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CHAPTER 1 

INTRODUCTION 

 Speech recognition and classification poses a significant problem in the area of Natural 

Language Processing.  The continuous nature and significant amount of variation in natural 

speech makes it hard to build consistent models that can generalize across multiple speakers, 

accents, or dialects. In response to this, finding new features that can be drawn from speech and 

used to represent the speech over time is important.  One interesting phenomenon of natural 

speech is the consistent pattern of transitions from consonants into vowels.  This pattern can be 

abstracted using a series of regression lines, called “Locus Equations,” that can then be used to 

obtain information about the place of articulation and coarticulation of the preceding consonant.  

This thesis examines the relevance and usefulness of locus equations as a feature to be used in 

computational linguistics and speech modelling.  Over the course of the paper, six research 

questions will be asked and then answered. (1) Can locus equations be automatically generated 

from conversational speech?  Does this affect the integrity of the locus equation?  (2) Are the 

generated locus equations accurate enough for recovery of place of articulation?  Can machine 

learning methods be applied to recover place of articulation across more than one manner class? 

(3) Are the locus equation coefficients valuable features for classification of dialect?  (4) Do 

locus equations still form for speakers with dysarthria? (5) Are the locus equation coefficients 

valuable features for recognition of speech disorders? (6) Do locus equations contain enough 

information to serve as valuable features in speech recognition and classification?   
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 Each of these questions is designed to test the generalizability of and ease of access to 

locus equations, or to test the amount of information a locus equation can convey about speech.  

Question one will test whether locus equations can be drawn as features from everyday speech, 

or if they only work with laboratory speech produced specifically for locus equation analysis.  It 

is expected that locus equations will form from the more conversational speech, although the fit 

of the regression lines may decrease.  The second question is meant to both reconfirm the 

validity of locus equations generated for the first question, and to test the amount of articulation 

information contained in a locus equation mapping.  The equations should be accurate enough 

for recovery of place of articulation, and an Artificial Neural Network (ANN) is expected to 

classify the points by place of articulation with the most accuracy.  If classification in this step 

fails, there is evidence that the generated locus equations are not descriptive of place of 

articulation the way locus equations generated in the past have been. The third question is the 

first to examine locus equations as a feature indicative of speech characteristics.  In the case of 

dialects, locus equations will only work as a classification feature if the different dialects have 

different patterns of coarticulation.  The initial hypothesis for this question is that the locus 

equations will be a weak feature for classification—meaning they do provide the system with 

enough information to classify dialects with moderate results, but more accuracy would require 

additional information about the speech. 

 At this point, the focus of the study will shift towards disordered speech, specifically 

speakers with dysarthria. Dysarthria is a motor speech disorder characterized by difficulty 

controlling the muscles in the mouth.  The fourth question asks whether locus equations can be 

generated for speakers with dysarthria. The expectation is that locus equations will be formed, 

but the fit of the regression lines will be significantly worse than it was for the dialect speakers 
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without dysarthria.  Question number five tests the usefulness of locus equations as a feature for 

classification of a speakers with dysarthria.  Once again, locus equations will only provide useful 

information if speakers with dysarthria have systematically different coarticulation patterns than 

speakers without dysarthria.  Since dysarthria is a motor speech disorder and movement of the 

tongue is affected, the coarticulation patterns should be unique.  The equations are expected to 

perform well as features in this area.  Finally, question six addresses the main point of 

investigation in this research.  Are locus equations useful features for speech classification and 

prediction?  Given the ability of locus equations to capture the patterns of vowel transitions from 

consonants in speech, they are expected to perform well as features.  Accurate results from 

classification of either dialects or speech dysarthria would support this prediction. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 A FEW BASICS OF LINGUISTICS 

There are a few basic areas of Linguistics which are particularly relevant to this thesis.  

These are place of articulation, manner of articulation, and formant values.  A brief overview of 

each topic is included here, to aid in transparency of the following research.  Articulation is a 

study of how articulators make sounds.  There are a number of articulators present in the vocal 

tract that can be used to form a sound.  These include the lips, teeth, tongue (tip, blade, and 

body), alveolar ridge, hard palate, soft palate, and glottis. This is not an extensive list, but it 

includes the articulators involved in the consonant sounds discussed in this thesis. Figure 1 

below shows a mid-sagittal section of the vocal tract with each of these articulators labeled. 

Consonantal “place of articulation” refers to where the constriction in the vocal tract is 

happening to form a sound.  It is defined in terms of two articulators.  Relevant here are bilabial 

consonants, labio-dental consonants, alveolar consonants, and velar consonants.  Bilabial and 

labio-dental consonants both include the lips as an articulator.  They can collectively be referred 

to as labial consonants.  Bilabial consonants (p, b, m) use both lips, and labio-dental consonants 

(f, v) use the lips and the teeth.  Alveolar consonants are formed using the blade of the tongue 

and the alveolar ridge, which is the small ridge of bone located on top of the oral cavity directly 

behind the teeth.  This grouping includes the consonants t, d, n, and s.  Finally a velar place of 

articulation means the sound is produced using the body of the tongue (the dorsum) and the 
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velum, also called the soft palate.  These consonants are g, k, and ŋ (like the sound at the end of 

“sing”).   

 

 

 

Manner of articulation refers to how a sound is made.  The basic manners of articulation 

include stops, nasals, fricatives, affricates, flaps, trills, and approximants. In this research we 

examine plosives, fricatives, and nasals. A stop consonant is a sound where the flow of air 

through the vocal tract is completely stopped and then suddenly released.  The consonant can 

either be voiced, where the vocal folds are vibrating, or unvoiced.  Examples of stop consonants 

include p, t, and k.  For a fricative consonant, the articulators constrict the airflow without 

completely stopping it, leading to a characteristic buzzing sound caused by turbulent air. 

Examples of fricatives would be f, s, or h.  Finally, nasals are sounds created when the lips are 

closed, stopping any air from escaping the oral cavity, but the velum is lowered, opening a 

passageway to the nasal cavity where the air can resonate.  Nasal sounds include m, n, and ŋ.  

Bringing place and manner of articulation together allows us to decrease the number of sounds 

being considered.  For example, a bilabial stop refers to any sound that is created using both lips 

and that completely stops the flow of air through the vocal tract.  /p/ and /b/ both fall into this 

Figure 1: Places of 

Articulation 



6 

 

category.  The difference between them is voicing (the vocal tract is actively vibrating in the 

creation of /b/, but is still when producing /p/).  /n/ can be described as an alveolar nasal.  The 

place and manner of articulation for consonants can be found in the IPA chart (International 

Phonetics Association) included in Appendix A.   

 The third important linguistic concept for this research is the presence of formants and 

the use of spectrograms in inspecting speech. Speech sounds are combinations of vibrations at 

different frequencies, transferred through the air from the speaker to the listener.  When air is 

expelled from the lungs it passes through the vocal tract, which serves as a filter.  By the time the 

sound wave exits through the mouth, waves at certain frequencies have been cancelled out, and 

waves at other frequencies have been amplified.  The amplified frequencies are what give the 

sound its pitch and quality, and they are characterized by their frequency in Hz and their 

bandwidth.  These amplified bands of harmonics are called “formants.” The fundamental 

frequency, also called F0 (the zeroth formant), is the pitch of the sound.  This formant will 

always be the lowest.  The next highest formant is F1, and the next after that is F2, and so on.  

While F0 gives the pitch of a sound, the shape of the other formants gives a sound its quality.  

For example, /i/ and /a/ pronounced at the same levels of loudness and pitch, still sound different.  

This is due to the difference in the formants.  F0 – F4 are most commonly examined in linguistic 

research.  The locus equations examined here focus on F2 exclusively.  Formant values can be 

seen using a spectrogram, a three dimensional graph of speech sounds with frequency in Hz 

along the y-axis, time along the x-axis, and intensity (measured in decibels) on the z-axis.  

Louder intensities are represented by darker lines.  Figure 2 shows a sample spectrogram taken 

from the data set. The text below is a transcription of the sound, and the boundaries show where 

transitions from one sound to another take place. 
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F1 and F2 are tied to vowel height and vowel backness, respectively.  Vowels are 

partially characterized by the height and backness of the tongue.  The vowel /i/ is produced 

by moving the tongue up towards the roof of the mouth and forwards toward the teeth.  As 

such, it is defined as a high, front vowel.  /a/ is produced by putting the tongue low in the 

mouth and back towards the throat, so it is low and back.  The F1 and F2 values for the 

vowels reflect these characteristics.  F1 is inversely tied to vowel height—the higher the 

position of the tongue, the lower the F1 values.  In Figure 3, the formant values for American 

vowels can be seen.  /i/ is the first vowel shown.  F1 is very low, reflecting the height of the 

sound.  The F1 value for /a/, also seen in Figure 3, has a higher F1 because it is produced 

with the tongue lower in the mouth.  F2 is tied to the backness of a vowel in that front vowels 

have higher F2 values than back vowels.  Figure 3 shows that /i/ has a much higher F2 than 

/a/ due to the difference in vowel backness. 

 

Figure 2: Formant Values 
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2.2 SPEECH ALIGNMENT 

As access to speech recordings increases, research done in phonetics is expanding to include 

ever larger amounts of data. Most modern phonetic analysis relies on aligning sound files with 

phonetic transcriptions, marking the places in the utterance where each phoneme begins and 

ends.  While necessary, aligning speech data is an incredibly work intensive task, and properly 

aligning even a few minutes of speech can take hours.  This has led to an increase in the need for 

automatic aligners—technology capable of taking in a sound file and outputting a file with the 

phonemic boundaries.  SPPAS is one such aligner (Bigi, 2011).  Implemented in Python, SPPAS 

ties together a variety of resources, like pronunciation dictionaries and acoustic models, to 

provide a tool for automatic segmentation.  The program takes a sound file and a text 

transcription of the speech contained within that file as input.  SPPAS then performs three steps: 

segmentation, phonetization, and alignment.  The first step, segmentation, separates the sound 

file along inter-pausal units (IPU). This refers to macro units of sound, continuous productions of 

speech separated by quiet pauses.  In the text transcription, these pauses in the speech must be 

marked with a “#”. SPPAS searches through the sound file and automatically adjusts the sound 

Figure 3: American Vowels 

(Ladefoged, 2006) 
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threshold (in dB) in an attempt to match the pauses specified in the text transcription with the 

sound file.   

The next task performed by SPPAS is phonetization, the transformation of English text into 

an appropriate phonetic transcription. First, the program does “tokenization,” which is not 

tokenization of words but a scan over the phrases in the text file.  The phonetization itself is 

essentially a dictionary look-up.  SPPAS takes the name of a phonetic dictionary as an input 

parameter—for English, the default dictionary is CMU’s pronunciation dictionary (CMU 

Pronouncing Dictionary).  SPPAS searches through the dictionary for the word in question, and 

then pulls the given transcription.  One strength of SPPAS is the ability to pull more than one 

transcription—if a dictionary has more than one entry for how a word can be pronounced, 

SPPAS will pull both options and place them into the transcription separated by a bar (|).  Later 

analysis will decide on the final transcription.  If a word is not found in the dictionary, SPPAS 

will scan the word from left to right, and then try and locate the longest match to that word in the 

dictionary to use as a substitution. 

The third, most crucial step is alignment of the sound file with the generated phonemic 

transcription. This requires a both speech recognition engine (SRE) and an acoustic model. The 

SRE used by SPPAS is an external program called “Julius” (Nagoya Institute of Technology, 

2010).   Originally developed for Japanese, Julius is a “high-performance, two-pass, large 

vocabulary continuous speech recognition decoder software”. The program runs using 3-gram 

windows and context-dependent Hidden Markov Models (Rabiner, 1989).  To run, it requires 

both a language model and an acoustic model. For English, the models were trained using the 

HTK toolkit taken from Voxforge (Voxforge, 2006-2011; Young et al., 1999). The HMM 

embedded in Julius uses the language and acoustic models as calculated probabilities to produce 
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TextGrid files in Praat (Boersma and Weenink, 2016) with a best calculated alignment for each 

of the sounds files (Bigi, 2011). 

 

2.3 SOURCE FILTER THEORY 

Source Filter theory is one of the basic theories of speech production.  This theory explains 

speech as the result of a wave which begins at a source (the glottis) and then transforms as it 

passes through a filter (the vocal tract) (Stevens, 1998).  The filter idea is also related to theory of 

the vocal tract as tubes, which simplifies the human vocal tract into tubes of various lengths and 

widths with constrictions at certain points. Sounds begin when air is pushed from the lungs up 

through the vocal folds.  The folds rapidly vibrate open and closed, stopping the air and then 

releasing it in bursts and creating a compression wave. The fundamental frequency of the wave 

(measured in Hz) depends on the rate at which the vocal folds vibrate.  As the wave traverses the 

vocal tract, the shape of the tract (simplified as a tube) creates standing waves at certain 

frequencies, leading to the creation of formant values above the more salient fundamental 

frequency.  These formant values are what give a sound its quality and allows it to be identified 

as contrastively different from other sounds.  The frequencies at which the standing waves 

resonate and the formant values are found depends on the shape of the vocal tract at that time.  

As the shape of the vocal tract shifts and the area of constriction changes, the formant 

frequencies will transition as well.  When the shape of a vocal tract begins changing to 

accommodate an upcoming sound before the current sound is finished (ex: shifting the tongue to 

create [i] when the lips are still closed for [b]) also affects the formant values.  This overlap in 

sound in called coarticulation.  
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Coarticulation has been defined as “the influence of one speech segment upon another…the 

influence of a phonetic context upon a given segment” (Daniloff and Hammarberg, 1976).  

Language is phonetically transcribed as a sequence of discrete segments, called “phonemes.”  

Although useful for the study of speech patterns, this abstract transcription of language has no 

proven basis in the acoustic reality of speech.  When speech is produced, the individual sounds 

are not created in discrete segments.  Instead, various sounds may overlap with one another—as 

the mouth is closed to form a stop, like “p” or “b”, the tongue may already be moving into 

position for a following vowel.  The acoustics of the stop release will be affected by the changing 

position of the tongue.  This effect is the basis of “the invariance dilemma,” which asks how 

speakers recognize the discrete phonemes of speech well enough to comprehend and transcribe 

them, even though acoustically the sound is never the same (Sussman, 1991).   

Coarticulation is a type of phonological feature spreading, as the features of the surrounding 

phonemes encroach upon the observed phoneme due to the overlapping articulations.   When 

coarticulation occurs, the “locus” of the influence is the segment observed, and influence itself is 

the articulatory feature (Daniloff and Hammarberg, 241). This influence is bidirectional, 

meaning that a feature can be influenced by segments preceding it in speech, or by the segments 

following.  The locus equations discussed in this paper are a result of right-to-left coarticulation.  

The focus of a locus equation is on a vowel following a consonant in speech, and the effect that 

preceding consonant had upon the second formant values of the vowel.   

 

2.4 THE ORIGINAL LOCUS 

One of the earliest conceptualizations of a locus can be found in “Visible Speech” by Ralph 

Potter (Potter et al., 1947).  In his observations regarding the new methods of visualizing speech 
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waves, Potter notes that vowels pronounced as individual segments with no context have straight 

“second bars,” (second formants).  When a consonant precedes a vowel, however, a curved 

transition from the consonant into the vowel can be seen. Potter wrote that the position of the 

second formant in isolation, which called a “hub,” shifted down following labial stops, and up or 

down for velar stops (pg. 38). This may seem to be a fairly mundane observation, but the effect 

of this trend on speech perception and synthesis was further explored a few years later 

(Liberman, 1954). This is when the idea of a “locus” point was introduced under that name.  

