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Air temperatures below freezing can damage plants. Irrigation is the most widely 

practiced frost protection measure. However, growers need information about when to start 

irrigating, as the process has to be commenced prior to the temperature dropping below freezing. 

The goal of this study was to develop Artificial Neural Networks (ANNs) to predict if frost 

would occur during the near future. A classification approach to develop the ANNs was used. 

This would require a method to predict frosts, but a model for frost prediction would typically 

require access to local weather. Many locations that could potentially benefit from frost 

prediction do not have historical weather data, or even a local weather station. An additional goal 

was to develop ANNs to predict frost for any given location in the state of Georgia. ANNs were 

developed using weather data from multiple locations and were evaluated for other locations. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

Weather is one of the most important factors in agricultural production, especially 

in rain-fed agricultural production systems. In such systems, up to 90% of the variability 

in the yield can be attributed to weather differences (Hoogenboom, 2000c).  Fruit crops 

such as blueberries and peaches are particularly susceptible to low temperatures.  

Temperatures below freezing damage the plants and temperatures near but above freezing 

might slow down plant growth and development. The severity of damage is determined 

by the duration of low temperature, the temperature itself and factors such as the type of 

plant, variety, stage of development, amount of leaf cover and wind speed (Tyson et al., 

2002).  

Farmers can provide some protection against frost by using wind machines or 

through irrigation. Wind machines induce air movement, through heating the air by using 

orchard heaters. Irrigation works by forming a layer of ice that keeps the temperature of 

the flower near freezing, preventing it from dropping to lower temperatures. Irrigation is 

the most widely practiced frost protection measure for crops like peaches and blueberries.  

Farmers need information about when to start irrigating, as the process has to be 

commenced prior to the temperature dropping below freezing. In addition to the expected 

low temperatures, farmers also need information about local wind speed, dew point or 

vapor pressure deficit to determine the point to initiate the frost protection measures 

(Hoogenboom, 2002). Thus there is a need for accurate local weather information and 

short-term weather forecasts.  
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Traditionally weather forecasts have been provided by the National Weather 

Service (NWS). However, changes in the USA laws do not allow NWS to provides data 

for agricultural applications. In addition, the NWS collects data from urban centers and at 

airports, thus the data is not useful for rural areas where farming is mostly done. In 

response to this need, the University of Georgia initiated the Georgia Automated 

Environmental Monitoring Network (AEMN) (Hoogenboom, 1996, 2000a, 2000b, 

Hoogenboom et al., 2000). This is a network of over 57 automated weather stations that 

are mainly located in the remote areas of Georgia, USA. These weather stations measure 

air temperature, relative humidity, soil temperature at depths of 2 cm, 5 cm and 10 cm, 

wind speed, wind direction, solar radiation, vapor pressure deficit and soil moisture every 

second. The averages, or totals depending on the variable, are calculated for every fifteen 

minutes and stored in the data logger. In addition, daily summaries are also calculated at 

midnight. The data are downloaded to a central computer located in Griffin. The AEMN 

program has a website (www.Georgiaweather.net) that disseminates this information as 

well as simple calculators that can dynamically calculate degree days, chilling hours, a 

water balance for management of irrigation and other data summaries (Georgiev and 

Hoogenboom, 1998, 1999, Hoogenboom et al. 1998). The web page has proven to be 

very popular; however it does not have a forecasting component.   

A study was conducted by Jain et al. (2003) to develop a model for forecasting 

temperature.  There have been projects that have tried to forecast the daily minimum 

temperature (Sutherland (1980), Dmiri et al., (2002), Li et al., (2004)). Forecasting 

temperature is relevant to protecting crops from cold damage since they can be used in 

predicting frosts, which damage the crops, and near frosts, which slow plant growth and 
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development. However, these models are general purpose temperature forecasting models 

which are not dedicated to predicting frosts and near frosts. 

ANNs have been developed to predict frost or freeze formation.  Robinson and 

Mort (1996) developed an ANN-based system to predict overnight frost formation in 

Sicily, Italy. Their output classified the input as weather conditions that would or would 

not lead to a frost in the next 24 hours. They found that the best ANN predicted two false 

alarms and one failure over the course of a 50-day model evaluation set. This study was 

limited by the fact that it only classified a given 24 hour period as a non-freezing or 

freezing period. It is desirable to also have a model that can predict near frosts.  

Chill is defined to be the temperature below 7oC, (Okie et al., 1998) which 

indicates that low temperatures above freezing are significant. In addition, the 

temperature of the canopy at the surface can be slightly below the air temperature. This 

would mean that predicting air temperatures slightly above zero could also be appropriate 

in predicting frosts. 

Jain et al. (2003) developed ANN models to forecast air temperature in hourly 

increments from 1 to 12 hours for Alma, Fort Valley and Blairsville in Georgia, USA. 

However, this study was limited by the fact that the model was not specifically developed 

to predict frosts. So, even though the model could give a good overall performance, a 

dedicated model might be able to perform better on the near freezing and freeing 

temperatures.  

The goal of this study was to develop artificial neural network (ANN) models 

would predict frosts and near frosts. The specific objectives included 1) To develop 

ANNs that can predict short-term frosts and near frosts for a given location when trained 
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with historical weather data from that same location and 2) To develop ANNs that can 

predict short term frosts and near frosts for a location that does not have sufficient 

historical weather data. 

In chapter 1, e.g., this chapter, the problem is introduced and the overall goal of 

the research is presented along with some background information and literature review. 

This chapter also provides information about the organization of the thesis and contents 

of chapter two, three and four. 

Chapter 2 describes the objectives, methodology, results and preliminary 

conclusions dealing with development of location specific models (i.e. objective 1). The 

discussion would be restricted to the location specific models of Fort Valley, Alma and 

Blairsville.  

In chapter 3 describes the development of a general model for temperature 

prediction (i.e. objective 2). A general model is developed based on data from many 

locations and which can then be used for predicting temperature at any location.  

