 0.788±0.008 0.783±0.003 13.111±0.468

0.0005 1:1 0.791±0.004 0.779±0.004 0.785±0.004 13.367±0.593
0.0010 1:1 0.800±0.002 0.772±0.006 0.787±0.003 13.557±0.498
0.0015 1:1 0.801±0.009 0.767±0.011 0.785±0.004 13.338±0.705

0.0005 15:1 0.813±0.004 0.758±0.005 0.787±0.003 13.582±0.506
0.0010 15:1 0.819±0.003 0.748±0.006 0.785±0.004 13.454±0.641
0.0015 15:1 0.824±0.008 0.743±0.009 0.786±0.004 13.642±0.672

Table B.8: Näıve Bayes Multinomial — original data — 4–grams — DFM 7 — IGM and
Cost vary — Sorted by Cost

IGM Cost Sensitivity Specificity Accuracy DOR

0.0005 1:15 0.774±0.004 0.797±0.003 0.785±0.003 13.470±0.502
0.0005 1:1 0.791±0.004 0.779±0.004 0.785±0.004 13.367±0.593
0.0005 15:1 0.813±0.004 0.758±0.005 0.787±0.003 13.582±0.506

0.0010 1:15 0.776±0.003 0.796±0.006 0.786±0.003 13.624±0.586
0.0010 1:1 0.800±0.002 0.772±0.006 0.787±0.003 13.557±0.498
0.0010 15:1 0.819±0.003 0.748±0.006 0.785±0.004 13.454±0.641

0.0015 1:15 0.778±0.007 0.788±0.008 0.783±0.003 13.111±0.468
0.0015 1:1 0.801±0.009 0.767±0.011 0.785±0.004 13.338±0.705
0.0015 15:1 0.824±0.008 0.743±0.009 0.786±0.004 13.642±0.672

Table B.9: Näıve Bayes Multinomial — original data — 4–grams — DFM 7 — IGM and
Cost vary — Sorted by IGM
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DFM Cost Sensitivity Specificity Accuracy DOR

4 1:15 0.779±0.003 0.792±0.004 0.785±0.003 13.482±0.481
5 1:15 0.785±0.004 0.789±0.006 0.787±0.004 13.677±0.567
6 1:15 0.781±0.005 0.788±0.007 0.784±0.003 13.254±0.431
7 1:15 0.774±0.004 0.797±0.003 0.785±0.003 13.470±0.502

4 1:1 0.796±0.003 0.781±0.004 0.789±0.003 13.991±0.485
5 1:1 0.805±0.004 0.774±0.006 0.790±0.003 14.153±0.508
6 1:1 0.801±0.006 0.772±0.007 0.787±0.004 13.735±0.622
7 1:1 0.791±0.004 0.779±0.004 0.785±0.004 13.367±0.593

4 15:1 0.809±0.004 0.767±0.003 0.789±0.002 14.014±0.382
5 15:1 0.819±0.005 0.756±0.006 0.789±0.004 14.065±0.615
6 15:1 0.819±0.006 0.753±0.005 0.788±0.004 13.860±0.670
7 15:1 0.813±0.004 0.758±0.005 0.787±0.003 13.582±0.506

Table B.10: Näıve Bayes Multinomial — original data — 4–grams — IGM 0.0005 — DFM
and Cost vary

DFM Cost Sensitivity Specificity Accuracy DOR

4 1:15 0.790±0.017 0.778±0.010 0.785±0.005 13.467±1.099
5 1:15 0.791±0.005 0.786±0.006 0.789±0.004 13.978±0.659
6 1:15 0.773±0.004 0.798±0.003 0.785±0.002 13.453±0.295
7 1:15 0.776±0.003 0.796±0.006 0.786±0.003 13.624±0.586