Liberman notes that the transitions from the second formant into the vowel steady state seem to 

provide cues for perception of stop consonants, and hypothesizes that consonants have a “locus 

point,” a second formant frequency which is set to a certain, unique value for each place of 

articulation.  If this locus point were to exist, the transitions seen on the spectrograms represent 

the movement from the unseen locus point to the vowel steady state. In terms of tube theory, 

“…the transitions seen in spectrograms reflect the changes in cavity size and shape caused by the 

movements of the articulators” (Delattre et al., 1955).  Figure 4 shows the plots created by 

Delattre et al. to demonstrate the transitions (Delattre et al., 1955).   

 

 
Figure 4: Synthetic spectrograms showing 

vowel transitions 

(Delattre et al., 1955, Figure 1) 
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After experimentation, it was hypothesized that [d] had a fixed locus at 1800 Hz, [b] at 720 

Hz, and that [g] had a potential locus at 3000 Hz, but only when the vowel steady state was 

above 1200 Hz (Delattre et al., 1955).  Despite these findings, [d] was the only consonant with a 

convincing locus point.  [b] was agreed to originate from some low point, but the exact point 

could not be found.  There was no comprehensive pattern found at all for [g], and Delattre notes 

that while a potential locus pattern was locatable for the front and mid vowels, the pattern did not 

apply when back vowels were added.  He says “it is obvious that the same [g] locus cannot serve 

for all vowels” (Delattre et al., 1955). One more important observation from these experiments is 

that the second-formant transitions characteristic of /b, d, g/ also cued /p, t, k/ and /m, n, ŋ/ 

respectively, meaning the second-formant transitions provide information about place of 

articulation for more than just voiced stops.  Although this early concept of a locus point has 

largely been disregarded, a few points remain relevant in more modern locus equations.  These 

are the stability of [d] transitions, the unique break in pattern between +/- back vowels for [g], 

which is seen in later experiments, and the relation of locus equations to place of articulation as a 

phonetic feature. 

In 1963 Stevens and House conducted an experiment examining the changes in vowel 

formants in a given dialect in a variety of consonant contexts (Stevens and House, 1963).  The 

study supported the belief that F2 is the most sensitive to consonant contexts, and is therefore the 

best source of information regarding preceding consonants and coarticulation. Another study by 

Stevens and Blumstein in 1979 resumed the search for a “locus point” (Stevens and Blumstein, 

1979).  The study tested the use of the onset F2 values of vowels following stop and nasal 

consonants in CV tokens for classification of place of articulation.  The tokens were classified 

onto three templates—diffuse-rising, diffuse-falling, and compact.  These represented alveolar, 
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labial, and velar places of articulation. Classification by template was 85% accurate for the 

voiced stop consonants, and 76% accurate for nasals (Stevens and House, 1979).  

 

2.5 EARLY LOCUS EQUATIONS 

“Locus Equations” as they are used in this research were originally introduced by Lindblom 

in his 1963 thesis.  In it, he derived the following equation: 

F2onset = k * F2vowel  + c 

Here, F2onset is the frequency of the second format at a vowel’s first glottal pulse following a 

voiced stop consonant, and F2vowel is the frequency of the second formant at that same vowel’s 

midpoint, where the frequency had reached a steady state (Lindblom, 1963).  k and c are both 

constants, representing slope and y-intercept respectively.  Lindblom performed tests using a 

single speaker, a Swedish male.  The speaker produced CVC tokens for /b, d, g/, with the same 

consonant before and after a range of eight vowels (Lindblom, 1963).  For each stop, Lindblom 

graphed the F2 values on a Cartesian plane as a series of (F2vowel, F2onset) points for each vowel.  

A regression line was fitted to these points to obtain the constants k and c. The slope values were 

0.69, 0.28, and 0.95, and the y-intercept values were 410, 1225, and 360 Hz for /b, d, g/ 

respectively. Lindblom notes that the scatterplot for /g/ seemed to show a flatter slope for front 

vowels and a steeper slope for back vowels.  Because of this, the linear regression was less well-

fitted to the points. 

 Years later, the linear relationship between F2 at its onset and F2 at the vowel midpoint 

was studied by Nearey and Shammass in 1987.  They had ten speakers of Canadian English, five 

male and five female, produce two repetitions each of CVd tokens, starting with consonants /b, 

d, g/ and covering eleven vowels picked to cover the vowel space.  They pulled F2onset “as early 
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as possible after stop release” and F2vowel at 60 milliseconds after the stop release (Nearey and 

Shammass, 1987). The tokens collected for each initial stop were graphed on scatterplots in the 

same manner as above, with F2vowel along the x-axis and F2onset on the y-axis.  In their analysis of 

the data, they remarked that “all three plots indicate a strong positive correlation.” They also 

noticed that /b/ and /g/ functions seemed more dependent on the vowels than /d/.  The regression 

constant values from these experiments were 0.82, 0.49, and 0.99 for /b/, /d/, and /g/ slope 

values, and 192, 1041, and 214 for y-intercept. Following the creation of the regression lines, an 

algorithm was used to classify a spoken syllable as /b/, /d/, or /g/ based on its vertical distance 

from each regression line.  This method classified the tokens with 73.9% accuracy.  

 Krull briefly investigated locus equations using Swedish vowels in her 1988 study of 

predictors for stop consonants (Krull, 1988).  The pattern of bilabials (/b/) forming a much 

steeper slope and having a much lower y-intercept value than alveolars (/d/) held true in this 

experiment.  Velars (/g/) were only investigated as palatal velars preceding front vowels.  This 

resulted in a velar slope very similar to the alveolar slope, and a y-intercept higher than either of 

the other two categories.  Krull made the important observation that the magnitude of the 

regression slope is directly related to the degree of coarticulation seen between the initial stop 

and the following vowel.  Shallow slopes, like those seen for alveolars, imply a relatively fixed 

stop “locus” frequency that is largely unaffected by the vowel’s steady midpoint frequency 

(Krull, 1998).  This can be credited to the lack of coarticulation between alveolars and most 

vowels—the position of the tongue when producing alveolars does not shift much towards the 

other vowels being produced, perhaps because a small shift in the alveolar region could easily 

lead to the consonant being mistaken for something else.  This relatively fixed F2onset translates 

to a shallow slope.   
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 In 1991, Sussman et al. published an in-depth analysis of locus equations as a possible 

“source of relational invariance for stop place categorization” (Sussman 1991).  They theorized 

that the systematic shift in F2 could serve as a cue that was invariant in its relation to place of 

articulation.  This cue could then be used to help solve the problem of relational invariance.  The 

study took twenty adult speakers, ten male and ten female, from multiple dialects of American 

English.  The subjects produced CV/t/ syllables, with the three customary initial stops /b, d, g/ 

and ten medial vowels /i, I, ey, ɛ, ӕ, a, ow, ʌ, ɔ, u/.  The F2onset value was taken from the first 

glottal pulse after release, and the F2vowel value was taken at the mid-vowel nucleus (Sussman et 

al, 1991). Regression lines were calculated for scatterplots created from each speaker. It was 

decided that a single line would be graphed for the velar scatterplot for two reasons.  Firstly, the 

when the palatal /g/ (front vowels) and velar /g/ (back vowels) were given two separate 

regression lines, it was found that the slope for palatal /g/ overlapped with /d/, and the slope for 

velar /g/ overlapped with /b/.  When /g/ was plotted as one scatterplot the composite line fell 

discernibly between the /b/ and /d/ lines.  Secondly, the R2 value was no higher for the separate 

regression lines than it was for the composite line.  When averaged across all speakers for each 

place of articulation, /b/ had a slope of 0.89 with a y-intercept of 99 Hz, /d/ has a slope of 0.42 

with a y-intercept of 1211 Hz, and /g/ had a slope of 0.71 with a y-intercept of 792 Hz. Slope 

analysis revealed that there was a significant difference in slope (p < 0.05) for each pair of 

consonants.  y-intercept analysis showed that /b/ consistently had the lowest intercept, followed 

by /g/ and then /d/ (Sussman et al., 1991).  Perhaps the most interesting aspect of this experiment 

was the attempt to classify place of articulation based on the F2 values.  When classification was 

attempted using just the F2onset , F2vowel pairs, classification rates for labial, alveolar, and velar 

place were 84%, 81%, and 69% accurate for males, and 82%, 78% , and 67% accurate for 
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females.  The next classification was performed on the higher-order slope/y-intercept constants 

pulled from the regression lines.  This method led to 100% accuracy in classification across all 

three stop place categories (Sussman et al., 1991).  

 A year later Sussman et al. published a new paper examining the differences in locus 

equations cross linguistically (Sussman et al., 1992).  The study addressed two issues of 

particular interest to this research.  The first being “Do locus equations emerge successfully 

cross-linguistically?” and the second being the theory of phonetic “hot spots.”  The question is 

essentially this: do languages utilize the full phonetic space available to them?  Or are certain 

regions typically preferred?  The study sampled new data from native speakers of Thai, Cairene 

Arabic, and Urdu.  Speakers of Thai were only sampled for bilabial and dental stops “because 

only bilabial and dental place contrasts exist.” The tokens were of the form CV, with C being /b/ 

and /d/ and V including nine Thai vowels. The Cairene Arabic speakers were asked to pronounce 

stops /b/, /d/, pharyngealized /dʕ/ and /g/.  The utterances were CV/t/ or CV/tt/ tokens, with each 

stop followed by one of eight medial vowels.  Finally, the Urdu speakers used four stops: /b/, 

dental [d], retroflex [d], and /g/.  The stops were followed by one of nine medial vowels, which 

varied with the language but always included the three vowels /i, a, u/.  The tokens were CVC, 

with the final C varying to maximize the number of real tokens (Sussman et. al, 1992).   

 For the Thai speakers, the mean labial slope was 0.70 and the mean y-intercept was 228 

Hz.  The mean alveolar slope was 0.295 and the y-intercept was 1425 Hz. When these values 

were graphed in a scatterplot with slope along the x axis and y-intercept along the y axis, the two 

places of articulation showed clearly distinct clusters.  For Arabic speakers, the stop places were 

labial, dental, dental pharyngeal, and velar.  These demonstrated mean slopes of 0.77, 0.25, 0.21, 

and 0.92 and mean y-intercepts of 206 Hz, 1307 Hz, 933 Hz, and 220 Hz respectively.  Graphing 
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these values as points on a coordinate plane once again showed clear distinctions between each 

place of articulation. The Urdu stop place categories were labial, dental, retroflex, and velar.  

These had mean slopes of 0.81, 0.50, 0.44, and 0.97, and mean y-intercepts of 172 Hz, 857 Hz, 

1070 Hz, and 212 Hz respectively.  The categories were mostly distinct when graphed on a 

coordinate plane, although one speaker’s retroflex /d/ overlapped with the dental cluster.  

 An overall cross-linguistic comparison of the slope, y-intercept mappings, including 

results from Swedish and English locus equations, reveals several consistent patterns. 

Alveolar/dental mappings are always significantly higher on the y axis than labial and velar, and 

they typically have a much lower position on the x axis.  Labial and velar stops are usually found 

close together low on the y axis.  They are typically separated only by slope, with labial stops 

found lower on the x axis than velar stops (Sussman et al., 1992).  English is an outlier here, with 

velar stops appearing both significantly higher on the y axis than anywhere else, and also being 

lower than labials on the x axis. No clear phonetic “hot spots” could be found in the space—

labial stops came the closest to forming a cluster in the coordinate space, while velars and 

dental/alveolar stops tended to move cross-linguistically.   (Sussman et al., 1992).   

 One of the earliest studies to examine locus equations for more than just stop consonants 

came from Carol Fowler in 1994.  Fowler claimed that Sussman et al. mislabeled locus equations 

when they called them invariant specifiers of place of articulation. Krull previously established 

that the slope of a locus equation reflects the degree of coarticulation demonstrated by the vowel 

transitions (Krull, 1988).  Since a higher slope indicates a lower degree of coarticulation, Fowler 

argues that locus equations can actually be used as measurements of “coarticulation resistance.”  

Using current notions of locus equations, /d, t, z, s/ should have the same locus equation because 

they have the same place of articulation, and likewise for all other sets of consonants with the 
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same place.  However, Fowler notes that utterances with different manners of articulation 

(fricatives, nasals, etc.) will display different degrees of coarticulation.  She predicts that locus 

equations will differ slightly for sounds with the same place of articulation but a difference in 

manner.  To test this theory, ten speakers (five male and five female) were recorded pronouncing 

CV/t/ tokens.  Consonants included /b, v, ð, d, z, ʒ, g/, and they were followed by eight vowels 

similar to those used by Sussman et al. in 1991.  The slope and y-intercept values for /b/, /d/, and 

/g/ when averaged across all speakers were 0.79, 0.47, and 0.71 for slope and 228, 1099, and 778 

for y-intercept (Fowler, 1994). These values are comparable with the results of Sussman et al. 

1991.  The only difference found from previous papers was that /b/ and /g/ differed only 

marginally in slope (Fowler, 1994). Fowler theorizes that /g/ may be more resistant to 

coarticulation when followed by front vowels because front vowels may pull /g/ forward to be 

confused with a different stop, while there are no stops close behind /g/.  When Fowler compared 

all seven consonant regression lines to one another, she found her assumption that slopes would 

differ for consonants with the same place of articulation but different manners held true—/z/ and 

/d/ locus equations had significantly different slopes.  Also, the slopes of /g/ and /v/, which have 

different place and manners of articulation, overlapped slightly.  Despite all this, Fowler writes 

that the y-intercept values pattern as they should, with /g/ distinct from /v/, and /d/ and /z/ having 

relatively the same intercept value (Fowler, 1994).  

 Two years later Sussman and Shore conducted an expanded version of Fowler’s study in 

an attempt to refute her claim that locus equations were not strong indicators of place of 

articulation (Sussman and Shore, 1996).  They began by pointing out that Fowler based her 

findings only on the slope of the equations, and that for locus equations to work the slope and y-

intercept should be treated as “codependent variables in a multivariate analysis.” (Sussman and 
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Shore, 1996).  This expanded study used twenty-two male speakers of American English.  Each 

speaker produced alveolar consonants /d, n, z, t, s/ followed by ten vowels.  One important 

aspect of this experiment was Sussman and Shore’s discussion of how to measure F2onset for 

voiceless stop /t/.  Before a vowel, /t/ is often characterized by an extended period of aspiration 

before the vowel begins.  This aspiration period gives time for the articulators to move, and so by 

the time the first glottal pulse appears F2 is already in position for the vowel midpoint.  If F2onset 

were to be measured at this point the resulting regression line would have a significantly steeper 

slope that expected, indicating a high degree of coarticulation for /t/.  This would be misleading, 

and so Sussman and Shore suggest that F2onset values from /t/ should be drawn from right after 

the stop burst, before aspiration and the first glottal pulse.  In order to keep a fair comparison 

between /t/ and /d/, they generated a second locus equation for /d/, called /d/@burst, where 

F2onset values were taken at the stop burst rather than at the first glottal pulse. Multivariate 

discriminate analysis on the locus equations showed the differences in slope were non-significant 

for /d/ versus /n/, /d/ versus /z/, /n/ versus /s/, and /d/@burst versus /t/. /d/@burst and /t/ had the 

shallowest slopes, indicating the greatest degree of coarticulation resistance.  The most relevant 

analysis done for the purpose of this paper was a comparison of the clusters formed when slope 

and y-intercept were plotted for all of the alveolar consonants, along with points representing 

velar and bilabial stops /g/ and /b/.  This representation showed that the three groups (alveolar, 

labial, and velar) formed three distinct, non-overlapping clusters.  Attempts to classify slope/y-

intercept points based on the clusters were 87% accurate for alveolar consonants.  All of the 

incorrectly classified alveolar tokens were marked as velars. Sussman and Shore concluded the 

experiment by claiming that alveolar obstruents, as a class, typically have lower slopes than velar 

and labial places of articulation. (Sussman and Shore, 1996).  
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2.6 MODERN LOCUS EQUATIONS 

Following the initial exploration of locus equations and the replications of locus equation 

experiments in multiple languages, the debate began to stray into theoretical questions of the 

basis of the equations—acoustic or perceptual.  There are a few papers, however, describing the 

use of locus equations as a phonetic tool for examining languages in a variety of populations. A 

2007 study by Gibson and Ohde replicated previous experiments examining coarticulation in 

infants and toddlers using locus equations. The study recorded six girls and four boys, all aged 

17-22 months, and pulled productions of CV tokens beginning with /b, d, g/.  Keeping with 

pattern of previous findings, locus equations slopes descended from velar to bilabial to alveolar, 

with the slope for /g/ being significantly different than the slopes for /b/ and /d/, and the y-

intercept for /d/ being significantly different from those of /b/ and /g/ (Gibson and Ohde, 2001).  