In chapter 4 the overall research results are summarized, conclusions are 

presented and recommendations are provided for future research. 
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CHAPTER 2 

FROST PREDICTION USING ARTIFICIAL NEURAL NETWORKS: A 

CLASSIFICATION APPROACH1 

 
 
 
 
 

                                                 
1 Ramyaa, R.W. McClendon and G. Hoogemboom. To Be Submitted to ASAE. 
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ABSTRACT 
Air temperatures below freezing can permanently damage and kill plants during 

certain growth stages, while temperatures near but above freezing can slow down plant 

growth and development. Irrigation is the most widely practiced frost protection measure 

for many crops, including peaches and blueberries. However, growers need information 

about when to start irrigating, as the process has to be commenced prior to the 

temperature dropping below freezing. Frost is defined as air temperature falling below 

0oC. The goal of this study was to develop Artificial Neural Networks (ANNs) to predict 

if frost would occur during the next twelve hours. A classification approach to develop 

the ANNs was used, i.e. if the prediction period included a frost event, then the period 

was classified as a frost. ANN models were developed for four, eight, and twelve-hour 

periods. Meteorological data including air temperature, relative humidity, wind speed, 

rainfall and solar radiation were obtained from the Georgia Automated Environmental 

Monitoring Network (AEMN) for three locations in Georgia, including Fort Valley, 

Blairsville, and Alma. Model development included data from 1993 through 2000 and 

model evaluation included data from 2001 and 2002. The models were first evaluated 

using the data from the locations for which they were trained. In addition, the models 

developed for a specific location were also evaluated using data from the other two 

locations. Various performance measures were investigated and a non-dimensional error 

measure was developed. The models developed using data from locations with more frost 

events proved to be more accurate. Blairsville averaged 40 frost events per year, and Fort 

Valley and Alma averaged 17 and 10 frost events, respectively. The model developed for 

Blairsville had an error measure of 0.089 averaged over evaluations for Blairsville, Fort 

Valley and Alma. Using the same evaluation data, the models developed for Fort Valley 

and for Alma data both averaged 0.104. Future research will focus on developing a 

general ANN model based on data from multiple locations.  
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INTRODUCTION 

One of the most important factors affecting agricultural production is weather 

(Hoogenboom, 2000c).  Fruit crops such as blueberries and peaches are particularly 

susceptible to damage from low temperatures at certain growth stages. Frost occurs when 

air temperature drops below 0oC and these temperatures may damage plants. However, 

temperatures just above 0oC can also slow plant growth and development. Growers can 

provide some protection against frost by using wind machines or irrigation (Powell and 

Himelrick, 2003). Irrigation is the most popular method of frost protection for 

horticultural crops such as blueberries and peaches (Tyson et al., 2002). Irrigation forms a 

layer of ice that keeps the temperature of the flower just above the freezing temperature, 

preventing it from dropping to lower temperatures. However, irrigation has to be started 

prior to the temperature dropping below 0oC. Thus, there is a need for short-term weather 

predictions for use by growers, especially during the period that the plants are in bloom 

or susceptible to freezing temperatures in general. 

Traditionally, weather forecasts have been provided by the National Weather 

Service (NWS). However, the NWS mainly collects data from urban centers and at 

airports which are not useful for the regions where agriculture is the dominant sector. In 

response to this need, the University of Georgia developed the Georgia Automated 

Environmental Monitoring Network (AEMN) (Hoogenboom, 1996, 2000a, 2000b, 

Hoogenboom et al., 2000). This is a network of 57 automated weather stations located in 

remote areas of the state of Georgia, USA. These weather stations measure air 

temperature, relative humidity, soil temperature at depths of 2 cm, 5 cm and 10 cm, wind 

speed, wind direction, solar radiation, vapor pressure deficit and soil moisture at one-
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second intervals. The website of the AEMN (www.Georgiaweather.net) disseminates 

near real-time weather information (Georgiev and Hoogenboom, 1998, 1999, 

Hoogenboom et al. 1998). However, it currently does not have the capability to provide a 

local temperature prediction based on real-time local weather data. 

Artificial Neural  Networks 

Artificial Neural Networks (ANNs) are artificial intelligence-based computational 

procedures for mapping input patterns to outputs consisting of real-valued or discrete-

valued functions. Traditional statistical learning techniques can, in general, only learn 

combinations of linear functions, whereas neural networks can learn non-linear functions 

of arbitrary complexity. For problems where the mapping of inputs into outputs is 

complex or obscure, ANNs are among the most efficient of learning techniques known 

(Smith, 1993).  

ANNs mimic the behavior of neurons in the brain. Neurons are primarily 

computational units which sum inputs, present the net input to an activation function and 

output the result. The neurons are connected by weighted links through which the outputs 

of neurons reach other neurons. ANNs work by capturing the complex relationships 

between inputs and outputs through the weights of the links. Learning is a process of 

determining the optimal values of the weight for each link. The error between the ANN 

output and the target output is used to adjust the weights of the connections by using the 

method of gradient descent. 

Model development is conducted using training and testing data sets and a 

separate model evaluation data set is used to determine the accuracy of the trained 

network. The data used for updating weights in the standard back propagation 
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architecture are called the training data. The process of pattern presentation and weight 

update is repeated until the error for the testing data, which is distinct from the training 

set, reaches a minimum. For the testing set the data are applied only in the feed forward 

mode and the weights are not updated.  

ANNs have been used in several studies for estimating meteorological variables. 

Elizondo et al. (1994) developed an ANN for estimating daily solar radiation. Felker and 

Han (1997) used a radial basis function ANN to estimate daily soil water evaporation, 

while Bruton et al. (2000) developed various ANNs to estimate daily pan evaporation. 

Mehuys et al. (1997) created ANNs to simulate daily fluctuations of soil temperature at 

various depths. 

ANNs have only been used in a few studies for frost prediction. The traditional 

method of frost prediction is to develop statistical or analytical models to forecast the 

minimum temperature, which is then used to predict frost. For instance, Figuerola and 

Mazzeo (1997) developed an analytical model for prediction of nocturnal and dawn 

surface temperatures in order to predict frost. Sutherland (1980) simulated air and soil 

temperatures by means of numerical solutions. Dmiri et al. (2002) developed a statistical 

model for predicting the maximum and minimum temperatures at Manali, India, while 

Raible et al. (1999) developed a statistical model for short-term weather forecasting. 