4 1:1 0.807±0.016 0.761±0.013 0.785±0.004 13.575±1.008
5 1:1 0.811±0.007 0.767±0.008 0.790±0.005 14.177±0.869
6 1:1 0.795±0.003 0.778±0.003 0.787±0.002 13.650±0.344
7 1:1 0.800±0.002 0.772±0.006 0.787±0.003 13.557±0.498

4 15:1 0.823±0.013 0.802±0.005 0.786±0.004 13.850±1.020
5 15:1 0.827±0.008 0.804±0.005 0.789±0.006 14.171±1.012
6 15:1 0.816±0.004 0.803±0.002 0.790±0.002 14.077±0.319
7 15:1 0.819±0.003 0.800±0.004 0.785±0.004 13.454±0.641

Table B.11: Näıve Bayes Multinomial — original data — 4–grams — IGM 0.0010 — DFM
and Cost vary
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DFM Cost Sensitivity Specificity Accuracy DOR

4 1:15 0.786±0.005 0.782±0.005 0.784±0.003 13.184±0.433
5 1:15 0.788±0.005 0.780±0.004 0.784±0.003 13.189±0.510
6 1:15 0.793±0.004 0.784±0.003 0.789±0.001 13.976±0.225
7 1:15 0.778±0.007 0.788±0.008 0.783±0.003 13.111±0.468

4 1:1 0.806±0.004 0.763±0.005 0.786±0.003 13.376±0.495
5 1:1 0.807±0.005 0.759±0.005 0.785±0.004 13.329±0.658
6 1:1 0.812±0.005 0.760±0.003 0.787±0.003 13.747±0.447
7 1:1 0.801±0.009 0.767±0.011 0.785±0.004 13.338±0.705

4 15:1 0.821±0.005 0.742±0.004 0.783±0.003 13.210±0.437
5 15:1 0.822±0.005 0.740±0.005 0.783±0.003 13.160±0.456
6 15:1 0.830±0.005 0.738±0.004 0.787±0.003 13.838±0.514
7 15:1 0.824±0.008 0.743±0.009 0.786±0.004 13.642±0.672

Table B.12: Näıve Bayes Multinomial — original data — 4–grams — IGM 0.0015 — DFM
and Cost vary

IGM Cost Sensitivity Specificity Accuracy DOR

0.001 1:15 0.793±0.007 0.783±0.007 0.788±0.004 13.791±0.620
0.002 1:15 0.788±0.008 0.778±0.007 0.783±0.005 13.131±0.824
0.003 1:15 0.788±0.013 0.773±0.016 0.781±0.001 12.763±0.148
0.004 1:15 0.793±0.013 0.747±0.018 0.771±0.004 11.390±0.454
0.005 1:15 0.775±0.015 0.765±0.015 0.770±0.003 11.311±0.476

Table B.13: Näıve Bayes Multinomial — original data — 3–grams — Cost 1:15 — DFM
4 — IGM varies

remarkably little between the various experimental conditions. Diagnostic odds ratios are

between 13.1 and 14.0, varying with the accuracy. The highest diagnostic odds ratio is with

a DFM of 6 and a cost of 1:15.

Table B.13 has a cost ratio of 1:15, 3–grams, and a DFM of 4. Table B.14 is the same,

except that the cost ratio is 1:1 in this table. Accuracy falls as information gain increases.

Sensitivity is higher than specificity in this table, and that difference is statistically signif-

icant. Table B.14 shows the table for trigrams with a cost ratio of 1:1, a DFM of 4, and

only 5 values of information gain. (The table was pruned, based on the earlier results with

tables 2.7, 2.8, and 2.9.) Sensitivity is higher than specificity on this table, and accuracy

and specificity fall as IGM increases. Table B.15 shows the same situation with a cost ratio
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IGM Cost Sensitivity Specificity Accuracy DOR