Gibson and Ohde used these results to try and support a particular theory of childhood 

coarticulation.  The results supported the claim that a child begins with different patterns of 

coarticulation than an adult, and that as they grow the patterns change to match the speech 

patterns they are exposed to.   

Figure 5: Example Locus Equation 
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A year later Caleb Everett published a paper describing the use of locus equations for 

analysis of coarticulation in the Brazilian language Karitiâna (K) using locus equations (Everett, 

2008).  The data was taken from four native speakers of K, two male and two female.  Each 

speaker produced 75 CV tokens for each of six initial consonants: /p, t, k, b, d, g/.  The tokens 

were taken from carrier phrases, meaning they were not artificial isolated tokens, but existed in a 

larger phonetic frame. Analysis of the locus equations revealed the velar locus equation was very 

steep (nearing and even surpassing 1.0) suggesting that velar stops in K “can be considered back 

velars rather than front velars” (Everett, 2008).  There is one particularly relevant observations 

made in this paper—although the actual F2onset and F2vowel values varied significantly for male 

versus female speakers, the locus equations and their coefficients were comparable.  Comparison 

of locus equation coefficients produced for K with coefficients from previous studies revealed 

that the general trend of alveolar consonants displaying lower degrees of coarticulation than the 

other stops holds, but that K actually allows for more coarticulation of alveolar consonants than 

do other languages.  This is evidence in the steeper slope seen for /t/ and /d/ in K when compared 

Thai, English, Swedish, etc.  (Everett, 2008). 

 One of the best attempts at grounding locus equations in articulatory reality was produced 

by Iskarous, Fowler, and Whalen in 2010.  They examine the definitions of coarticulation and 

coarticulation resistance, especially in relation to articulator positioning.  A statistical analysis of 

various formulas from the theory of bivariate regression (which locus equations are based on) 

showed that locus equation slope is very close to representing coarticulation resistance (being the 

standard deviation of F2 at the vowel onset) normalized by deviations in the vowel (the standard 

deviation of F2 at the vowel midpoint).  The only external factor is the correlation coefficient.  

Similarly, the y-intercept of the line is the average of F2 at the consonant release minus F2 at the 
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vowel midpoint times the slope.  These analyses drive Iskarous et al. to conclude “the locus 

equation intercept is therefore a complex measure affected by…C-to-V carryover coarticulation, 

and the average position of the tongue back and lips…” (Iskarous et al, 2010, pg. 2023).  The 

following experiment compared the regression lines of locus equations to the actual position of 

the tongue body during speech.  Electromagnetic Midsagittal Articulography Data (EMMA) was 

used to obtain the position of the tongue body at the times F2onset and F2vowel were drawn. Results 

from the experiment helped build an articulatory basis for locus equations, and led Iskarous et al. 

to the conclusion that locus equations could potentially be used to measure tongue body synergy. 

 Montgomery et al. published a study in 2014 describing the effects of incorrect F2 

measurements and incomplete vowel sets on locus equation slopes.  A typical study of locus 

equations is identified as focusing on CVC tokens with a voiced initial consonant followed by 

ten medial vowels.  The study began with analysis of locus equation studies already existing in 

the literature for /b/, /d/, and /g/ onset consonants.  These values were used to create statistical 

distributions of the slopes to be expected for each consonant.  The next step was the creation of 

seventy-five sets of locus equations generated from an analysis of recordings.  Each set had 20 

F2 values, representing the onset and midpoint formant for each of the ten vowels.  The third 

step was using a Monte Carlo technique to vary F2 values by up to 5%.  Forty thousand unique 

numbers were generated, creating two thousand new simulated locus equation sets, each with 20 

F2 values representing the same ten vowels.  The distribution of the new slopes was normal, and 

so these new locus equations were accepted as error-free “samples of their populations” 

(Montgomery et al., 2014).  From this point error was systematically applied to each of the locus 

equation sets.  F2 values, either at onset or vowel midpoint, were randomly perturbed by 50 Hz, 

100 Hz, or 200 Hz.  The vowel set was also decreased to include only 8, 6, 4, or 3 vowels.  The 



24 

 

sets of vowels always included the cardinal corner vowels /i/, /a/, and /u/ to avoid locus equation 

error caused by lack of representation rather than incorrect measurement.  A significant effect on 

the slopes was defined as the “mean absolute difference of the change in slope in corresponding 

[locus equations] in the sets of 2000” greater than 0.1 (Montgomery et al, 2014).  Results showed 

that a vowel set of at least six vowels stayed within a 95% confidence interval for errors up to 50 

Hz, but that more extreme error pushed the slopes for all three consonants over the cut-off point 

for error, into the next interval.  The study concluded that locus equation slopes are “generally 

resistant to error and reduced number of vowels” (Montgomery et al., 2014). 

 

2.7 LOCUS EQUATIONS AND SPEECH DISORDERS 

So far the discussion of locus equations has been limited to standard speech across a variety 

of languages. There is significant evidence, however, that locus equations can be applied as a 

metric of measurement for disordered speech as well.  Even though the equation coefficients 

may not fall within expected boundaries, the F2onset versus F2vowel mapping still shows a strong 

linear regression.  One preliminary study into this area was conducted by Sussman, Marquardt, 

and Doyle in 2000.  The experiment used locus equations as a tool to compare speech of children 

diagnosed with developmental apraxia of speech (DAS) to children of the same age with 

unaffected speech.  DAS is a motor speech disorder, where children have trouble saying sounds 

or words. This leads to “a restricted phonemic repertoire, a predominance of omission errors, 

frequent vowel errors…abnormal prosodic patterns” (Sussman et al., 2000).  Five children with 

DAS were compared to three children of similar ages who did not have DAS.  The children were 

all between five and seven.  The children produced CV tokens for /b, d, g/ by imitating an 

investigator.  Locus equations were created for each child, and then the coefficients were plotted.  
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The Euclidean distance between each consonant point was calculated (/b-d/, /d-g/, /g-b/) and then 

those distances were totaled for the perimeter of a consonant triangle, called ED.  This distance 

was a representation of the consonant space in the mouth.  The three points mapped each 

consonant onto a plane.  Consonants that were properly placed were further apart on the 

coordinate plane, while consonants that were improperly articulated would be misplaced or 

closer together.  Children without DAS produced locus equations that closely matched those 

produced by adult speakers.  Children with DAS produced locus equations with lower R2 values, 

indicating significantly more variance in the vowels.  The slopes for children with DAS were 

also all close to overlapping.  This is reflected in the ED measure calculated for each child.  

Children without DAS had a mean ED value of 1.635, and children with DAS had an ED value 

of 0.465, a reduction of more than half. This difference was a reflection of the incorrectly 

articulated consonants.  Although the study was not large enough to be statistically significant, 

this decrease suggests that DAS speakers show an “inability to refine coarticulation levels to 

maximally distinguish…stop place categories” (Sussman et al., 2000). More recently, Sussman 

et al. also conducted a study of locus equation production in adults who stutter, and found that 

even in such disjointed speech locus equations still emerge from the graph of F2 values 

(Sussman et al., 2010). 

 

2.8 LOCUS EQUATION SUMMARY 

There has been a significant amount of research done in the area of locus equations, but a few 

points are particularly relevant for the research discussed in this paper.  (1) Locus equations work 

best when applied to voiced stops /b, d, g/ because it is easiest to find the F2onset point, and 

because aspiration is less of an issue.  They still occur for voiceless stops and consonants with 
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other manners, like nasals and fricatives, but there is some debate about where to measure F2onset 

in such cases for the most accurate equation.  (2) Locus equations are relatively robust to 

measurement error, but F2 measurements should be kept as accurate as possible, and a vowel set 

of at least six vowels covering the three cardinal corner vowels must be used to ensure one side 

of the equation is not underrepresented.  (3) The slope of locus equations is a reflection of 

coarticulation, where steeper slopes indicate more coarticulation.  (4) The y-intercept of the locus 

equation is a function of several factors, but it tends to hold to certain ranges unique to place of 

articulation. (5) In English, slopes are expected to descend in the order labial > velar > alveolar, 

with y-intercepts increasing in the opposite order. (6) When the locus equation coefficients are 

plotted in a coordinate plane as (slope, intercept) points, the consonant space can be used as a 

tool for linguistic analysis of a language. 
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CHAPTER 3 

SEMI-AUTOMATIC GENERATION OF LOCUS EQUATIONS 

3.1 DATA 

 This experiment was done using the Nationwide Speech Project Corpus (NSP), collected 

by Dr. Cynthia Clopper (Clopper and Pisoni, 2006).  This corpus was collected in an attempt to 

document the different dialects across America.  The data includes recordings from 10 speakers 

(5 male and 5 female) from each of six dialects, for a total of sixty speakers.  The six dialects are 

Mid-Atlantic (at), Midland (mi), New England (ne), North (no), South (so), and West (we). Each 

speaker was recorded producing ten different types of speech—from single syllable CVC tokens 

to short conversations. The sound files were labeled by accent, then by speaker number, then by 

experiment ID, and finally by token number.  Speakers were numbered 0-9 for each accent, with 

1-5 being male and the rest being female. For example, a file might be named “at0B0.wav,” with 

“at” for Mid-Atlantic, 0 as the speaker number (female), B as the token type (CVC) and 0 as the 

token number (utterance 0, “bean”). 

 

3.2 CORPUS ALIGNMENT 

 The first step in the creation of locus equations was to align the speech.  As discussed in 

the literature review above, F2onset and F2vowel values have to be pulled from very specific places 

in the vowel for the equations to work.  F2vowel must be taken from the steady state of the vowel.  

The place of extraction for F2onset depends on the preceding consonant.  For voiced stops, it 

should be taken from first glottal pulse following stop burst. For nasals and fricatives the value is 
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drawn from the first visible glottal pulse of the vowel. The most controversial value is F2onset 

following voiceless stops. The period of aspiration that sometimes comes after the voiceless 

stops in syllable initial position allows the tongue time to move, meaning that by the appearance 

of the first glottal pulse, the vowel is already nearing its midpoint position.  Arguments have 

been made for taking the F2onset value at the stop burst instead of at the glottal pulse, a value that 

should better reflect the actual frequency transition.  In Sussman’s paper the F2onset for /t/ is taken 

from right after the stop burst, with encouraging results (Sussman, 1996).   

 The first attempt at alignment was done using SPPAS, an automatic alignment program.  

SPPAS takes a WAV file and a text transcription, and then uses a phonetic dictionary and a 

model to automatically generate an aligned Praat TextGrid file (Boersma and Weenink, 2016). 

SPPAS was run using a python script, which systematically created a command line call for each 

sound file/text transcription pair, and then ran the appropriate SPPAS alignment commands.  The 

end result was a .TextGrid file for each of the sounds files used.  The automatic alignment results 

were mediocre at best, the boundaries often misplaced by anywhere from a few seconds to the 

length of the entire phrase.  This occurred due to a few key issues.  First was in the shortcomings 

of the phonetic dictionary.  SPPAS generated a phonetic transcription for each recording using 

the CMU dictionary, which lists English words in alphabetic order and then provides a phonemic 

transcription for them (Bigi, 2012; CMU Pronouncing Dictionary). There can be more than one 

transcription for each word, to account for differences in pronunciation.  Although the dictionary 

is fairly accurate for underlying phonemic representations of single word tokens, it quickly loses 

accuracy when faced with real speech, as shown in the following examples. When the phonemic 

underlying representation of a token is transformed into the surface form of real speech, it should 

change to accommodate speech characteristics like aspiration, deletion, nasalization, etc.  
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SPPAS, using the CMU dictionary, does not have this step.  The speech models used were 

trained on data with allophonic variation, but the boundaries were still often misplaced.  The 

previous paragraph discusses the importance of marking F2onset in exactly the right spot, 

especially when aspiration is involved.  SPPAS didn’t mark aspiration, so the vowel was often 

marked as starting a little ways into the vowel, or halfway through the aspiration where no 

reliable F2 could be found (see Figure 6 below).  Another problem with the dictionary was its 

use of single word tokens.  When SPPAS attempted to align sentences, it could not account for 

the ways words change in continuous speech.  For instance, SPPAS correctly transcribed the flap 

phoneme when found in the middle of a word (“butter”), but failed to notice it at the end of a 

word (“but I”). Instead, the dictionary left the phoneme as a /t/.  

 

 

 

 

Figure 6: Alignment Error 

Figure 7: Speech Error 
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The second issue was an inability to handle outside noise in a WAV file.  The recordings 

usually started with a “click” sound as the speaker clicked a mouse.  Many of the recordings 

included a sigh or a yawn before the actual speech began.  These non-speech sounds confused 

SPPAS.  The alignment boundaries shifted out of place to try and include these sounds as part of 

the expected transcribed phonemes, and the whole alignment file would be thrown off as a result 

(see Figure 6).  The third issue was with the speakers themselves.  SPPAS expected the sound 

file to contain exactly what was provided in the text transcription.  The transcription in the NSP 

included the tokens the speakers were supposed to produce, but the speakers often produced 

errors—missing their cues or stumbling over a word and starting again.  For example, a 

recording that was meant to contain “The swimmer dove into the pool” might actually contain 

“The swimmer do…dove into the pool.”  (Figure 7)  In these cases, SPPAS tried to align all of 

the speech, but the mismatch in the transcription and the speech could not be overcome. 

 SPPAS is a strong automatic alignment program, but it was incapable of providing the 

pinpoint accuracy needed to achieve results in this research.  Valid locus equations require F2 

values drawn from specific points in a sound, and the SPPAS alignment placed boundaries too 

far from where they needed to be.  The only visible solution was to correct the alignments by 

hand. In the interest of time, the number of speakers was cut to 24—2 male and 2 female 

speakers from each of the six accents.  Additionally, the number of files included in the analysis 

was cut to a more reasonable number.  The original corpus contained 203 sentences and 195 

single word tokens across 10 speakers, for a total of 3,980 tokens.  All of the CVC tokens were 

kept, along with 43 of the high probability (HP) sentences and 25 of the multisyllabic words, 

leading to a corpus of 1,430 utterances.  Many of the tokens had multiple transitions in one file—

altogether, there were 10,880 vowel transitions included from all consonants.  These tokens were 
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chosen to satisfy the following: Consonants for each of the three examined places of articulation 

(labial, alveolar, velar) were represented as voiced stops, voiceless stops, fricatives, and nasals.  

This excludes the velar nasal /ŋ/, which did not occur often enough in the corpus for an accurate 

locus equation to be created.  Each of these consonants had tokens transitioning into at least 6 

different vowels, including the three cardinal vowel corners, /i/, /u/, and /a/.  These transitions 

were seen at least once for each consonant, but preferably more often.  These constraints were 

chosen to ensure that the F2 values taken from the aligned sound files would form accurate 

representative locus equations for each speaker, while cutting the number of hand aligned files 

down to a size fitting the time constraints.  The choices were made to mimic previous 

experiments done with locus equations, and the inclusion of at least 6 vowels with the inclusion 

of /i, a, u/ is based on the results detailed in Montgomery (2014). The list of included files and 

their contents can be found in Appendix B.  

The alignment choices were made to match the required F2onset values described above.  