There have been many empirical and theoretical formulae developed for predicting 

minimum temperatures, as reviewed by Bagdonas et al. (1978). However, the state-of-art 

of predicting minimum temperatures and frost is not sufficiently developed to meet the 

present needs. 
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As mentioned previously, ANNs are not limited in complexity, which makes them 

very powerful, unlike statistical methods which are typically linear. However, powerful 

machine learning methods are prone to overfitting. In ANNs overfitting can be prevented 

by limiting the training time and number of hidden nodes. Thus, it is possible to develop 

a system which has just the right complexity to capture the patterns in the weather that is 

needed to predict frost. Robinson and Mort (1996) developed an ANN-based system to 

predict overnight frost formation in Sicily, Italy. The input variables were the previous 

day’s minimum and maximum temperatures, cloud cover, maximum wind speed and 

direction, humidity, wind speed and wind direction at 1900 hrs. Their output classified 

the input as weather conditions that would lead to a frost (defined as any temperature 

below 1oC) during the next 24 hours. They reported that the best ANN predicted two 

false alarms and one failure over the course of a 50-day model evaluation set. Jain et al. 

(2003) developed an ANN model based on Ward networks to predict air temperature in 

hourly increments from one to twelve hours for Alma, Fort Valley and Blairsville, 

Georgia. They experimented with the importance of different inputs as well as various 

neural network architectures and found that temperature, relative humidity, solar 

radiation, and wind speed were important in generating temperature forecasts. The mean 

absolute error (MAE) for predicting air temperature one hour and twelve hours ahead was 

0.6oC and 2.4oC for Fort Valley, 0.7oC and 3.0oC for Blairsville, and 0.6oC and 2.6oC for 

Alma, Georgia.  

Classifications Models 

 To make a decision regarding the initiation of irrigation, the information that is 

needed is whether or not a frost will occur in the near future, i.e. a classification into frost 
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and no frost. However, almost all the existing systems predict the future temperature, 

which is a continuous valued function. The predicted temperatures can then be 

interpreted to classify conditions as frost or no frost. An alternative approach would be to 

directly classify a subsequent period as having frost conditions or not. Such a model 

would aim at classification, i.e. learning a discrete valued target function. A classification 

model would be dedicated to learning the weather patterns leading to frost, as opposed to 

a general temperature prediction model, which would learn the weather patterns leading 

to temperatures of a wide range.   

Furthermore, it would be desirable to predict near frosts as well.  Chill has been 

defined as temperatures between 0 oC and 7oC (Okie et al., 1998), which indicates that 

low temperatures above freezing are important. In addition, the temperature of the surface 

of the canopy can be slightly below the air temperature. It is well understood that canopy 

surface temperature can be lower than ambient temperature due to radiative heat losses 

(Monteith, 1973; Nobel, 1991) Therefore, a model that could use the current weather to 

classify subsequent periods as frost, near frost and no frost, would be useful. 

The overall goal of this research was to develop a Decision Support System 

(DSS) for classifying the subsequent period into frost, near frost or no frost, using ANNs. 

The specific objectives of this study were to determine (1) the preferred set of inputs and 

the corresponding architecture for an ANN that can classify frost predictions, (2) how 

accurately the ANNs developed for a specific location can forecast frosts for that 

location, and (3) if models developed with data for multiple locations are more accurate 

than location specific models.  
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MATERIALS AND METHODS 

Weather data: 

The weather data for this study were obtained from the Georgia AEMN for the 

years 1993 through 2003. The data represent selected fruit producing areas of Georgia, 

including Alma, Blairsville and Fort Valley. Only data from the months of January 

through April were used because during this period the air temperature varies between 

freezing and non-freezing and the crops are susceptible to damage from frost conditions. 

The weather data from each location were partitioned by year into model 

development and model evaluation sets. Data prior to 2001 were used for model 

development and data from the years 2001 and 2002 were used for evaluation. The model 

development set was randomly subdivided into a training set with 60% of the data 

patterns and the remaining patterns were placed into a testing set. A final evaluation of 

the models was performed with data from 2003. 

ANN model observations or patterns consist of associated inputs and outputs. The 

inputs consisted of weather variables, day of year and the time of day. In the preliminary 

study, the output was a classification into frost or no frost, depending on the minimum 

temperature (Tmin) during the specified prediction period. Frost was defined as the 

temperature passing through 0oC from positive to negative.  The networks predicted if 

frost occurred during, the subsequent period. Thus, a single observed frost event will 

generate several patterns of frost for developing the ANN models. The models were 

developed for the subsequent four, eight and twelve hour periods. 

The question of whether or not a frost will occur in the near future is meaningless 

if frost conditions are currently known to exist. Therefore, no data patterns were 
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developed for conditions when the current air temperature was below 0oC. Also the 

models were dedicated to frost prediction, which is needed only when there is a 

reasonable chance that a frost may occur during the next twelve hours. It was observed 

that the temperature did not fall from above 20oC to 0oC within twelve hours over a 

period of seven years based on the data from the locations used in this study. Therefore, 

the models were developed for conditions when current temperatures were above 0oC and 

below 20oC.  

Preliminary analysis (two-state classification model):  
 

A preliminary study using a two-state classification model to predict  frost or no 

frost was conducted to determine the preferred ANN architecture, importance of rainfall 

as an input, preferred representation of change in weather variables as inputs, and the 

preferred number of output nodes. NeuroShell™ software (Ward System Group Inc., 

Frederic, MD, 1993) was used to develop the ANNs in this study. The various types of 

ANNs that were evaluated included probabilistic neural networks (PNNs), Ward ANNs 

and standard back propagation (BP).  

In the BP ANN architecture, the nodes of the input layer receive the inputs and 

pass the results of their computations to the nodes of the output layer through the hidden 

layer(s). The BP ANNs learn by adjusting their weights to minimize the sum of squares 

of errors in their prediction of the target or known output (Smith, 1993). A Ward ANN is 

a modification of the BP ANN with three slabs of hidden nodes in a single hidden layer 

that have different activation functions (Ward System Group Inc., Frederic, MD, 1993). 

The input and output layers may also have different activation functions. PNNs are 

traditionally used for classification problems. They include input, pattern and summation 
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units as well as an output unit. Each pattern unit directly corresponds to a training pattern. 