0.001 1:1 0.809±0.008 0.770±0.008 0.790±0.005 14.250±0.956
0.002 1:1 0.810±0.008 0.761±0.010 0.787±0.005 13.624±0.828
0.003 1:1 0.802±0.006 0.759±0.007 0.782±0.003 12.774±0.473
0.004 1:1 0.811±0.007 0.726±0.005 0.770±0.003 11.344±0.364
0.005 1:1 0.798±0.012 0.743±0.013 0.772±0.004 11.524±0.573

Table B.14: Näıve Bayes Multinomial — original data — 3–grams — Cost 1:1 — DFM 4
— IGM varies

IGM Cost Sensitivity Specificity Accuracy DOR

0.001 15:1 0.822±0.009 0.756±0.010 0.791±0.006 14.416±1.098
0.002 15:1 0.827±0.008 0.737±0.008 0.784±0.004 13.432±0.602
0.003 15:1 0.829±0.007 0.725±0.006 0.780±0.004 12.835±0.643
0.004 15:1 0.831±0.012 0.694±0.014 0.766±0.002 11.156±0.320
0.005 15:1 0.837±0.005 0.698±0.010 0.771±0.006 11.933±0.769

Table B.15: Näıve Bayes Multinomial — original data — 3–grams — Cost 15:1 — DFM
4 — IGM varies

of 15:1. In this new situation, accuracy decreases as IGM increases. Sensitivity increases an

IGM increases, while specificity decreases.
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Appendix C

Additional Logistic Regression Tables

Table C.1 shows an information gain of 0.001, a varying cost ratio, and a DFM of 4 on the

original dataset. There is good news and bad news here. The good news is that varying the

cost ratio achieves a sensitivity/specificity tradeoff with unigrams under logistic regression.

The bad news is the disappointing accuracy, which is less than 73% in all three cases.

The results from Table C.2 only use unigrams, a DFM of 6, and an information gain

of 0.0010, on the original dataset. The accuracy varies from 71.2% to 71.5%, with a maxi-

mum at a balanced cost ratio. Sensitivity decreases with increasing cost, as expected, but

specificity increases. The diagnostic odds ratios are on the low side for this set.

In Table C.3 one can see, for a DFM of 6, a cost ratio of 1:1, and an information gain

of 0.0010, that increasing the N–Grams from 1 to 3 improves sensitivity and specificity.

The value for bigrams is between these two values. The improvement from unigrams to

Cost Sensitivity Specificity Accuracy DOR

1:15 0.764±0.017 0.719±0.008 0.720±0.008 6.942±0.642
1:1 0.698±0.016 0.743±0.007 0.727±0.007 7.052±0.517
15:1 0.617±0.009 0.753±0.007 0.720±0.008 7.017±0.611

Table C.1: LR — original data — 1–grams — DFM 4 — Cost varies
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Cost Sensitivity Specificity Accuracy DOR

1:15 0.668±0.006 0.760±0.008 0.712±0.005 6.390±0.326
1:1 0.727±0.008 0.701±0.009 0.715±0.005 6.286±0.331
15:1 0.783±0.006 0.637±0.008 0.713±0.004 6.326±0.253

Table C.2: LR — original data — 1–grams — DFM 6 — Cost varies

N–Grams Sensitivity Specificity Accuracy DOR

1 0.727±0.008 0.701±0.009 0.715±0.005 6.286±0.331
2 0.737±0.005 0.725±0.008 0.731±0.005 7.407±0.363
3 0.741±0.007 0.732±0.005 0.737±0.004 7.869±0.320

Table C.3: LR — original data — Cost 1:1 — DFM 6 — N varies

bigrams is about 1.5%, which is fairly dramatic for these experiments. The improvement

from bigrams to trigrams is only 0.6%, which is fairly low. It seems that logistic regression is

not competitive with näıve bayes multinomial, for which the highest accuracy exceeds 80%

on the revised dataset. The accuracy for logistic regression is lower by about 5%, which is

highly significant. Using trigrams helps, though, by about 2.0%. The diagnostic odds ratios

here, 6.3–7.9, are also disappointing compared with NBM.
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