The boundary for vowels following voiced stops was placed at the first glottal pulse following 

the stop burst.  Following fricatives and nasals the vowel boundary was placed at the first 

discernable pulse of vowel, and vowel boundaries after voiceless stops were put at the first clear 

and stable appearance of F2. One example for each of these can be seen in Figure 8 below. When 

a phoneme transcribed by SPPAS was incorrect (for example, a /t/ where there should be a flap) 

the transcription was corrected.  When the speaker misspoke, the incorrect speech was marked 

within its own segment, and the boundary was labeled with “#”.  If a speaker paused for a 

significant period of time in the middle of a sentence, a “#” was added to mark a silent period.  If 

the vowel occurred at the end of the utterance, the boundary was placed where the formant 

tracking stopped.  Otherwise, the boundary was placed where the next sound began. 
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Figure 8: Boundaries 

(a) Voiceless Stop onset. (b) Voiced Stop onset.           

(c) Voiceless Fricative onset. (d) Nasal onset. 
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3.3 LOCUS EQUATION CONSTRUCTION 

 Once the sound files were all properly aligned, the F2 data had to be pulled from the files 

and transformed into locus equations.  This was done using a combination of a Locus Equation 

program implemented in java and a Praat script.  The steps were as follows: 

1. The Locus Equation program reads all of the files from specified folders, creates 

WAV/.TextGrid pairs and extracts demographic information for the pair. 

2. The Locus Equation program runs the Praat script on the pair of files. 

3. The Praat script pulls all relevant F2 values from the recording and writes them to a 

CSV file. 

4. The Locus Equation program reads from the completed CSV file and creates 

“Speaker” objects with sets of “Consonants”. 

5. The Locus Equation program calculates the regression line for each consonant for 

each speaker. 

6. The Locus Equation program identifies outliers in the data, deletes them, and 

recalculates the locus equation. 

7. The Locus Equation program writes the locus equation slope, y-intercept, R2 value, 

and Standard Error to a file as input for a classifier. 

The details of this process and justification for each step are provided below.  

 In order to pull formant values at timestamps, Praat must be provided with both a sound 

file, for the recording, and a TextGrid file with the alignment. The hand-aligned files were all 

stored in a folder for each accent.  The WAV file was labelled using the system seen in Table 1 

below, and the TextGrid files shared the same name with the addition of “-palign.TextGrid”.  

The Locus Equation program read through each of the accent files, and created pairs of WAV 
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files and TextGrid files with matching names.  It then used a regular expressions (regex) to pull 

information from the file name—accent, sex of the speaker, and token number.  The program 

looped through the collection of file pairs, and fed each one into Praat using a system call to 

praatcon.exe, a console version of Praat.  The Praat script was structured to take five arguments 

as input: The WAV file name, the TextGrid file name, the CSV output file name, the speaker ID 

(accent + speaker number), and the speaker sex (Table 1). 

Input Value 

WAV File Name “at0B0.wav” 

TextGrid File Name “at0B0-palign.TextGrid” 

CSV Output File Name “Formants.csv” 

Speaker ID at0 

Speaker Sex Female 

Dialect at 

 

 

The Praat script began by loading the sound file and the TextGrid file.  Next, the script 

created a formant object for the sound file.  The formant was created using the “Burg” method, 

which takes five arguments.  The first, time step, specifies how often the formants will be 

sampled for the sound file.  This was kept at the standard value, 0.0.  The second is the 

maximum number of formants Praat will search for at each analysis step.  The recommended 

setting is 5 for human speech, however, if a sound file had too much background noise searching 

for 5 formants sometimes led Praat to track an extra, non-existent formant, leading to incorrect 

readings.  After looking through the sound files, it was decided that 5.5 would be the maximum 

Table 1: SPPAS Input 
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number of formants for back and central vowels, and 4.5 would be the maximum number for 

front vowels. The effects of these settings are discussed later when outliers are addressed. The 

third formant setting is “Maxiumum formant,” which serves as the ceiling of the formant search.  

The standard settings here are 5500 Hz for females and 4500 Hz for males, who have lower 

voices and thus lower formant values overall.  The fourth setting, “Window length” is measured 

in seconds.  This dictates the Gaussian analysis window used in calculating the formants.  The 

value was set to 0.20 seconds, for a total Gaussian window of 0.4 seconds (0.2 on each side). 

Finally, the last setting is “Pre-emphasis from,” which dictates the starting frequency Praat 

should search for formants in.  The default setting of 50 Hz was used here.  

Once the Formant objects were created, Praat looped through each phonetic segment in 

the TextGrid looking for vowels.  When a vowel was located, the Formant settings were updated 

appropriately and then the F2 values were taken.  F2onset was pulled from the boundary marking 

the beginning of that vowel segment.  F2vowel was taken from the midpoint of the segment 

(duration * 0.5) for monophthongs (Figure 9), and the first quarter of the segment (duration * 

0.25) for diphthongs (Figure 10).  These equations for pulling the midpoint were decided upon 

after consideration of previous experiments and manually pulling formants to test the resulting 

locus equations.  While some locus equations experiments were very careful to draw F2vowel from 

the best steady state available, others took F2vowel from 20 milliseconds in with comparable 

results. Additionally, visual inspection revealed that the midpoint of the vowel almost always fell 

within the steady state. After both F2 values were sampled for a vowel, they were written into 

the output file given in the arguments, along with the input file name, speaker ID, speaker sex, 

vowel label, preceding consonant label, and dialect. 
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 Once the final call to a Praat script has finished, the Locus Equation program begins the 

next step of reading from the created CSV file and creating regression lines for each speaker. 

The program was structured in such a way that each speaker was its own object, represented by 

Figure 9: Monophthong Midpoint 

Figure 10: Diphthong Midpoint 
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the speaker ID [accent] + [ID number].  Each speaker had a set of Consonant objects, and each 

Consonant had a set of Token objects.  These Token objects contained the name of the WAV file 

they were taken from, the vowel they represented, the consonant they followed, and the F2 

values Praat sampled for that vowel.  The structure is visualized in Figure 11 below. Each line in 

the CSV file contained the F2onset and F2vowel values for one vowel transition from one consonant 

for one speaker.  The Locus Equation program read in the CSV line by line and sorted the 

Tokens by Speaker and then by Consonant. When the entire CSV file had been read, the program 

moved on to the creation of locus equations for each speaker. 

 

 

  

To calculate the locus equation lines, the Locus Equation program used a nested loop that 

iterated through every Consonant object of every Speaker.  Every Consonant had a set of Token 

objects with F2onset and F2vowel values.  Locus equations were created by mapping the line of best 

fit to these F2onset, F2vowel pairs, with F2vowel on the x-axis and F2onset on the y-axis.  The 

regression lines were represented by the equation y = mx + b, with m as the slope and b as the y-

intercept. The coefficients m and b and the R2 value were found with the following equations: 

1. N = Number of F2vowel, F2onset pairs. 

 2. xsum = ∑1 to N  F2onset. 

 3. ysum = ∑1 to N F2vowel. 

Figure 11: Java Classes 
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 4. xysum = ∑1 to N (F2vowel * F2onset). 

 5. x2
sum = ∑1 to N (F2vowel * F2vowel). 

 6. y2
sum = ∑1 to N (F2onset * F2onset). 

 7. m = 
(𝑁∗𝑥𝑦𝑠𝑢𝑚)−(𝑥𝑠𝑢𝑚∗𝑦𝑠𝑢𝑚)

(𝑁∗𝑥𝑠𝑢𝑚
2 )−(𝑥𝑠𝑢𝑚∗𝑥𝑠𝑢𝑚)

. 

 8. b = 
(𝑥𝑠𝑢𝑚

2 ∗𝑦𝑠𝑢𝑚)−(𝑥𝑠𝑢𝑚∗𝑥𝑦𝑠𝑢𝑚)

(𝑁∗𝑥𝑠𝑢𝑚
2 )−(𝑥𝑠𝑢𝑚∗𝑥𝑠𝑢𝑚)

. 

 9. R2 = 
((𝑁∗𝑥𝑦𝑠𝑢𝑚)−(𝑥𝑠𝑢𝑚∗𝑦𝑠𝑢𝑚))

2

((𝑁∗𝑥𝑠𝑢𝑚
2 )−(𝑥𝑠𝑢𝑚∗𝑥𝑠𝑢𝑚))((𝑁∗𝑦𝑠𝑢𝑚

2 )−(𝑦𝑠𝑢𝑚∗𝑦𝑠𝑢𝑚))
. 

 10. S.E. = √
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1 .  

These values were stored as variables in the Consonant object.  The accuracy of the equations 

was checked by running the Token values through the Locus Equation program and then plotting 

the same F2 points in excel and plotting a trend line.  Both approaches returned the same values. 

 

3.4 OUTLIER DETECTION AND REMOVAL 

The final step in the preparation of locus equations was finding and removing outliers and 

then replotting the locus equation lines. This step was necessary due to the use of an automated 

Praat script for pulling formant values, rather than pulling them by hand.  Although Praat is fairly 

accurate, it can occasionally miss formants or pick up on extra “ghost formant” values, returning 

incorrect results.  The typical approach in this situation would be to locate outliers and then go 

back and hand check them in Praat to ensure the formants were properly measured.  While this 

method ensures the most accuracy, it requires further human interference into a process we are 

attempting to automate. The automatic detection and removal of outliers in this program is an 

attempt to replace the human error-checking.  For this research, an outlier was described as any 
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point outside the 98.5% prediction interval from the plotted regression line.  In linear regression, 

a confidence interval marks the regression line with some level of confidence. In the case of 

outlier detection, the interval needed to be focused on the points rather than the line itself.  A 

prediction interval is an interval around the regression line that marks where a newly plotted 

point might fall on the graph with some degree of confidence.  This interval was deemed a better 

fit for the detection of outlier points since the calculation of the interval takes the points into 

account rather than the line itself.  The equations used to calculate the prediction intervals were 

as follows: 

The prediction interval for yi at xi is: 

ŷi ± tcrit * s.e. 

11. ŷi = mxi + b. 

12. s.e.( ŷi) = σ̂  * √1 +  
1

𝑛
+

(𝑥−�̅�)2

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

  . 

13. σ̂  = √
1

𝑛−2
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1 . 

In the above equations, ŷi is the predicted y value for any x value given the regression line.  

tcrit is the statistical t-value for a two-tailed distribution.  This value was pulled from a table 

storing t values.  s.e. is the standard error of prediction for the equation.  This is different from 

the standard error of estimation (SE), given above and used as a method for measuring how well 

the plotted points fit the regression line. The third equation is recognizable as a close variant of 

the standard error of estimation (SE). The only difference lies in the division (n – 2) rather than 

by N.  The plus/minus in the first equation accounts for the upper and lower bounds of the 

prediction intervals.  A point was plotted at every x value (F2vowel) using the above equations, 

and then these points were used to draw the interval around the regression line.  For every 
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coordinate point, the F2vowel value was used to calculate the upper and lower limits of a predicted 

F2onset value, using the tcrit value for 98.5% confidence.  If the actual F2onset value was greater or 

lower than the limit, it was discarded as an outlier.  Once every point on a line had been checked 

using this method, the locus equation line was recalculated using the methods described in the 

previous section, but with the reduced set of coordinate points.  It should be noted that this 

process was done only once per regression line, with the intent of removing as few points as 

possible.  Also, this method was only used on lines with more than twenty points plotted for the 

regression line.  Based on observations of the line and a few tests that involved moving data 

points, it was decided that any fewer points would not be sufficiently robust to the removal of an 

outlier, and that every point was necessary for an accurate regression line.  In the NSP data set, 

/s/ and /g/ were the two locus equation lines that were not evaluated using outlier removal.  

Instead, each of these points was checked by hand to ensure accuracy of the regression line. 

 Figures 12 and 13 show two examples incorrect formant measurements in Praat.  Figure 

12 shows a formant reading which was much too low.  The “ghost” second formant which 

caused the incorrect reading is marked by an arrow, and can clearly be seen in the spectrogram.  

Figure 13 shows the opposite problem—Praat failed to track the first formant (F1) in the 

spectrogram, and so it treated F2 as the first formant and pulled an F3 value instead of an F2 

value.  The correct formant value and the value actually pulled are both marked by arrows.  

Outliers of this significance had an extreme influence on the locus equation line and coefficients.  

Figure 14 shows three examples of outlier removal for the locus equation lines, one for /p/, /t/, 

and /k/.  The first image shows the plotted points and regression line prior to outlier removal. 

The second image is the same set of points, but the outliers were checked by hand and fixed 

rather than automatically detected and discarded. The third image depicts the plotted points and 
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regression line after automatic outlier removal. Note the difference in the locus equation 

coefficients.  The difference in both slope and y-intercept between the unchecked locus equation 

line and the two fixed lines is significant, but the coefficients are comparable between the line 

with fixed outliers and the line with discarded outliers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Formant Too High Error 

Figure 13: Formant Too Low Error 
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Figure 14: Outlier Removal 

Results 
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CHAPTER 4 

LOCUS EQUATIONS AND DIALECTS 

 4.1 COMPARISON WITH PREVIOUS STUDIES 

 One way to check the validity of the generated locus equations was to compare them to 

previously attained results.  Following the experiments of Sussman and Fowler, we can expect 

that the slopes of the locus equations will decrease in the order labial < velar < alveolar, and that 

the y-intercepts will pattern similarly (Sussman et al., 1991; Fowler, 1994).  Table 2 below 

shows the Locus Equation slopes (m) and y-intercepts (b) for every consonant, for every speaker.  

The mean values for each coefficient pattern as expected: for every manner of articulation, labial 

> velar > alveolar.  Each manner and place group is discussed individually below.  The results 

obtained in this experiment are compared to the voiced stop locus equation coefficients from 

Sussman’s 1991 paper (Sussman et al., 1991).  All locus equations for speaker at0 are included 

in Appendix C for reference. 