After training, each of the pattern units computes a distance function, such as dot product 

or Euclidean distance, between itself and the given pattern to be classified. The output for 

an evaluation data set is the probability that a pattern is similar to a pattern in the training 

data set (Andries, 2002). 

Jain et al. (2003) studied the importance of the weather variables such as 

temperature, relative humidity, wind speed, solar radiation, and rainfall as inputs for 

estimating temperature. Other inputs included time of day, converted into a cyclic 

variable and change in the values of the weather variables. They found that all the inputs 

that were considered, except for rainfall, were useful in forecasting air temperature. We 

conducted experiments to determine if rainfall was a critical input in the classification 

approach. 

Experiments were also conducted to determine the benefit of including the change 

in the selected input variables during previous periods as an input. The study also 

considered the best method for representing the change in the values of the weather 

variables (∆) using two approaches: a) difference between the current value and the value 

n hours prior to the current observation b) the difference between hourly values, i.e., 

between n and n-1 hours earlier. 

Experiments were conducted to determine the preferred approach for representing 

the outputs. The two approaches considered included: a) one output node with a 

continuous output classified as frost and no frost using a threshold value of 0.5 or b) two 

output nodes with one for frost and one for no frost and a winner take all interpretation of 
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output. Networks were trained with both representations and their accuracy was 

compared with an evaluation data set to determine the preferred representation. 

Three-State Classification Models: 

The three-state classification problem included an additional classification 

category of near frost, along with the frost and no frost from the two-state classification 

problem. A threshold temperature of 3oC was arbitrarily selected to create this 

classification of near frost, while the frost classification was unchanged. The no frost 

classification was now defined for periods with Tmin > 3oC. 

In creating the data sets for developing the models for estimating a continuous 

target function using machine learning techniques, it is important to have representative 

data. A representative sample is one in which the ratios of patterns from various classes 

are the same as that of the population from which the sample is selected. A stratified 

sample is one in which the number of instances of various classes are equal, although 

they are not equal in the original population from which the sample is drawn. Usually, the 

sample data used in model development are representative of the distribution in the 

population. However, in classification problems where one class occurs much more 

frequently than another class, stratification of sample data can yield improved results 

(Smith, 1993). In the population of this study, the observed patterns for frost and near 

frost have a much lower probability of occurrence than no frost. The frost and the near 

frost patterns were duplicated in the model development data set to obtain a stratified data 

set, e.g., containing approximately an equal number of each of the three classes. 

Experiments were also conducted in which noise up to 5% was sampled from a normal 

distribution and added to the duplicated patterns. 
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Weather data from Blairsville, Alma and Fort Valley were used to develop 

location specific models, using data from a single location. These models were evaluated 

with the model evaluation data from the same location for which they were developed. In 

addition, these ANN models were evaluated with data from the other two locations to 

determine how accurately the models performed for other locations. Subsequently, 

models were developed with data from different combinations of these three locations. 

The following combinations of these three locations were used to develop various multi-

location models: (a) Fort Valley and Alma, (b) Fort Valley and Blairsville, (c) Blairsville 

and Alma, and (d)Fort Valley, Blairsville and Alma,. These models were then evaluated 

for each of the three individual locations, including Blairsville, Fort Valley and Alma. To 

summarize, we developed a total of seven models, three site-specific and four 

combinations of various locations. 

Performance measure 

It is important to establish a performance measure that determines the accuracy of 

a classification model, but it is often highly problem specific. For the two-state 

classification models a simple performance measure was used which consisted of 

selecting the model which had the lowest number of false negatives. A false negative is a 

frost predicted as no frost. If two networks had the same number of false negatives, then, 

the one with the lower number of false positives was selected. The number of frost events 

missed (or predicted) is relative to the number of frost events present, which depends on 

the location. In order to standardize this measure, the percentage or ratio of the number of 

patterns classified by the network to the observed number is used. Thus, the results are 

presented in the raw number format (Percentage %), where the raw number is the number 
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of frost events missed (or predicted). The statement false negatives are “x (y%)” means 

there were x patterns that were actually frosts, but not predicted as frosts by the network 

and y is the percentage: 

100
___

×=
frostsofnumbertotal

xy .      (1) 

 We also evaluated each model using the Chi squared test, odds skill score (OSS) 

and Gilbert skill score (GSS). Chi squared test, a traditional statistical test, is calculated 

as the sum (over all the classes’ totals) of squares of the difference between the observed 

number of events and expected number of events, and divided by the expected number of 

events.  Although the Chi squared test is standard, it is not very common for use in 

weather forecasting.  Odds Skill Score uses Hit ratio (H), which is the relative number of 

times an event (frost) was predicted when it actually occurred, and False alarm ratio (F), 

which is the relative number of times an event (frost) was predicted when it did not 

occur.  The Odds Skill Score is calculated as follows: 

)2(
)(
HFFH

FHOSS
−+
−

=         (2) 

Gilbert Skill Score uses bias (B), which is the ratio of number of times an event (frost) is 

predicted to the number of times the event (frost) occurred, and is calculated as follows: 

)1( HB
HGSS
−+

=          (3) 

The problem studied needed a measure that considered the false positives, but would give 

them less importance than the false negatives. The Chi squared test and OSS skill 

measures give equal importance to frost and no frost predictions whereas GSS ignores the 

false positives.  
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For this study, the three categories that were selected for model development were 

ordinal. The near frost category had a Tmin which was lower than that of the no frost 

category. Similarly, the frost category contained a Tmin which was lower than that of the 

near frost category. Thus, no frost was more closely related to near frost than to frost. 

Therefore, frost conditions classified as near frost should be regarded as less of an error 

than frost conditions classified as no frost. Another consideration was that frost and near 

frost were rare compared to the number of no frost events. 

Utility measures estimate the performance of a model from a particular user’s 

perspective in which every misclassification is given the different importance. The 

standard statistical procedure is to estimate the cost incurred by the misclassifications. A 

model’s performance is then assumed to be the cost-weighted sum of its 

misclassifications. However, in the frost prediction problem, the severity of damage due 

to frost depends on factors such as plant type and the stage of development of the crops. 