 

Speaker m b m b m b m b m b m b m b m b m b m b
at0 0.68 495 0.47 1201 0.83 510 0.99 97 0.58 957 0.84 440 0.5 651 0.32 1261 0.73 378 0.47 1000
at1 0.9 33 0.61 667 0.48 1150 0.97 57 0.52 833 0.94 241 0.82 236 0.58 635 0.82 191 0.48 848
at2 0.73 264 0.7 582 1 188 1.01 31 0.56 832 0.91 276 0.63 444 0.45 834 0.73 379 0.7 550
at6 0.77 332 0.51 1080 0.77 713 0.96 114 0.67 714 1 135 0.62 555 0.49 975 0.84 165 0.86 257
mi0 0.87 128 0.52 1018 0.6 1074 1.03 -55 0.84 367 1.01 83 0.76 383 0.65 673 0.98 85 0.59 739
mi1 0.85 111 0.6 653 0.65 727 1.01 32 0.64 642 0.96 173 0.67 362 0.59 582 0.81 182 0.66 544
mi2 0.78 231 0.51 871 0.57 1009 0.93 126 0.35 1167 0.87 363 0.74 250 0.6 593 0.85 178 0.71 481
mi6 0.7 413 0.52 951 0.84 455 1.04 -64 0.37 1238 1.04 126 0.76 349 0.52 817 0.88 137 0.86 291
ne0 0.77 289 0.41 1277 0.76 763 1.07 -94 0.47 1146 1.01 73 0.66 453 0.55 830 0.76 278 0.65 695
ne1 0.78 293 0.63 716 0.56 996 1.02 11 0.48 991 0.88 377 0.72 339 0.67 521 0.82 223 0.83 316
ne2 0.86 130 0.56 738 0.5 1038 0.91 147 0.47 886 0.85 329 0.81 187 0.44 799 0.91 113 0.62 530
ne6 0.87 175 0.59 870 0.66 938 1 23 0.55 957 0.93 257 0.74 385 0.44 1016 0.78 322 0.64 728
no0 0.64 538 0.57 920 0.68 883 0.97 111 0.53 1014 0.96 231 0.74 264 0.43 1051 0.78 242 0.65 616
no1 0.92 72 0.57 721 0.44 1160 0.9 162 0.41 1021 0.83 380 0.54 721 0.44 894 0.8 199 0.64 532
no2 0.82 164 0.64 620 0.42 1122 0.93 91 0.6 679 0.82 387 0.68 272 0.68 470 0.84 193 0.66 542
no6 0.75 394 0.49 1161 0.87 493 0.93 126 0.67 762 0.97 251 0.63 425 0.51 784 0.78 210 0.92 197
so0 0.56 698 0.61 839 0.68 872 0.82 274 0.64 796 1.03 107 0.39 1006 0.38 1137 0.69 452 0.91 158
so1 0.83 138 0.53 815 0.41 1222 0.99 20 0.41 1061 0.88 309 0.66 325 0.49 743 0.85 150 0.58 641
so2 0.78 165 0.46 859 0.51 1039 0.92 141 0.53 777 0.86 364 0.76 182 0.58 574 0.78 204 0.56 647
so6 0.84 161 0.51 984 0.81 596 0.96 102 0.56 1003 1.01 157 0.49 731 0.4 1139 0.83 170 0.65 544
we0 0.7 384 0.44 1253 0.78 785 0.99 40 0.59 968 0.89 413 0.54 669 0.4 1265 0.82 276 0.75 542
we1 0.81 193 0.43 947 0.57 867 0.99 61 0.55 783 0.86 340 0.73 333 0.67 543 0.87 198 0.65 601
we2 0.96 34 0.54 752 0.65 774 1.04 -7 0.48 862 0.96 188 0.82 143 0.53 663 0.76 264 0.73 458
we6 0.84 88 0.49 1023 0.85 623 1.1 -115 0.64 811 0.91 322 0.67 436 0.48 950 0.86 134 0.69 589

Mean 0.793 247 0.537 897 0.663 833 0.979 60 0.546 886 0.927 263 0.671 421 0.512 823 0.815 222 0.686 544

Consonants

/f//n/ /s/
Voiced Stops Voiceless Stops Nasals Voiceless Fricatives

/b/ /d/ /t/ /k/ /m//g/ /p/

Table 2: Dialect Locus Equation Results 
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Voiced stops are the manner class most often examined in Locus Equation papers 

(Fowler 1994; Lindblom 1963; Sussman et al, 1991), and so we will examine these first.  In the 

Sussman et al 1991 paper, the mean slope for /b/ was 0.89 with a y-intercept of 99 Hz, the mean 

slope for /d/ was 0.42 with a y-intercept of 99 Hz, and the mean slope for /g/ was 0.71 with a y-

intercept of 792 Hz.  Table 3 shows a direct comparison between the results of the 1991 paper 

and the results from this experiment using male, female, and total averages for the Voiced Stop 

Equations. The slope averages are comparable, with /b/ > /g/ > /d/.  The /b/ slope for the current 

experiment is shallower than previous results.  The breakdown by male and female shows that 

the male values are very similar, but the female slope is flatter than expected.  This result is 

likely due to the conversational nature of the speech used to create the equations.  In the 1991 

experiment single tokens beginning with [b] were produced, meaning every token began with a 

total stop of air followed by a stop burst and then the vowel (Sussman et al., 1991).  In the 

multisyllabic and sentence tokens of the NSP corpus, the /b/ transitions sometimes took place 

within a word, and [b] sound was not as well formed.  It is worth mentioning that one female 

speaker in particular, so0, had a /b/ locus equation slope of 0.56, a value low enough to pattern 

more closely with an alveolar stop.  The tokens for this locus equation were checked for outliers, 

but all of the vowel transitions proved to be correctly measured.  Additionally, the y-intercept for 

so0’s /b/ locus equation falls at 698 Hz, which is very high for a /b/ locus equation but lower than 

it would be for an alveolar locus equation with the same slope (see speaker ne6).  Re-examining 

the speakers showed that so0 had the most obvious Southern accented speech of all four speakers 

taken from that region, and so it is possible that the speaker’s dialect is responsible for the slope 

value. The different in the locus equation could be a reflection of the coarticulation patterns, or 
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they could be a result of fronted vowels in the southern dialect.  The y-intercept values for male 

/b/ locus equations are as expected, and the female values match the lower slope. 

 

 

  

The average /d/ locus equation slope, while still flat enough to be characteristic of an 

alveolar stop transition, was overall steeper than the values found in the 1991 experiment 

(Sussman et al, 1991).  Both male and female speakers produced a steeper slope, leading in turn 

to slightly lower y-intercept values than expected.  Once again, this can be accredited to the 

multisyllabic and sentence tokens in the corpus.  A steeper slope indicates more coarticulation 

between the initial consonant and the following vowels.  The continuous nature of the tokens in 

the present experiment may have led to heavier coarticulation between the [d] stops and the 

following vowels.  While the /d/ slopes are steeper and the y-intercepts are lower than in 

previous experiments, the mapping of /d/ locus equation coefficients and /b/ locus equation 

coefficients still shows significant separation between the two clusters (see Figure 15).  

 Voiced velar stops were the furthest from their expected values.  Unlike /b/ and /d/ locus 

equations, which patterned as expected with a few differences, /g/ locus equations were often 

significantly shallower than previous experiments would imply.  This result is not due to any 

error in previous experiments, or due to any error in measurement of vowel transitions for the 

1991 m b m b m b
Male 0.870 106 0.430 1073 0.660 893

Female 0.900 91 0.410 1349 0.750 777
Total 0.890 99 0.420 1211 0.710 792

Present
Male 0.836 152 0.564 745 0.565 941

Female 0.749 341 0.511 1048 0.760 726
Total 0.789 252 0.543 885 0.624 911

Voiced Stops
/b/ /d/ /g/

Table 3: Voiced Stop Averages 
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locus equation.  The fault lies instead with the distribution of tokens with /g/ transitions available 

in the NSP corpus. It was previously stated that a valid locus equation must include at a 

minimum: transitions into six distinct vowels, where three of those vowels cover the cardinal 

corners of the vowel space /i, a, u/.  There were enough tokens in the corpus for each speaker to 

have a /g/ locus equation that met these requirements, so it was included in the experimentation.  

Closer evaluation, however, revealed that the tokens are unbalanced between front vowels and 

back vowels. /i/ and /ӕ/ in particular had four or five tokens each, while /u/ was only represented 

once or twice.  As seen in previous experiments (Sussman et al, 1991; Fowler, 1994; Krull, 

1988) the /g/ transition in English is better characterized by two locus equations, an equation 

with a shallow slope similar to the /d/ locus equation marked by front vowels, and an equation 

with a steep slope, similar to a /b/ locus equation, following the back vowels.  The imbalance 

between front and back vowels in the token set led to /g/ locus equations shallower than 

expected. The slope of the /g/ locus equations in this experiment was ultimately a result of the 

mid-vowel transitions. A few speakers, like at0 or so6, had lower F2 onset values for mid-

vowels, which helped make the slope of the locus equation steeper.  Other speakers, like at1 and 

no2, tended towards higher F2 onset values for mid-vowels, pushing the slope away from the 

back vowels and making it shallower.  Females tended to have lower F2 onset values for mid-

vowels, leading to steeper /g/ locus equation slopes.  Although the average /g/ slope does fall 

between the slope for the /b/ locus equation and the /d/ locus equation, the average y-intercept 

for the /g/ locus equation is actually higher that the average y-intercept for the /d/ locus equation, 

which is not as expected.  These inconsistencies with the /g/ locus equations led to a few 

classifier errors, and they highlight the importance of a well-balanced vowel set. These are 

further discussed in the next section, 4.2. 



47 

 

 The next manner class is voiceless stops.  The three voiceless counterparts to the voiced 

stops, /p, t, k/, were members of this class.  Of every class examined in this set, voiceless stops 

had the largest number of tokens in the corpus, which led to the most accurate and well-balanced 

locus equations.  They are not examined as often as voiced stops because the aspiration that often 

occurs after a voiceless stop gives the tongue time to move, which in turn skews the transitions 

from consonant to vowel.  As described in Chapter 3, F2 onset was taken at the first visible 

steady F2 in an attempt to counteract the aspiration.  /t/ and /k/ transitions have been examined 

before, with success (Sussman and Shore, 1996; Everett, 2008).  The initial expectation was that 

each voiceless stop would have locus equation coefficients similar to those seen for voiced stops 

in the same place.  That is, /b/ and /p/ would be similar, /d/ and /t/ would be similar, and /g/ and 

/k/ would be similar.  This generally held true.  Table 4 below shows the locus equation 

coefficients for /p, t, k/ in direct comparison to the locus equation coefficients for /b, d, g/ from 

the Sussman et al. 1991 study. 

 

 

  

It is clear from the comparison above that voiceless stops do tend to pattern with voiced 

stops that have the same place of articulation. The /p/ locus equation slope is steep, with average 

values for both men and women nearing one.  This matches the steep slope of the average /b/ 

1991 m b m b m b

Male 0.870 106 0.430 1073 0.660 893

Female 0.900 91 0.410 1349 0.750 777

Total 0.890 99 0.420 1211 0.710 792

Present

Male 0.968 73 0.499 878 0.886 311

Female 0.989 47 0.593 894 0.968 216

Total 0.979 60 0.546 886 0.927 263

Voiceless Stops

/b/ /d/ /g/

/p/ /t/ /k/

Table 4: Voiceless Stop Averages 
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locus equations from the 1991 paper, and the relatively steep slopes of the /b/ locus equations 

from this study.  The /p/ locus equation slope may be greater than the /b/ locus equation slope 

because /p/ is often aspirated, so F2onset values were measured closer to the vowel than they were 

for /b/. The y-intercept averages are all under one hundred.  Examination of individual locus 

equation coefficients (Table 2) shows that many speakers had /p/ locus equation slopes greater 

than 1, with negative y-intercept values.  The /t/ locus equation coefficients also meet 

expectations.  Although not as shallow as the /d/ locus equation slopes from the 1991 study, the 

/t/ locus equation slopes from this study are shallower than the /d/ locus equation slopes, and 

significantly different from both the /p/ locus equation slopes and the /k/ locus equation slopes.  

The y-intercept values for the /t/ locus equations are significantly higher than the y-intercept 

values for the other two voiceless stops.  /t/, like /d/, also had a higher Standard Error and a lower 

R2 value.   

Like /g/, /k/ is the most dissimilar to the expectations set by the results from the Sussman 

paper.  While the voiced /g/ locus equation slope from Sussman’s paper was a moderate value 

between the slope of the /b/ locus equation and the /d/ locus equation, the voiceless /k/ locus 

equation slope is much steeper, closer to the slope of the /p/ locus equation than that of the /t/ 

locus equation.  Unlike the /g/ locus equations from this study, the /k/ locus equation values are 

not caused by any error in vowel token distribution or formant measurement.  Instead, it appears 

that /k/ locus equations lack the flatter slope seen with front vowels in /g/ locus equation slopes.  

In other words, /k/ does not seem to resist coarticulation with front vowels as strongly as /g/ 

does.  The lack of a flatter slope makes the locus equation values for /k/ much steeper than those 

for /g/.  Despite this, the average /k/ locus equation slope does still fall between the /p/ slope and 

the /t/ slope. Additionally, the /k/ locus equation y-intercept is distinctively much higher than the 
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/p/ locus equation y-intercepts, setting the two clusters apart.  This separation is examined more 

closely in the next section. 

 The third manner class examined is voiceless fricatives, containing only /f/ and /s/, for 

labial and alveolar places of articulation. The closest consonant to a velar voiceless fricative 

would be /h/, but this sound is known for moving considerably with the vowels, and so it is not 

used in locus equation evaluations. Locus equations for fricative consonants are first discussed in 

depth in Fowler’s response to the Sussman et al. paper (Fowler, 1994; Sussman et al., 1991).  

Fowler notes that fricatives are characterized by less constriction in the vocal tract, and this 

characteristic means they, /s/ in particular, will be more susceptible to coarticulation than a stop 

with the same place might be (Fowler, 1994).  The locus equations for /f/ and /s/ were generated 

with the expectation that the locus equation coefficients would be similar to those of stops with 

the same place of articulation, but that the magnitude of the slope would increase with the new 

coarticulation allowed by frication.  Sussman and Shore returned with the theory that slope 

decreases inversely as a function of constriction in the vocal tract, and that y-intercept increases 

in the opposite manner.  Table 5 shows the locus equation coefficients for /f/ and /s/, compared 

with the values from the Sussman 1991 study.  The place for a velar fricative from the current 

study is left blank. 

 

 

1991 m b m b m b

Male 0.870 106 0.430 1073 0.660 893

Female 0.900 91 0.410 1349 0.750 777

Total 0.890 99 0.420 1211 0.710 792

Present

Male 0.820 206 0.652 557 - -

Female 0.810 238 0.720 530 - -

Total 0.815 222 0.686 544 - -

Voiceless Fricatives

/b/ /d/ /g/

/f/ /s/ N/A

Table 5: Fricative Averages 
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 As expected, the fricatives keep with the previously observed pattern, labial > alveolar 

for both slope and y-intercept.  /f/ locus equations had slopes steeper than the /b/ locus equations 

from this study, but shallower than most /p/ locus equation slopes.  The y-intercept values were 

generally higher than those for both /b/ and /p/, which was also expected, and fit with Sussman 

and Shore’s theory (Sussman and Shore, 1996). The /f/ locus equations were very well-fitted, 

with data points that clustered closely around the regression lines.  The /s/ locus equations, 

conversely, showed a significant amount of variance.  The average values were as expected—

steeper than the /d/ and /t/ locus equation slopes, but still shallower than the /f/ locus equation 

slope.  The y-intercept values were much lower than those for alveolar voiced stops, but were 

still higher than those for the labial fricatives.  The /s/ locus equations generated by Sussman and 

Shore had a mean slope of .57 and a mean y-intercept of 643.  These values are once again 

shallower than the /s/ values achieved in this study, but they are similar in the /s/ locus equation 

slope is steeper than the /d/ locus equation slope, and the /s/ locus equation y-intercept is smaller 

than the /d/ locus equation y-intercept.  The /s/ locus equations for individual speakers varied 

widely.  Although a visual inspection of the equations was conducted, /s/ is the only consonant 

other than /g/ that had under 20 vowel tokens in the regression line, meaning the /s/ equations 

were particularly susceptible to outliers or imbalances in the vowel tokens. 

 The final manner class is the nasals, once again representing only the labial and alveolar 

places of articulation.  There is a nasal velar, but it does not occur in English speech as often as 

the other consonants, and there were not enough tokens with vowels transitioning from the nasal 

velar for a valid locus equation.  The alveolar nasal, /n/, was examined in the same Sussman 

study that first included the /t/ and /s/ locus equations (Sussman 1994).  As with the fricatives, 

the nasal consonants /m/ and /n/ were expected to have locus equation coefficients similar to 
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those of other consonants with the same place of articulation.  /m/ and /n/ are somewhat unique 

because they do not face the issue seen with voiceless stops and fricatives—that is, the period of 

aspiration, frication, or silence where the tongue may be moving in transition but no formant can 

be seen.  /m/ and /n/ are both fully voiced and sonorant, and so the F2 transitions are clearly 

visible the whole way through. Table 6 has the locus equation coefficients for /m/ and /n/ from 

this study, and the coefficients for /b, d, g/ from the Sussman et al. 1991 study. The velar place is 

left empty for the current study. The /m/ locus equation slope is shallower than the slopes for the 

/f, b, p/ locus equations, but still steeper than the slope for the /n/ locus equation.  The /n/ locus 

equation slope is shallower than the /s/ locus equation slope.  The /n/ locus equations generated 

by Sussman and Shore in 1996 had a mean slope of .48, with a mean y-intercept of 899. These 

values put the Sussman and Shore /n/ average in the same position: the slope was smaller than 

the /s/ locus equation slope, and the y-intercept was greater. In general, nasal consonants seem to 

have locus equation slopes that are shallower than fricative locus equation slopes in the same 

place of articulation.  As slope is related to degree of coarticulation resistance, it can be surmised 

that nasals are more resistant to coarticulation than voiceless fricatives.   

 

 

 

 

1991 m b m b m b

Male 0.870 106 0.430 1073 0.660 893

Female 0.900 91 0.410 1349 0.750 777

Total 0.890 99 0.420 1211 0.710 792

Present

Male 0.717 316 0.560 654 - -

Female 0.625 526 0.463 991 - -

Total 0.671 421 0.512 823 - -

Nasals

/b/ /d/ /g/

/m/ /n/ N/A

Table 6: Nasal Averages 
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4.2 RECOVERY OF PLACE OF ARTICULATION 

 In the 1991 study of locus equations, the equation coefficients are plotted in a coordinate 

plane as slope/y-intercept pairs and then used to classify place of articulation (Sussman et al, 

1991). Sussman reported that discriminant analyses applied to these higher-order mappings of 

locus equations classified place of articulation with 100% accuracy (Sussman, 1991).  In later 

papers, attempts at classification were made using locus equations with more than one manner of 

articulation—for example, classifying both /s/ and /d/ as alveolar consonants based on the 

coefficient plot (Fowler, 1994; Sussman and Shore, 1996).  It was seen that as manner of 

articulation changes, the coefficient clusters begin to overlap with one another, making 

classification more difficult.  Figure 15 below shows the coefficient mapping of every locus 

equation generated from the NSP corpus.  There are 10 locus equations for 24 speakers, equaling 

a total of 240 tokens.  Labial consonants are marked by x’s, alveolar consonants by dashes, and 

velar consonants by crosses.  The locus equation slope is plotted along the x-axis, and the y-

intercept is on the y-axis.  The coefficients generally appear where expected—alveolar 

consonants are both higher on the y-axis and lower on the x-axis than the other two clusters, and 

labial and velar consonants are separated more by differences in slope than differences in y-

intercept.  There is also some clear overlap in the three clusters.  Velar consonants and alveolar 

consonants in particular overlap.  The velar instances that fall in the alveolar range in on the y-

axis are mostly from /g/ locus equations that were too shallow. The labial consonants 

encroaching on the alveolar cluster are mostly from /m/ locus equations, and the lowest of the 

alveolar consonant points belong to /s/ locus equations. 
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 An obvious first step in the classification of place of articulation given such a wide 

variety of consonants is to include the manner of articulation as a feature in the classifier.  The 

following describes the use of three different classification algorithms for recovery of place of 

articulation—a K-means clustering algorithm, an Artificial Neural Network (ANN), and a 

Classification Tree.  The K-means algorithm was not expected to do well, both because of the 

overlap between clusters and because the coefficients do not group in the typical “circular” 

clustering pattern a centroid-based method like K-means is meant for.  Additionally, this method 

did not take the manner as a feature for classification.  This algorithm is used only as a starting 

point for classifier accuracy.  The ANN and the Classification tree are both expected to have 

improved performance on classification of the data set. The K-means algorithm and the ANN 

were implemented both by hand using Java, and through the WEKA Machine Learning package, 

a free online package that takes sets of features as input and runs various machine learning 

algorithms on them (Hall et al., 2009).   

Figure 15: Dialect Clusters by Place 
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 K-means is one of the most basic clustering algorithms.  The program works by randomly 

generating a pre-set number of “centroids,” points which will serve as the center of the clusters.  

For this data set, the number of centroids was set to three—one for each place of articulation.  

Once the centroids are generated, each point in the space is evaluated and assigned to the closest 

node.  The centroids are then moved to represent the center of this group of points.  The distance 

metric used for this algorithm was a simple Euclidean distance.  The first K-means algorithm 

was implemented in java and run on the set of 240 instances for 50 iterations, even though the 

centroids typically stopped moving after 5 to 10 iterations.  The whole algorithm was run 1000 

times, to check the consistency of the results.  As expected, the classification results were poor, 

with an overall accuracy of 59%.  Broken down by place of articulation, the “Labial” cluster was 

71% accurate. The “Alveolar” cluster was 71 % accurate, and the “Velar” cluster was 18% 

accurate.  The results of the algorithm are visualized in Figure 16.  The color of the points 

represents the class predicted by the K-Means classifier.  As in Figure 15, orange marks labial 

points, blue marks alveolar points, and black marks velar points.  The shape of the marker 

symbol denotes the actual place that locus equation represents—x for labial consonants, - for 

alveolar consonants, and + for velar consonants.  The performance of this K-Means algorithm 

was checked by running the program through the K-Means option in the WEKA machine 

learning package (Hall et al, 2009).  The WEKA package K-Means clustering algorithm was 

55.5% accurate, making it a little less accurate than the java implemented K-Means.  The WEKA 

clusters are visualized in Figure 17.  This figure is taken from WEKA, so it differs slightly from 

Figure 16.  The color scheme is the same—orange marks labial, blue marks alveolar, and black 

marks velar.  All correctly classified instances are marked by a cross (+) while incorrect 
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instances are marked by a box. The slope is plotted along the x-axis, and the y-intercept in Hz is 

along the y-axis. 

 

 

 

 

 

  

The second classification technique applied to this data set was an Artificial Neural 

Network (ANN).  The network was implemented in Java.  The data set is relatively small, and so 

a 12 fold cross-validation technique was used to avoid overfitting the network.  The data was 

Figure 17: Dialect WEKA K-Means 

Figure 16: Dialect Java K-Means 
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subdivided into 12 sets, each containing two instances of each of the ten consonants.  The ANN 

was then trained on 11 of the 12 sets, and tested on the twelfth set for accuracy.  Each set was set 

aside and used as a testing set once.  The network itself took three values as input—slope, y-

intercept, and manner—and outputted one of three values as a classification of place.  The 

hidden layer had five nodes.  The learning rate was set at 0.85, and the momentum was 0.095.  

The network trained for a total of 500 epochs on each training set, and accuracy of classification 

on the testing set was measured as percentage of instances properly classified.  The entire 

process was repeated 1000 times to check for consistency of results.  The average accuracy of 

the ANN classifier was 84.13%, although the ANN did reach an accuracy of 88% at its best.  The 

classifier error is plotted in Figure 18.  Note that no labial instances were incorrectly classified as 

velar instances, or vice versa.  The majority of the error is from the velar voiced stop /g/ 

instances misclassified as alveolar.  There were also alveolar fricative /s/ equations misclassified 

as velar, and labial nasal /m/ equations misclassified as alveolar. 

The data set was also trained and classified using the WEKA “Multilayer Perceptron” 

function, which is equivalent to an ANN.  The WEKA network took six input values—the 

numeric x and y values for slope and y-intercept, and one binary input for each manner of 

articulation (Voiced Stop, Voiceless Stop, Fricative, Nasal).  The hidden layer contained 4 nodes, 

and classification came from three output nodes—one for each place of articulation.  The 

learning rate was 0.3, the momentum was 0.2, and the model was trained for 250 epochs.  This 

model had a classification accuracy rate of 89.16%, meaning it correctly classified 214 of the 

240 instances.  This result was 5% more accurate than the Java network.  The results could be 

taken as support of multiple output nodes in classification problems over one output node that 
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returns different values.  A visualization of the classification error can be seen in Figure 19 

below. The error is plotted the same as in Figure 17. 

 

 

 

 

 

 
Figure 19: Dialect WEKA ANN 

Figure 18: Dialect Java ANN 
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The final classification method used on this data set was a Classification and Regression 

Tree (CART).  CART trees are sets of rules that divide data sets based on certain attributes, like 

manner of articulation or slope values, and eventually assign classification labels to the subsets.  

Decision tree algorithms use measures of entropy and information gain to decide which attribute 

to divide the dataset on at each point in the process.  The attribute which lowers the resulting 

entropy of each sorted set the most is chosen as the next step in the process. The tree discussed 

here was generated using WEKA.  The CART algorithm implemented by WEKA is the J48 

algorithm, which uses reduced-error pruning and rule-ordered pruning to avoid overfitting the 

data.  The tree was created and testing using 10-fold cross validation.  The J48 algorithm 

consistently created a tree that classified the 240 instances with 87.5% accuracy, meaning 210 

instances were correctly classified and 30 instances were not.  The generated decision tree can be 

seen in Figure 20 below.  Nodes labelled “Feature” split the data set based on that feature.  The 

bolded values seen along the pathways show which feature values were sorted where.  The nodes 

labelled “Class” are child nodes—all locus equation instances sorted into that child node are 

assigned the defined class.  The numbers in parentheses show the accuracy of the set sorted to 

that node, (Correctly Labelled/Incorrectly Labelled).   
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The rules defined in a decision tree are good descriptors of the layout of the data set.  

Note, for instance, that the very first split made by the tree is between locus equations with y-

intercepts above 455 Hz, and those with y-intercept values below 455 Hz.  The equations with 

high y-intercept values are nearly all classified as alveolar.  The exception is the subset of voiced 

stops, which is further divided by slope (greater or less than 0.647).  Equations with higher 

slopes are classified as velar, and those with lower slopes are classified as alveolar.  Having 

looked at the data set, we know that these rules are an attempt to handle the /g/ locus equations 

that are unusually flat and have higher y-intercept values that mix them with the /d/ locus 

equations.  Looking at the number of instances correctly classified versus the number incorrectly 

classified also provides valuable information.  The locus equations with y-intercepts over 455 Hz 

that fall into the Fricative and Voiceless Stop classes are classified as alveolar with 100% 

Figure 20: Dialect Decision Tree 
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accuracy.  The Nasal and Voiced Stop instances are less accurate, with 5 Nasal and 12 Voiced 

Stop locus equations incorrectly classified as alveolar.  This is a result of the flat /g/ locus 

equation slopes muddying the alveolar voiced stop cluster, and the few /m/ locus equation slopes 

that were flatter than expected mixing with the /n/ locus equation slopes.  The Decision Tree 

classification errors are visualized in Figure 21.   

 

 

  

The data set used above contains locus equations for consonants with multiple different 

manners of articulation—voiced stops, voiceless stops, fricatives, and nasals are all represented.  

This increases the difficulty of classification on the set, as it causes overlap in the clusters.  

Fowler notes in her 1994 paper that a labial stop might have the same slope as an alveolar 

fricative, not because they share a place of articulation, but because of the difference in manner 

(Fowler, 1994).  The addition of the “manner” feature was meant to counteract this obstacle in 

the ANN and the Decision Tree described above.  As an exploratory measure, the three WEKA 

classifier systems—K-Means clustering, Multilayer Perceptron, and Decision Tree—were run on 

Figure 21: Dialect WEKA J48 



61 

 

subsets of the data divided by manner class.  The results can be seen in Table 7 below.  K-Means 

clustering results improved significantly on data sets with only two clusters, like Fricatives and 

Nasals.  Both data sets with three places of articulation represented—Voiced and Voiceless 

Stops—had a higher accuracy using the multilayer perceptron than using the decision tree.  

Voiceless Stops had the highest overall classification accuracy rate—94.44% accurate when the 

multilayer perceptron was used.  Voiced stops had the lowest accuracy percentages for both the 

multilayer perceptron and the decision tree, further confirming that the voiced stops were the 

hardest manner class to correctly classify.  This is most likely caused by the irregular /g/ locus 

equations. 

 

 

 

4.3 CLASSIFICATION OF DIALECTS 

 Having established that the automatically generated locus equations are valid, they can 

now be examined as features in a classifier system.  These equations would only serve as useful 

features for classification if the dialects all had unique coarticulation patterns.  The NSP data set 

contains six dialect classes—Mid-Atlantic (at), Midland (mi), New England (ne), North (no), 

South (so), and West (we).  Locus equations were generated for four speakers from each dialect, 

two male and two female.  The end result was 24 speaker instances available for classification.  

Two different types of feature sets were generated and tested.  The first was the entire set of 

Manner K-Means Multilayer Perceptron Decision Tree

Voiced Stops 59.72 80.56 72.22

Voiceless Stops 52.78 94.44 87.5

Fricatives 87.5 91.66 93.75

Nasals 75 85.41 87.5

Classification Method

Table 7: Dialect Classification 

Results 
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locus equation coefficients for each speaker.  For example, speaker at0 would have the feature 

set {/b/ slope, /b/ y-intercept, /d/ slope, /d/ y-intercept…/s/ slope, /s/ y-intercept}.  This feature 

set included all of the raw locus equation data.  The second set was an abstraction to the 

distances between the various slope/y-intercept points of a speakers locus equations.  These 

higher order mappings of the locus equation coefficients in dialect space serve as a method of 

representing the “consonant space” of a speaker.  Figure 22 shows the locus equation mappings 

for every consonant of speaker at0.  This approach has been used before, in Sussman et al.’s 

study of children with developmental apraxia of speech (Sussman, 2000).  In that study, the locus 

equation coefficients for voiced stops /b, d, g/ were mapped into a coordinate plane, and the total 

distance between the three points was used as a method for analyzing the person’s speech.  

Sussman found that the voiced stop points were collapsed in towards each other in speakers with 

apraxia, implying that the consonants were not coarticulated in a way that maximally 

distinguished them from one another.  The purpose of the classification experiments described 

here was to determine if dialects have differences in coarticulation that are reflected in the 

consonant space, and, if so, if those differences could be used for classification. 

For this study, the features used were: 

1. The sum of distances between the voiced stops. 

2. The sum of distances between the voiceless stops. 

3. The distance between the two fricatives. 

4. The distance between the two nasals. 

5. The centroid point of the voiced stops. 

6. The centroid point of the voiceless stops. 

7. The centroid point of the fricatives. 
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8. The centroid point of the nasals. 

9. The sum of distances between the labial, alveolar, and velar centroids. 

Variations on the feature set included the distances between individual points and the centroid 

for that manner class, and distances as pairs rather than sums (b-d, d-g, g-b, instead of b-d-g).  

These features were chosen with the intent of fully capturing the consonant space of the speaker. 

 

 

  

All five of the classification algorithms described in section 4.2—that is, two 

implementations of K-Means clustering, two implementations of an ANN, and a Decision 

Tree—were applied to both feature sets.  The results were poor across the board.  Both the set of 

all locus equation coefficients and the set of distances resulted in classification accuracies 

ranging from 10% accurate all the way down to 0% accurate.  None of the classification 

algorithms had a better accuracy than random guessing. Figures 23-27 below are used to 

examine why the results might have been so poor.  Each figure shows the plots of Locus 

Equation coefficients that have been averaged across a dialect.  For instance, the three points in 

Figure 24 belonging to the “at” dialect are actually representations of the average slope and y-

intercept of that consonant’s locus equation for every speaker with that dialect.  For an individual 

Figure 22: at0 Consonant Space 
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speaker, feature number 1 from above, “Sum of distances across voiced stops”, would have been 

the total distance between each of the “at” points plotted on the graph.   

 The circles surrounding the clusters of points on each graph group the consonant the 

coefficients represent for each dialect.  These clusters further support the classifications 

described in section 4.2—for each manner class, the consonants with different places of 

articulation each clearly inhabit their own cluster.  It is clear from the figures that, despite the 

differences heard in dialect, the coarticulation patterns are similar and so the locus equation 

coefficients for each consonant tend to cluster into the same space on a coordinate plane.  This is 

useful for recovery of place of articulation, but it also explains why the classification algorithms 

performed so poorly on the data set.  There is no systematic difference in the position of locus 

equation coefficients for the different dialects, and so the classifier has no reliable value on 

which it can divide the data set.  