It is, therefore, rather difficult to estimate the cost incurred by missing a frost event and it 

can also be highly variable. Hence, we used weighting factors instead of cost as a 

performance measure. For the three-state classification system the misclassifications were 

arranged in the relative order of the associated damage from most damaging to least 

damaging: 

 1) frost predicted as no frost, 

  2) near frost predicted as no frost,  

 3) frost predicted as near frost,  

 4) no frost predicted as near frost,  

 5) near frost predicted as frost and  
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 6) no frost predicted as frost.  

 Different weight sets were considered ranging from 1 – 10 to 1 – 10,000, for least 

damaging weight to most damaging weight. This measure also included a normalizing 

factor to balance the difference in the probability of occurrence of the different events, 

and a scaling factor to limit the measure to a range between 0 and 1. 

These error measures were applied to these studies to measure the performance of 

location specific models and models developed using data from multiple locations. For 

each error measure, the ANN models were ordered based on their error measures for each 

evaluation location. We found that the range of weights had no effect on the ordering of 

the ANN models. Therefore, the maximum weight of 500 was arbitrarily selected to be 

representative of the various weight sets. 

 

RESULTS AND DISCUSSION 

Classification ANN models were developed to predict frosts occurring during the 

subsequent four, eight and twelve hour periods. All the experiments were conducted 

using data from the three locations. However, methodological choices were made using 

Fort Valley, as it is an example of “typical” or moderate weather in the state of Georgia. 

All the results reported are for the evaluation data sets. In particular, the twelve-hour 

period network for the Fort Valley weather data was used in the ANN parameter selection 

process, as it was the longest time period considered. The results for this case were found 

to be consistent with the results for the other locations and time periods.  Hence, the 

results of the preliminary analysis are presented for the model developed using Fort 

Valley data for twelve hours.  
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Preliminary Analysis: 
 

PNNs, Ward networks, and BP ANNs were considered to determine the best 

ANN network structure for a twelve-hour prediction for Fort Valley. The false negative 

and false positive counts for the three networks considered were 156 and 55 for PNN, 

160 and 54 for Ward, and 155 and 51 for BP ANNs. Based on this preliminary study it 

was concluded that the BP ANNs produced slightly better results, and the BP ANN 

network structure was used in all subsequent model development experiments. The 

structure of the BP ANN is shown in Figure 2.1 

To determine the effect of including rainfall as an input, networks were trained 

with and without rainfall as input for Fort Valley data for a twelve-hour prediction 

period. The false negative and false positive counts for the network with rainfall were 

153 and 52, whereas for the network without rainfall were 155 and 51. Rainfall was 

therefore determined to be a useful input for predicting frosts using the classification 

approach. 

Experiments were conducted to determine the benefit of including the change in 

input variables as an additional input. The network is provided with the value of the 

chosen weather variables at the time of decision and the hourly values hourly, up to six 

hours prior to the time of decision. These weather variables change over time and this 

change (∆) may be a useful input. The difference between the value at the time of 

decision, t0, and the values i hours prior to the time of decision, ti, were represented in 

several ways and presented to the network as inputs. Networks trained with the change 

corresponding to time i represented as t0 – ti  had a false negative count of 153 and a false 

positive count of 52. When the change corresponding to time i calculated as ti – ti-1, the 
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network had a false negative count of 157 and a false positive count of 50. It can be seen 

that the representation that includes the change in the values of the weather variables as 

inputs performed the best and therefore used for all subsequent model developments. 

The experiment to determine the best mode of output resulted in the following: 

the network with one output node with a continuous output classified as frost and no frost 

using a threshold of 0.5 had a false negative count of 153 and a false positive count of 52. 

The network with two output nodesconsisting of one for frost and one for no frost with a 

winner take all policy had a false negative count of 158 and a false positive count of 49. 

Therefore, one output node was used in all further experiments. 

The statistical measures of Chi squared, Odds skill score, and Gilbert skill score 

were also included as performance measures to help determine the best networks. Table 

2.1 summarizes the false positives and false negatives for the best networks for all three 

locations for all three time periods. The best four-hour model out of the three locations 

considered was found for Blairsville based on a false negative percentage of 26% 

,followed by Fort Valley with 48% and Alma with 55%.  This ordering was also 

supported by the Chi Squared error measure that showed a 1.2 for Blairsville, 18.2 for 

Fort Valley and 18.8 for Alma. Blairsville also had the highest GSS of 0.61, followed by 

Fort Valley with 0.46 and Alma with 0.4 However, the OSS analysis ranked Alma and 

Fort Valley the best with a score of 0.99, followed by Blairsville with a slightly lower 

OSS score of 0.98.  

The best eight-hour model for the three locations considered was found for 

Blairsville based on a false negative percentage of 30%, followed by Fort Valley with 

49% and Alma with 53%.  This ranking was also supported by the Chi Squared error 
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measure, which was 11.9 for Blairsville, 51.7 for Fort Valley and 36.7 for Alma. 

Blairsville also had the highest GSS of 0.59, followed by Fort Valley with a GSS of 0.48 

and Alma with 0.43. However, the OSS analysis ranked Fort Valley the best with a score 

of 0.99, followed by Alma with 0.98 and then Blairsville with 0.96.  

The best twelve-hour model for the three locations considered was found for 

Blairsville based on a false negative percentage of 28%, followed by Fort Valley with 

43% and Alma with 48%.  This ranking was also supported by the Chi Squared error 

measure, which was 13.5 for Blairsville, 30.4 for Fort Valley and 34.2 for Alma. 

Blairsville also had the highest GSS of 0.61, followed by Alma with a GSS of 0.5 and 

Fort Valley with 0.48. However, the OSS analysis ranked Alma the best with a score of 

0.99, followed by Fort Valley with a slightly lower score of 0.98 and Blairsville with a 

score of 0.95.  

For all three time periods, most of the statistical measures ranked the models for 

Blairsville to be the best, followed by the models for Fort Valley and then Alma. OSS, 

which gives equal importance to false negatives and false positives, did not rank the 

networks in the same order. However, the problem considered herein requires a measure 

that rates false negatives as more important than false positives. 

When the twelve-hour model was applied to a restricted domain and used to 

predict frosts only for the successive eight hours, it performed better than the eight-hour 

network which was trained for the eight-hour time period. That is, the twelve-hour 

network missed fewer frost patterns which occurred during the next eight hours than the 

eight-hour network. For instance, the twelve-hour model developed for Blairsville and 

evaluated for Blairsville for eight-hour periods classified 55 frost patterns as no frost 
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compared to the eight-hour model with 65 misclassifications. Similarly, the eight-hour 

network missed fewer frost patterns in the next four hours than the four-hour network. 

For instance, the eight hour model developed for Blairsville and evaluated for Blairsville 

for four hours predicted eight frosts as no frosts compared to the four hour model with 23 

misclassifications. However, the model developed for Blairsville eight hours performed 

better then the twelve-hour model when both these models were evaluated for the 

restricted period of four hours. The eight-hour model had 10 misclassifications of frost 

patterns into no frost patterns while the twelve hour model had eight such 

misclassifications. The twelve-hour model is the model of choice for periods from four to 

twelve hours in the future. For the subsequent four hours, the eight hour model is best. 

Three-State Classification models: 

Temperature just above 0oC might slow down plant growth. So, networks 

predicting near frosts in addition to frosts could be useful. The following section presents 

the results of three-state classification model which classifies the future into frosts, near 

frosts and no frosts. A consistency matrix shows how the patterns of each category are 

classified. The rows of the consistency matrix represent the observed categories and the 

columns represent the predicted categories into which the observed categories are 

classified.  Table 2.2 gives the consistency matrix for networks predicting twelve hours 

ahead for Fort Valley using stratified data.  Although the frost patterns predicted as no 

frost patterns decreased, e.g., 39 (11%) with duplication and 46 (12%) without 

duplication, the other misclassifications increased. For instance, the number of no frost 

predicted as frosts was 60 (2%) with duplication and 12 (0.4%) without duplication. 

Though this appeared to be good from the point of view of this study, this was an 
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artificial, forced model which “moved” some patterns from other categories into frosts. 

The number of frost events missed was reduced, but the number of non-frost events 

predicted as frosts were increased, e.g., the number of false negatives decreased but the 

number of false positives increased. Therefore, subsequent experiments did not use 

stratified data. 

The results of the models developed using data from site specific locations for the 

prediction period of twelve hours evaluated for the locations for which they were 

developed is summarized in Table 2.3. The model developed for Blairsville misclassified 

7% of frost patterns as no frost patterns, while the model developed for Fort Valley 

misclassified 13% of frost patterns as no frost patterns. And the model developed for 

Alma misclassified 16% of frost patterns as no frost patterns. Based on the percentage of 

frost patterns misclassified as no frosts, it can be seen that Blairsville performed best, 

followed by Fort Valley and Alma. The misclassifications can be divided into two 

categories analogous to false positives and false negatives. If frost is misclassified, it is 

false negative. If no frost is misclassified, it is false positive. If near frost is classified as 

frost, it is false positive, and if it is classified as no frost, it is false negative. Though the 

model for Blairsville performs the best in terms of false negatives, it has the highest 

percentage of false positives. 

The results of the networks developed using different combinations of the three 

locations for all three prediction periods are summarized in Table 2.4 which gives the 

error measure developed for these networks. For the prediction period of four hours, 

when evaluated for Fort Valley, the model developed for Fort Valley performed the best 

with an error measure of 0.051, followed by Blairsville with an error measure of 0.065. 
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For the same prediction period, when evaluated for Blairsville, the model developed for 

Blairsville performed the best with an error measure of 0.069, followed by the model 

developed for Blairsville and Alma with an error measure of 0.074. When evaluated for 

Alma, the model developed for Blairsville performed the best with an error measure of 

0.0761 followed by the model developed for Fort Valley with an error measure of 0.0763. 

For the prediction period of eight hours, when evaluated for Fort Valley, the 

model developed for Blairsville and Alma performed the best with an error measure of 

0.068, followed by the model developed for Blairsville and Fort Valley with an error 

measure of 0.076. For the same prediction period, when evaluated for Blairsville, the 

model developed for Blairsville and Alma performed the best with an error measure of 

0.072, followed by the model developed for Blairsville with an error measure of 0.083. 

When evaluated for Alma, the two-site model developed for Blairsville and Alma 

performed the best with an error measure of 0.078 followed by the single-site model 

developed for Blairsville with an error measure of 0.092. 

For the prediction period of twelve hours, when evaluated for Fort Valley, the 

single-site model developed for Blairsville performed the best with an error measure of 

0.082, followed by the two-site model developed for Blairsville and Alma with an error 

measure of 0.085. For the same prediction period, when evaluated for Blairsville, the 

model developed for Blairsville performed the best with an error measure of 0.085, 

followed by the model developed for Blairsville and Alma with an error measure of 

0.088. When evaluated with data from Alma, the model developed for Blairsville 

performed the best with an error measure of 0.1 followed by the model developed for 

Blairsville and Alma with an error measure of 0.105. 
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The models developed using Blairsville data typically provided the lowest error 

measure. For instance, the model developed for Blairsville for twelve hour period, when 

evaluated for Fort Valley had an error measure of 0.082, which was the lowest, compared 

to an error measure of 0.091 for the model developed for Fort Valley and evaluated for 

Fort Valley. The model developed for Alma for twelve hour period, when evaluated for 

Fort Valley had an error measure of 0.95, which was the highest. The only time a model 

performed best without Blairsville included was for Fort Valley for a prediction period of 

four hours, for which the model for Fort Valley performed the best. 

It can be seen that a model that was developed with data from Blairsville 

consistently lowest error measure. A possible explanation is that the data from Blairsville 

included more frequent temperatures around freezing when compared to the other two 

sites. The weather data contained more frost events which gave the model more 

robustness.  Some models that were developed with a combination of data from 

Blairsville and Alma, two-site models, also performed well. As an example, the error 

measure when evaluated for Fort Valley was for the two-site model for Blairsville and 

Alma 0.085, which was only slightly higher than the single-site model developed for 

Blairsville, which had an error measure of 0.082 Interestingly, Alma had a low 

percentage of frost events, e.g., ten frost events per year on an average. The two-site 

model developed for Blairsville and Alma for the twelve hour period, had an error 

measure of 0.85 when evaluated for Fort Valley, second only to the single-site model 

developed for Blairsville and evaluated for Fort Valley. It is possible that the data from 

this combination of locations made the model robust. 
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Frost events vs. Frost patterns 

The results discussed previously were presented in terms of number of frost 

patterns. A single observed frost event can generate many frost patterns. A potential user 

of this system would be interested to see how well the frost events are predicted. An 

analysis was conducted to determine the accuracy of the models in terms of frost events. 