 It is worth mentioning that the dialects of the NSP corpus, while present in the speech, 

are generally mild in their intensity.  For example, of the speakers examined from the “South” 

dialect set, only speaker so0 had an immediately obvious accent in her speech.  Speaker so0 also 

had consistently lower labial slopes than the other speakers, especially for /b/ and /m/.  Her 

influence may be what pulled the “so” average to the highest position in the labial cluster for 

Voiced Stops, Voiceless Stops, and Nasals.  One speaker is not sufficient evidence that dialectal 

differences may be reflected in a consonant space, but a further investigation into the effect of 

more extreme speech differences, like foreign accents, would provide interesting insight into the 

matter.  Based on the data present, it can be concluded that locus equation coefficient mappings 

into a consonant space are resilient to at least mild differences in speaker dialect. 
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Figure 23: Voiced Stop Consonant Space 

Figure 24: Voiceless Stop Consonant Space 

Figure 25: Fricative Consonant Space 
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Figure 26: Nasal Consonant Space 

Figure 27: Centroid Consonant Space 
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CHAPTER 5 

LOCUS EQUATIONS AND SPEECH DYSARTHRIA 

 The third experiment used the University of Illinois UA (Universal Access) Speech 

database (Kim et al., 2008).  This collection of files was from speakers with dysarthria, a motor 

speech disorder.  Dysarthria is a term for speech where the speaker has trouble with movement 

of the articulators. (“Dysarthria”, ASHA) It can be caused by a number of things, including 

stroke, tumors, Parkinson’s disease, Lou Gehrig’s disease, and multiple sclerosis.  The type of 

dysarthria is determined by the cause, and by the extent of damage to the nervous system.  A few 

characteristic signs of dysarthria are slurred or choppy speech, a slow speech rate, limited 

tongue, lip, and jaw movement, or changes in voice quality.  The UA speech data base included 

recordings from seventeen different speakers.  Of these, thirteen speakers were evaluated in this 

study.  M04 was cut from the speakers due to his extremely low rate of intelligibility—2%.  This 

was low enough that there was no discernable way to place alignment boundaries, and most of 

the time half of the word was missing from the token.  M05 and M06 were both eliminated 

because in the updated audio, which was the file used, they were missing either half or all of 

their data. 
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For the remaining speakers, locus equations for the three voiced stops were generated 

using the same procedure described in Chapter 3.  49 tokens were identified as containing the 

necessary vowel transitions to create well-formed locus equations, and these were then hand 

aligned.  Only voiced stops were evaluated because the speech with dysarthria was often 

mumbled or unclear, making boundary points for sounds difficult to accurately pinpoint.  Voiced 

stop boundaries are the easiest to locate, and so for an initial study only these were evaluated.  

After all of the tokens had been aligned, the Java and Praat scripts were run to automatically 

generate the locus equations.  The only difference was the lack of outlier detection.  The speech 

was expected to contain outliers caused by the dysarthria, and so when all of the equations were 

generated, the equations were hand checked for outliers instead.  All of the token words can be 

found in Appendix D, and speaker F02’s locus equations are included in Appendix E for 

reference. 

 

Table 8: UA Demographic Information 
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5.1 COMPARISON WITH PREVIOUS STUDIES 

 Table 9 below gives the slope and y-intercept values for the three stop consonant locus 

equations generated from the corpus.  Immediately obvious is the large amount of variation in 

the slopes.  The m coefficient for the /b/ locus equations varies from 0.151 as a minimum to 

1.029 as a maximum, taken from speakers M12 and F03, respectively.  These equations can be 

seen plotted in Figures 28 and 29.  Both speakers have a very low rate of intelligibility, and yet 

the equation slopes are on opposite ends of the spectrum, one being much lower than the 

expected value and the other being much higher.  Although the /b/ locus equations for speaker 

F03 are better fitted to the line, all of the data points for both equations have been hand checked 

for validity, and so both equations are kept as data points.  A similar variance in slope can be 

seen in /d/ locus equations, although the differences are less extreme.  The lowest slope for a /d/ 

locus equation is 0.161, and the highest slope is 0.811.  The /g/ locus equations have the most 

stable slope values, with the all but two speakers producing slopes between 0.8 and 1.2.  

 

 

Speaker m b m b m b

F02 0.696 288.4 0.379 1311 0.859 360.3

F03 1.029 21.89 0.476 919.7 1.038 -8.38

F04 0.671 331.1 0.603 909.5 0.809 418.3

F05 0.689 357.4 0.396 1280 0.992 207.2

M01 0.764 278.4 0.811 424.6 0.932 132.7

M07 0.801 183 0.161 1393 0.692 538.4

M08 0.68 349.2 0.283 1419 0.808 458.3

M09 0.826 196.3 0.297 1111 0.813 249.8

M10 0.651 400.9 0.449 1094 0.516 1018

M11 0.657 317.9 0.212 1419 0.754 404.4

M12 0.151 942.7 0.313 935.2 1.119 -162

M14 0.605 476 0.731 648.2 0.882 412

M16 0.692 378.2 0.329 1125 1.026 101.7

Mean 0.685 348 0.418 1076 0.865 318

Consonants

Voiced Stops

/b/ /d/ /g/

Table 9: Dysarthria Voiced Stops 
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Having noted the variability of the slope values in the locus equations, the following 

comparisons of average values should be considered with caution as they are likely to overlook 

the individual variation.  The mean values will be used as a starting point for comparison of 

locus equations across studies, and then a more in-depth consideration of the individual slopes 

will be made for each place of articulation. In past experiments, the slope values for locus 

equations have been found to decrease in the order labial is greater than velar is greater than 

alveolar, while y-intercepts increase inversely (Fowler 1994; Lindblom, 1963; Sussman, 1991). 

The averages in Table 9, however, flip the velar and labial consonants, so the velar > labial > 

alveolar.  As seen in Table 10, the average slope for the /b/ locus equation is shallower for 

speakers with dysarthria than it was for the dialect speakers from this study and the speakers 

from Sussman et al, 1991.  In fact, the average /b/ locus equation slope values for speech with 

dysarthria are most similar to the average /g/ locus equation slope values from Sussman et al. 

(1991).  The average /d/ locus equation values for the speakers with dysarthria closely match the 

/d/ locus equation values from Sussman et al, 1991.  Keeping with the velar/labial flip, the /g/ 

locus equation coefficients from speakers with dysarthria most closely match the /b/ locus 

equation values from the 1991 study. This implies that, for many speakers with dysarthria, /g/ is 

Figure 28: M12 /b/ Locus 

Equation 

Figure 29: F03 /b/ Locus 

Equation 
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more heavily coarticulated than /b/. A stronger implication would be that /g/ is often articulated 

with the wrong place or manner entirely, in a way that encourages coarticulation. 

 

 

  

The variances in the individual locus equations from Table 9 are best explained by 

looking back at the nature of speech dysarthria and the theory of locus equations.  As mentioned 

above, dysarthria is a type of motor speech disorder that occurs when the movement of muscles 

required for speech production is impaired.  This leads to abnormal patterns in the person’s 

speech.  Locus equations are tools for the examination of consonant production in speech.  The 

locus equation slope is directly related to degree of coarticulation—a consonant that is 

coarticulated heavily will have a locus equation with a larger slope, while a consonant with 

minimal coarticulation will have a locus equation slope approaching 0.  With this in mind, the 

locus equation coefficients from Table 9 can be reconsidered.   

The locus equation slopes for each speaker vary widely across all three stop consonants.  

Every speaker has at least one locus equation slope value that falls significantly outside of the 

expected range.  There are a few patterns that appear in the coefficients.  Most speakers have /b/ 

locus equation slopes that are smaller than the expected range, indicating a lesser degree of 

1991 m b m b m b

Male 0.870 106 0.430 1073 0.660 893

Female 0.900 91 0.410 1349 0.750 777

Total 0.890 99 0.420 1211 0.710 792

Dialect

Male 0.836 152 0.564 745 0.565 941

Female 0.749 341 0.511 1048 0.760 726

Total 0.789 252 0.543 885 0.624 911

Dysarthria

Male 0.647 391 0.398 1063 0.838 350

Female 0.771 250 0.463 1105 0.924 244

Total 0.685 348 0.418 1076 0.865 318

Voiced Stops

/b/ /d/ /g/

Table 10: Dysarthria Locus Equation Averages 
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coarticulation than expected.  This could be caused by the reduced mobility of tongue and lips 

that sometimes accompanies speech dysarthria—an inability to move the tongue quickly would 

keep the vocal tract from shifting towards a vowel shape while the /b/ is still being formed.  /g/ 

locus equation slopes are mostly much steeper than expected.  This may be because /g/ is the 

hardest of the three consonants to form, and so many speakers do not fully move their tongue 

into position for a “g” before moving onwards to the next vowel (Ferguson and Farwell, 1975).  

This incomplete transition would increase coarticulation.  The consonants that each individual 

speaker struggles with, and the way that they struggle with them, is heavily dependent on the 

underlying cause for the speech dysarthria, and the symptoms that affect that particular person.  

More data could potentially help to predict which stops a speaker with speech dysarthria will fail 

to coarticulate and which stops a speaker will over coarticulate.  Given the current corpus, the 

only consistent pattern is that each speaker with dysarthria does have at least one stop consonant 

with a locus equation slope that stands out as abnormal. 

 

5.2 RECOVERY OF PLACE OF ARTICULATION 

 The previous section discussed the validity of the locus equations generated from the 

speakers with dysarthria.  It has been established that reasonably well-fitted lines can be 

generated for each of the three voiced stops, and that the slope coefficients of the locus equations 

are different from the expected values, which in turn throws the y-intercept values off by a 

margin.  In this section, the same classification algorithms used for recovery of Place of 

Articulation on the NSP dialect data are used on the UA locus equations.  Since the algorithms 

were discussed in detail previously, this section is limited to classification results.  For more 

detail on the algorithms, see section 4.2.  Results are expected to be lower than they were in 
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chapter 4, both due to the variance in slope and y-intercept values, and the smaller number of 

examples for the set to train on. Figure 30 shows a representation of the clusters when all tokens 

are properly classified.  Note that the alveolar consonants remained mostly separate, but the 

labial and velar clusters overlap with one another, especially as slope grows. 

 

 

 

The first classification algorithm used was the simple K-Means clustering algorithm.  As 

with the dialect data locus equations, this method was used only as a baseline and was not 

expected to do well.  The algorithm was run with a preset number of three clusters—one for each 

place of articulation.  Both the hand-written Java algorithm and the WEKA K-Means classifier 

returned a classification accuracy of about 70%, which was achieved mostly by minimizing the 

“velar” cluster to only six instances, and having particularly low accuracy for that place of 

articulation.  Figure 31 shows the WEKA K-Means clustering output. 

Figure 30: Dysarthria Clusters by Place 
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The next approach to recovery of place of articulation was the Artificial Neural Network.  

Both the hand-implemented Java ANN and the WEKA multilayer perceptron algorithm were run 

on the data set.  Both methods were run using 12-fold cross validation in an attempt to prevent 

overfitting of the data.  The networks were run using the same settings used for classification of 

the dialect data in section 4.2.  For the network implemented in Java, the ANN was trained for 

500 epochs on the data set, and the classification accuracy was measured as percentage of 

instances properly classified. The hidden layer had five nodes.  The learning rate was set at 0.85, 

and the momentum was 0.095.  With these settings, the average accuracy of the Java classifier 

was 77.77%.  The classifier error is plotted in Figure 32.  The WEKA model was run for 250 

epochs using the default settings—learning rate was 0.3, momentum was 0.2, number of hidden 

nodes was 4, and number output nodes was 3.  This method had a classification accuracy of 

79.48%, meaning 31 of the 39 instances were properly classified.  The WEKA classification 

output is plotted in Figure 33. 

Figure 31: Dysarthria WEKA K-Means 
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The final classification algorithm examined was WEKA’s built-in J48 decision tree, 

which was created and tested using 10-fold cross validation.  The tree generated for the UA data 

Figure 32: Dysarthria Java ANN 

Figure 33: Dysarthria WEKA ANN 
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set is significantly smaller than the one generated for the dialect data set in section 4.2.  The 

reason for this is the lack of a manner feature—only locus equations for voiced stops were 

generated from the UA dataset, so the inclusion of a manner feature would be redundant.  The 

WEKA decision tree had classification accuracy of 71%, meaning 28 of the 39 instances were 

classified correctly by the tree.  Figure 34 shows the rules generated by the J48 algorithm as a 

tree.  The rules of the tree are dedicated mostly to separating the velar /g/ from the labial /b/.  

This is a reflection of the overlapping y-intercept values of the two voiced stops, caused by the 

unusually high /g/ locus equation slope average and the unusually low /b/ locus equation slope 

average.  Overall, the classification algorithms did reasonably well considering the overlap of 

tokens in the data set. As with the dialect locus equations, WEKA ANN had the highest 

performance accuracy, followed by the Java ANN and then by the WEKA decision tree.  The 

results can be interpreted as a sign that locus equations are not entirely robust to extreme 

variance in speech. We know the positions of the consonants are changing enough to overlap 

with one another, which provides support in favor of their use as a feature in classification of 

different types of speech. 

 

 

Figure 34: Dysarthria WEKA Decision Tree 
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5.3 CLASSIFICATION OF SPEAKERS WITH DYSARTHRIA 

 This section discusses the potential application of locus equations as features for 

classification speech dysarthria.  Section 4.3 in the previous chapter examined locus equations as 

features for classification of dialects, and found that the equations were generally robust to the 

smaller dialectal differences in speech, making them ill-suited as features in that area.  This is not 

the case for the locus equations generated from the UA corpus, representing speakers with 

dysarthria.  Section 5.1 discusses the variance in the locus equation slopes for each of the voiced 

stops, noting that the speakers with dysarthria tend to have slopes that vary from the expected 

value for a particular place and manner of articulation.  Given this trend, it seems reasonable to 

hypothesize that a classifier should be able to distinguish between speakers with dysarthria and 

speakers without dysarthria given the locus equation coefficients for all three voiced stops.  This 

hypothesis is tested using a combination of the two data sets.  The /b/, /d/, and /g/ locus equation 

coefficients for every speaker from the UA corpus and every speaker from the NSP corpus were 

put together as one data set.  The 24 speakers from the NSP corpus were classified as being 

“Negative” for dysarthria, and the 13 speakers from the UA corpus were labelled as “Positive”. 

Following this, two classification algorithms—an ANN and a J48 decision tree—were run on the 

data set.  

 The features described above were chosen mostly as a reaction to the specific type of 

disordered speech contained in the UA corpus.  Speech dysarthria is a motor speech disorder, 

and there are a number of different causes and symptoms that can appear.  The generality of the 

disorder means that individual speakers can all have speech dysarthria, but each struggle with 

different sounds in different ways.  The variety here means that it would be difficult to classify 

more specific aspects of the data—like level of intelligibility—without more information about 
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the speaker and the particulars of their speech.  Choosing to classify in a broader sense, just 

“Positive” or “Negative” for speech dysarthria, ensures that the classifier has the information 

necessary to find patterns within the data.  This is also why the “raw” locus equation coefficients 

were used as input to the classifiers, rather than some feature like distance in the consonant space 

or position of centroid values. The speakers examined are not guaranteed to show any stable 

pattern beyond “variance from the norm in speech,” and so such abstractions were more likely to 

erase relevant data than they were to increase classifier accuracy. 

 The WEKA multilayer perceptron algorithm has consistently outperformed the Java 

ANN algorithm in classification accuracy, and so it was chosen as the first tool for classifying 

speech as positive or negative for dysarthria.  The network had six input nodes, these being the 

slope and y-intercept values for each voiced stop.  There were four hidden nodes, and two output 

nodes—one representing “Positive” and one for “Negative”.  The network was run for 200 

epochs, with a learning rate of 0.3 and a momentum of 0.2.  The model was created using 10-fold 

cross validation to avoid overfitting on the data set.  Classifier accuracy on the set was 86.486%.  

32 of the 37 instances were correctly classified.  Broken down by class, the “Positive” 

classification had a precision of 0.88 and a recall of 0.917, and the “Negative” classification had 

a precision of 0.833 and a recall of 0.769.   