It is possible for the models to incorrectly classify some of the frost patterns for a frost 

event, yet predict the frost event. For instance, assume that a frost event occurs at 5:00 

am. A twelve-hour model should predict a frost on the previous day from 5.00 pm 

onward. However, the model might miss predicting the frost at 5.00 pm and 6.00 pm but 

predict a frost from 7.00 pm onwards. Thus, the model missed the correct prediction of 

the first two patterns, but it ultimately predicted the frost event. In the evaluation data set 

the number of observed frost events for Fort Valley, Blairsville, and Alma were 32, 96 

and 21, respectively. It was found that the models for all three locations, evaluated for the 

location for which they were developed, successfully predicted every frost event for all 

three prediction periods.  For this simulation, the network was considered successful in 

predicting a frost event if it correctly predicted the event at least once. However this 

occurred only twice for Fort Valley and Blairsville and once for Alma. For the majority 

of the frost events, out of (typically) twelve predictions, the predictions for the eight 

hours immediately prior to the frost event was predicted correctly. Figure 2.2 shows a 

graph plotting the number of freeze events against the percentage of possible patterns 

predicted. For instance, the first bar corresponds to the number of freeze events for which 

the network predicted only less than 10% of the possible patterns correctly. In 39 out of 

the possible 96 frost events, the model predicted at least 90% of the possible frost 
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patterns correctly. Also in 83% of the 96 events the model correctly predicted over half of 

the possible frost patterns. 

Non-numeric performance measures 

There are some desirable characteristics of an ANN output in terms of its use in 

decision support. The ANN output is a continuous value ranging from 0 to 1, therefore it 

would be desirable if the certainty of the output could be reflected in this numerical 

value. The decision maker would then be able to use this tool along with their level of 

risk aversion to make choices. For the two-state classification system, the output was 

interpreted as frost if the output had at least a value of 0.5, otherwise it was interpreted as 

a no frost.  It would be useful if outputs near 1 and 0 could be interpreted as having 

greater certainty than outputs near 0.5. For example, if the ANN output is either 0.9 or 

0.6, the patterns would be interpreted in both cases as a frost. However, the ANN with an 

output 0.9 would represent a greater certainty than 0.6. Values closer to 0 and 1 would 

correspond to the greatest certainty and values closer to 0.5 would correspond to least 

certainty. Figure 2.3 shows a graph that illustrates how well the numerical output of the 

ANN corresponds to certainty. The network considered was a two-state network for 

Blairsville for the prediction period of twelve hours. The first category defines the 

network output from 0.0 to 0.1. The height of the bar represents the percentage of correct 

classifications, i.e., percentage of no frosts for this output. The shape of the graph shows 

that when the network output is closer to the boundaries (0 or 1), the percentage of 

correct classifications is higher. This indicates that the network output can be interpreted 

as an indication of certainty. Figure 2.4 shows a graph that plots certainty in another 

manner for three state systems. It is a histogram of frost patterns versus the corresponding 
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numerical output of the ANN.  For instance, the first bar corresponds to the number of 

freeze patterns for which the network output a value from 0.0 to 0.1. For 770 of the 980 

frost patterns or 79 %, the ANN output was 0.6 or greater. For only 63 of the 980 frost 

patterns or approximately 6%, the ANN output was less than 0.3. Moreover, the greatest 

number of patterns was in the >0.9 cell i.e. had a numerical output greater than 0.9. 

It would also be helpful if the ANN model had a higher accuracy for short-term 

predictions than for longer term ones. For example, it would be desirable if the model had 

a higher accuracy when predicting a frost two hours ahead compared to one twelve hours 

ahead. The error is more critical to the crop manager if the network misses a short term 

frost event than if it misses a frost event. For three-state classification models, Figure 2.5 

gives a graph plotting the percentage of correct classifications versus the length of time 

until the event occurred for Blairsville for the predication period of twelve hours.  As 

expected, the accuracy was greater for shorter prediction periods. For instance, the dark 

section of the first bar represents the number of frost events successfully predicted one 

hour ahead. The gray section represents the number of frost events predicted as near frost 

event one hour ahead and the white section represents the number of frost events 

predicted as no frost events one hour ahead. This shows that the network is more accurate 

in predicting near-term frosts than frost that are twelve hours ahead. Also, the accuracy of 

prediction decreases almost monotonically with the number of hours in the prediction 

period. The twelve-hour model is not effective in predicting frosts beyond ten hours 

ahead. These graphs show that the network has the qualitative properties of certainty and 

higher accuracy when the event is nearer. 
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SUMMARY AND CONCLUSIONS 

ANN models were developed to predict frosts and near frosts four, eight and 

twelve hours ahead for three locations in Georgia, including Alma, Blairsville and Fort 

Valley. Experiments were conducted to determine the preferred architecture, usefulness 

of some inputs, preferred output representation, and usefulness of stratified data. The best 

networks were those that used the BP ANN approach. Experiments indicated that rainfall 

and the rate of change of variables were useful inputs. Single output node ANNs gave the 

best results.  

 For the two-state classification systems for twelve hours, the false positive 

percentage and false negative percentage were 28% and 5% for Blairsville, 43% and 1% 

for Fort Valley, 48% and 0.6% for Alma. The error measure, i.e., a normalized, weighted 

sum of the misclassifications, of the three-state classification system for twelve hours was 

0.091 for Fort Valley, 0.085 for Blairsville, and 0.112 for Alma. The location specific 

three-state classification systems were more accurate in predicating frosts for the location 

for which they were developed then for predicting frost for the other two locations. 

Also, models were developed with various combinations of the three locations. 

The models that were developed based Blairsville, on the location that had the most frost 

events, in general performed best. Models developed with data from Blairsville and Alma 

also proved to be good and robust models. For instance, when the twelve-hour two-site 

model developed with data form Blairsville and Alma was evaluated for Fort Valley, it 

had an error measure of 0.085, which was only slightly higher than a single-site model 

developed with data for Blairsville only, with an error measure of 0.082, and the model 

developed for Fort Valley with  an error measure of 0.091. In general, models developed 
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with data from multiple locations were comparable in accuracy to the location-specific 

models. 