 The second classifier used was the WEKA J48 decision tree.  The model was created 

using 10-fold cross validation to avoid overfitting.  The first classification tree produced by the 

model is represented in Figure 35.  First the instances are divided by the /d/ locus equation slope.  

Speakers with a /d/ slope of less than 0.396 are classified as having speech dysarthria.  The 

remaining speakers are then separated by the value of the /g/ locus equation y-intercept.  

Speakers with an intercept above 418 Hz are classified as “Negative,” and the rest are classified 
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as positive. This tree has an accuracy of 81%, correctly classifying 30 of 37 instances.  Precision 

for the “Negative” class is 0.815, and recall is 0.917.   The “Positive” class had a precision of 

0.800 and a recall of 0.615.  The accuracy of this tree is promising, but recall for the “Positive” 

class is low, and the model is likely being thrown off by the unusually high /g/ locus equation y-

intercept values for the dialect speakers. To more fully investigate the weight that each 

consonant held for the classification of speakers with dysarthria, the following three decision 

trees were generated using subsets of the initial feature set. 

 

 

 

 The first reduced feature set included only the locus equation coefficients for /d/.  The 

decision tree generated using this set had the same classification accuracy as the previous tree: 

30 of 37 instances correctly classified.  The “Negative” class precision dropped to 0.793, and 

recall rose to 0.958.  The “Positive” class precision rose to 0.875, but the recall dropped to 0.538.  

The decision tree is visualized in Figure 36.  The tree is interesting as it mirrors the patterns 

observed in section 5.1.  Speakers with a /d/ locus equation slope between 0.396 and 0.698 are 

classified as “Negative,” and speakers with slopes falling outside that range are classified as 

“Positive.”  This follows the pattern of speakers with dysarthria having locus equation slopes 

falling either above or below the expected median range.   

Figure 35: Dysarthria Classification Tree 
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The second reduced feature set had the locus equation coefficients for /b/.  The 

classification accuracy drops for this tree.  Only 26 speakers are classified correctly, for an 

accuracy of 70.27%.  The “Negative” class has a precision of 0.724 and a recall of 0.875, and the 

“Positive” class had a precision of 0.625 and a recall of 0.385, a significant decline.  The 

decreased accuracy shows that the /d/ locus equation coefficients were more significantly 

different for speakers with dysarthria than for speakers without it.  The decision tree generated 

on this set is seen in Figure 37 below.  Note that even though accuracy dropped, the tree did 

divide the set by slope rather than y-intercept once again. 

 

 

The final reduced feature set focused on the /g/ locus equation coefficients.  This was the 

only decision tree to divide the speaker set based on the y-intercept values rather than the slope.  

The classification accuracy for this tree went up to 83.78%, the highest seen for a decision tree.  

Figure 36: /d/ Classification Tree 

Figure 37: /b/ Classification Tree 
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The “Negative” class had a precision of 0.875 and a recall of 0.875, and the “Positive” class had 

a precision and recall of 0.769 each.  The results of this tree must be treated with caution, as the 

/g/ coefficients for speakers from the dialect corpus (“Negative” speakers) were unusually 

shallow and likely thrown off by unbalanced vowel sets.  That being said, the /g/ locus equation 

slopes for speakers with dysarthria were unusually high, which in turn pushed the /g/ locus 

equation y-intercept values down.  The decision tree classifies the speakers with lower /g/ y-

intercept values as “Positive,” so the tree does reflect this aspect of the feature set.  This decision 

tree is seen in Figure 38. 

 

 

 

In summary, locus equations provide useful information as features for classification of 

speech with dysarthria and speech without.  The multilayer perceptron classifier had the highest 

classification accuracy at 86%, most likely because the perceptron is capable of capturing softer 

boundaries in the data than a decision tree, which relies on hard cut-off points for divisions.  

However, the multilayer perceptron is a black box algorithm, meaning the decisions made within 

the model are opaque to the user.  The decision tree classifier had a competitive classification 

accuracy at 81%, and the rules built by the model contained interesting information regarding the 

nature of the locus equation coefficients in relation to the speech dysarthria.  The /d/ locus 

equation held the most weight for classification of the speakers.  This may be because the /d/ 

Figure 38: /g/ Classification Tree 
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consonant is easy to move around, leading to over or under coarticulation, and so the slope 

values can deviate from the norm in either direction.  The /g/ locus equation values were the next 

most important.  The /g/ locus equation slope was significantly higher than the norm for most 

speakers with dysarthria, which also pushed the /g/ locus equation y-intercept values to be 

uniquely low.  This heavy coarticulation of the /g/ sound can be attributed to the difficulty of 

producing “g”.  Infants produce “b” and “d” consonants before “g” consonants because they are 

easier (Ferguson and Farwell, 1975).  A speaker with dysarthria is likely to also have a hard time 

moving the tongue fully back into position for a true /g/, and so the sound is heavily 

coarticulated.  The /b/ locus equation seemed to hold the least amount of weight, although many 

of the speakers with dysarthria did have /b/ locus equations with noticeable smaller slopes than 

expected.  While the classification results for speakers with and without dysarthria were not 

perfect, they were promising.  Locus equations alone are not sufficient for classification of 

dysarthria, and it is doubtful they would be sufficient for other speech disorders either. They do, 

however, contain useful and easily visible information about the speech.  Coarticulation is an 

important aspect of speech, and its continuous nature makes it hard to capture.  Locus equations 

are useful features to be included along with other characteristics of speech such as speed and 

vowel shape. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 At the beginning of this work, six research questions were posed as topics that would be 

investigated over the course of the study.  The six were (1) Can locus equations be automatically 

generated from more conversational speech?  Does this affect the integrity of the locus equation?  

(2) Are the generated locus equations accurate enough for recovery of place of articulation?  Can 

machine learning methods be applied to recover place of articulation across more than one 

manner class? (3) Are the locus equation coefficients valuable features for classification of 

dialect?  (4) Do locus equations still form for speakers with dysarthria? (5) Are the locus 

equation coefficients valuable features for recognition of speech dysarthria? (6) Do locus 

equations contain enough information to serve as valuable features in speech recognition and 

classification? The last question can be seen as the overarching theme of study for this thesis—

the usefulness of locus equations in the domain of speech recognition and classification.   

 The first question was an expansion on previous work done with locus equations.  The 

studies done previously all used very carefully crafted token recordings as the basis for locus 

equations.  If locus equations were to be used as a feature in most speech recognition and 

classification problems, however, they would need to be present in more than just careful 

laboratory speech.  The speech in the NSP, although still collected in the laboratory, was not 

produced with locus equations in mind.  Using tokens from multisyllabic words and sentences 

along with the basic CVC tokens provided insight into the generality of locus equations.  The 

answer to question one is both yes and no.  At this point in time, locus equations cannot be fully 
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automatically generated from conversational speech. The issue here is with speech alignment—

although locus equations could be generated from the sentences, formant values had to be drawn 

from exactly the right place for the equations to be valid.  For this to be fully automated, a 

speech alignment system would need to be near perfect.  The second issue with automatic 

alignment for this study was outliers caused by errors in Praat measurement of formants.  For 

locus equations with a larger number of tokens, outliers were easily found and discarded.  For 

equations with smaller numbers of tokens, they were a problem.  The solution to this problem 

seems to be one of three things.  The first solution is to only generate equations once a large 

number of transitions have been taken, at least upwards of 30 or 40.  From here outliers can be 

detected and discarded.  The second solution is to wait for an increase in accuracy of speech 

tools like Praat.  The third solution is to develop a system which automatically detects potential 

outliers and re-measures them with updated settings.   

 The second question was a continuation of the first, and also an expansion on previous 

work done with locus equations.  Using the semi-automatically generated locus equations 

coefficients to identify the place of articulation was a good way to double check the validity of 

the equations.  Previous studies have proven that locus equations coefficients should indicate 

place of articulation, so if the automatic equations did not it would count as proof against their 

validity (Fowler, 1994; Krull 1988; Sussman et al., 1991).  The expansion is a continuation of the 

debate that took place between Sussman and Fowler in the 1990s (Fowler, 1994; Sussman et al., 

1991; Sussman and Shore, 1996).  Fowler created locus equations for consonants other than 

voiced stops, and claimed that the coefficients began to overlap with one another, making locus 

equations insufficient for recovery of place of articulation.  The experiment described in 4.2 does 

not address this argument, as manner of articulation is included as a feature in the feature set.  
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The experiment does show that consonants across multiple manner classes can be classified by 

place of articulation with fairly high accuracy if manner of articulation is given as a feature.   

 The third question was the first exploration into locus equations as features indicative of 

something else—in this case, speaker dialect.  The results in this experiment were resoundingly 

negative.  Classifier accuracy stayed below 10% across multiple different machine learning 

methods, and an investigation into the consonant space of the equations showed that there was no 

significant difference between the dialects.  This result still provided valuable information, 

namely that locus equations are robust across a variety of speech, meaning that if they do serve 

as valuable features elsewhere the user can be confident that the locus equations are not being 

affected by small individual speaker influences.  Although the locus equations could not classify 

the dialects included in the NSP corpus, they did vary in response to a few of the speakers with 

heavier accents.  A study using locus equations for classification of more significantly different 

speech, like foreign accents, would be an interesting continuation. It would also be useful to 

conduct a study of locus equations across dialects with more caution in regard to the vowels.  

Speakers from different dialects produce different vowels when speaking—for instance, some 

dialects tend to front back vowels.  This could have had an effect on the locus equations.  

Conducting an experiment where all of the vowels were carefully held steady across dialects 

could either improve classification using locus equations, or erase the small differences that were 

present. 

 With the fourth question, the research moves away from dialects and into speech 

disorders.  The UA corpus of speakers with dysarthria contained a lot of variety, with speaker 

intelligibility ranging from 4% to 93%.  Only voiced stops were examined using this corpus.  

The locus equations were still generated using the automated Praat script, but the automatic 
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outlier detection was not used.  This was both because there were a smaller number of tokens, 

and because speakers with dysarthria were expected to create locus equations with a higher 

number of outliers in them.  Instead, outliers were hand checked and fixed.  Although the 

regression lines tended to have weaker correlations for speakers with dysarthria, the F2vowel, 

F2onset mappings still created valid locus equations.  The validity of these equations was checked 

in the same way the dialect locus equations were checked; by comparison with previous 

experiment results, and by application of a classification algorithm for recovery of place of 

articulation.   

 Question five was addressed in section 5.3, where locus equation coefficients were used 

as features for a classifier that labelled speakers either “positive” or “negative” for speech 

dysarthria.  Unlike the classification results with the dialect data, the classifier systems 

developed here were up to 86% accurate.  Additionally, the way the decision tree classifier used 

the locus equations provided information about the speech itself.  Although the classifier was not 

perfect, this experiment provided support for locus equations as valuable features for speech 

classification and identification systems.     

 Overall, locus equations seem like a promising feature for inclusion in speech recognition 

and classification systems.  The issue of obtaining the alignment points at which to draw F2 

values for the locus equations poses the biggest threat to locus equations as a useful feature. This 

is not an insurmountable issue—it is likely speech alignment programs will continue to improve 

rapidly.  In the meantime, hand-alignment of data, though work intensive, is a valid alternative 

for preparing the data.  Otherwise, locus equations have proven to be present even in more 

continuous, less-controlled speech.  Classifier systems have been proven to handle semi-

automatically generated locus equations well.  Locus equations are useful for recovery of place 
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of articulation of many consonants, especially if manner is included as a feature.  Finally, locus 

equations are robust to small variations in speech, but they do reflect coarticulation and the 

consonant space of a person.   

 There are many projects that could be pursued as future work into locus equations as 

features.  One such project would be the development of a program to automatically recognize 

and resample outliers in the locus equation plots to improve accuracy and automation.  Another 

project would be to create locus equations for non-native English speakers with heavy foreign 

accents.  Past work has been done on the use of locus equations to describe characteristics of a 

language (Everett, 2008).  It would be interesting to see how locus equations help to represent 

foreign accents.  A third project would be to expand the study of locus equations as feature sets 

for classification of speech disorders. There are a few speech disorders, such as fronting, that 

deal almost entirely with positioning of articulators for consonants in the mouth.  Locus 

equations might be especially relevant for disorders such as these.  Finally, it would be 

interesting to see if locus equations can be worked into speech models, to help as a predictor of 

what speech should sound like in speech recognition technology. 
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APPENDIX B 

NSP TOKENS 

 

Number Word Number Word Number Sentence Number Sentence

0 bean 43  luck 0 A bicycle has two wheels. 1 absentee

1  bite 44  lull 1 A round hole won't take a square peg. 7 alligator

2  boat 45  lung 2 A spoiled child is a brat. 8 amphibian

3  boil 46  main 3 Ann works in the bank as a clerk. 9 anonymous

4  bull 47  math 4 Banks keep their money in a vault. 15 bazooka

5  cab 48  meal 5 Bob was cut by the jacknife's blade. 16 bikini

6  calm 49  mile 7 Cut the meat into small chunks. 23 clarinet

7  can 50  mill 8 Eve was made from Adam's rib. 26 coronation

8  caught 51  mob 9 Follow this road around the bend. 29 deactivate

9  coal 52  pal 10 For dessert he had apple pie. 33 disapproval

10  code 53  pen 11 Get the bread and cut me a slice. 37 evaporate

11  coin 54  pin 13 He rode off in a cloud of dust. 40 feminism

12  con 55  poke 16 Her hair was tied with a blue bow. 41 forecast

13  cool 56  pool 18 I ate a piece of chocolate fudge. 42 functionary

14  cot 57  pull 21 I've got a cold and a sore throat. 43 gallop

15  cough 58  rice 22 Keep your broken arm in a sling. 46 guitar

16  death 59  rip 23 Kill the bugs with this spray. 51 influenza

17  dig 60  sail 24 Maple syrup is made from sap. 55 kazoo

18  dime 61  sell 25 My jaw aches when I chew gum. 58 macaroni

19  dock 62  sour 30 Paul took a bath in the tub. 64 mispronounce

20  doll 63  south 31 Paul was arrested by the cops. 65 museum

21  doubt 64  tape 32 Peter dropped in for a brief chat. 66 nectarine

22  dull 65  tool 33 Playing checkers can be fun. 77 peninsula

23  fade 66  towel 34 Please wipe your feet on the mat. 111 victorious

24  fail 67  town 36 Ruth had a necklace of glass beads.

25  feed 68  tube 37 Ruth poured herself a cup of tea.

26  fell 69  voice 42 The bird of peace is the dove.

27  fire 70  void 45 The bride wore a white gown.

28  fool 71  walk 51 The chicken pecked corn with its beak.

29  foul 72  wall 54 The cow gave birth to a calf.

30  full 73  wet 56 The dealer shuffled the cards.

31  gap 74  wool 62 The gambler lost the bet.

32  good 75  wrong 69 The lion gave an angry roar.

33  guide 71 The nurse gave him first aid.

34  head 73 The pond was full of croaking frogs.

35  heal 74 The poor man was deeply in debt.

36  hill 79 The stale bread was covered with mold.

37  home 80 The story had a clever plot.

38  keep 81 The super highway has six lanes.

39  lit 82 The swimmer dove into the pool.

40  loud 84 The thread was wound on a spool.

41  love 88 They tracked the lion to his den.

42  loyal 91 Tighten the belt by a notch.

HP Sentences Multisyllable TokensCVC Tokens
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APPENDIX C 

DIALECT LOCUS EQUATIONS 

Locus equations for speaker at0.  F2 Vowel (Hz) is graphed along the x-axis, and F2 Onset (Hz) 

is graphed along the y-axis. 
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APPENDIX D 

UA TOKENS 
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APPENDIX E 

DYSARTHRIA LOCUS EQUATIONS 

Locus equations for speaker F02.  F2 Vowel (Hz) is graphed along the x-axis, and F2 Onset (Hz) 

is graphed along the y-axis. 

 

 

 