The frost predictions were also analyzed to determine the certainty of the 

numerical output, accuracy of predictions with respect to frost events instead of frost 

patterns and accuracy of predictions with respect to period of prediction. The two-state 

networks’ certainty was related to its numerical output in that when the network’s output 

was close to the threshold, it was less accurate. The three-state network’s numerical 

outputs also reflected their certainty in predicting frost, in that, for most of the frost 

patterns, the numerical output was close to 1. It was also found that the networks were 

accurate in predicting frost events. The accuracy of prediction decreased with the period 

of prediction. This analysis can aid managers in their decision to when to take action to 

protect their crops.  

Future research should involve incorporating these analyses in a web–based DSS. 

Further research will also focus on developing a general ANN temperature predictor 

based on data from multiple locations. Such a general model is needed because a 

particular location may not have adequate historical weather data to be able to develop a 

location-specific model.  
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Table 2.1 Two-state classification results1 for location specific models for Fort Valley, Blairsville, and 
Alma, four, eight and twelve hours prediction periods. 

 

1 x(y%): x=count of (mis)classification patterns;y= percentage of (mis)classification w.r.t. the actual total 
 
 
 

Period of 
Prediction 4 hours 8 hours 12 hours 

    Predicted 
   

Observed      
Frost No Frost Frost No Frost Frost No Frost 

Fort Valley       
Frost 67(52%) 63(48%) 128(51%) 124(49%) 202(57%) 153(43%) 
No Frost 15(0.3%) 4368(99.7%) 13(0.3%) 4248(99.7%) 52(1%) 4106(99%) 
Blairsville       
Frost 277(74%) 98(26%) 511(70%) 218(30%) 745(72%) 285(28%) 
No Frost 77(2%) 3856(98%) 133(4%) 3446(96%) 182(5%) 3096(95%) 
Alma       
Frost 43(45%) 53(55%) 91(47%) 101(53%) 146(52%) 132(48%) 
No Frost 
 11(0.3%) 4055(99.7%) 19(0.5%) 3951(99.5%) 23(0.6%) 3861(99.4%)
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Table 2.2 Consistency matrix for the ANN model developed and evaluated with stratified data from 
Ft. Valley, twelve hour prediction period2  

 
Predicted 

Observed Frost Near Frost No Frost Sum 

Frost 284 (80%) 32 (9%) 39 (11%) 355 
Near Frost 220 (32%) 188 (27%) 274 (40%) 682 
No Frost 60 (2%) 87 (3%) 3329 (95%) 3476 
Sum 564 307 3642 4513 
2x(y%): x=count of (mis)classification patterns;y= percentage of (mis)classification w.r.t. the actual total 
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Table 2.3 Consistency matrices for the site-specific ANN model developed for Fort Valley, Blairsville 
and Alma ; twelve hour prediction period; evaluation data from same location 3 

 
Predicted 

Observed Frost Near Frost No Frost 

Fort Valley    
Frost 240 (68%) 68 (19%) 46 (13%) 
Near Frost 85 (12%) 310 (45%) 287 (42%) 
No Frost 13 (0%) 115 (3%) 3349 (96%) 
Blairsville    
Frost 765 (74%) 189 (18%) 76 (7%) 
Near Frost 150 (22%) 274 (41%) 244 (37%) 
No Frost 54 (2%) 217 (8%) 2339 (90%) 
Alma    
Frost 172 (62%) 62 (22%) 44 (16%) 
Near Frost 27 (8%) 109 (34%) 186 (58%) 
No Frost 8 (0%) 75 (2%) 3479  (98%) 

3x(y%): x=count of (mis)classification patterns;y= percentage of (mis)classification w.r.t. the actual total 
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Table 2.4 Error measure for evaluating models developed with various combinations of sites when 
evaluated for Fort Valley, Blairsville and Alma. FV = Fort Valley; B = Blairsville; A = Alma.                     

 
Period of 
prediction 4 hours 8 hours 12 hours 

Evaluation 
location 

Model 
development 
location 

Error 
measure 

Model 
development 
location 

Error 
measure 

Model 
development 
location 

Error 
measure 

Fort Valley FV 0.051 B & A 0.068 B 0.082 
 B 0.065 B & FV 0.076 B & A 0.085 
 B & FV 0.068 B 0.077 B & FV 0.086 
 B & A 0.070 A 0.082 FV 0.091 
 B & FV & A 0.074 FV & A 0.085 B & FV & A 0.093 
 FV & A 0.077 B & FV & A 0.086 FV & A 0.094 
 A 0.081 FV 0.091 A 0.095 
       
Blairsville B 0.069 B & A 0.072 B 0.085 
 B & A 0.074 B 0.083 B & A 0.088 
 FV 0.078 B & FV 0.096 B & FV 0.097 
 B & FV 0.080 B & FV & A 0.100 B & FV & A 0.100 
 B & FV & A 0.084 A 0.103 A 0.104 
 A 0.093 FV 0.112 FV 0.110 
 FV & A 0.094 FV & A 0.115 FV & A 0.112 
       
Alma B 0.076 B & A 0.078 B 0.100 
 FV 0.076 B 0.092 B & A 0.105 
 B & A 0.078 B & FV 0.097 B & FV 0.110 
 B & FV 0.079 FV 0.109 FV 0.112 
 B & FV & A 0.082 B & FV & A 0.110 A 0.112 
 A 0.092 FV & A 0.115 FV & A 0.118 
 FV & A 0.094 A 0.117 B & FV & A 0.139 
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 Figure 2. 1 Back Propagation Artificial Neural Network for Three-state classification system 

for Fort Valley for a prediction period of twelve hours. 

Output 
Layer 
1 node 

II Hidden
Layer 
20 nodes

I Hidden 
Layer 
35 nodes

 Input layer 
69 nodes 

Numerical 
Value 
between 0 
and 1 



 

41 

0

3

1

3

5

14

7

9

14

39

0

5

10

15

20

25

30

35

40

45

0-9 10--19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 >90

percentage of petterns predicited per freeze event

nu
m

be
r o

f f
re

ez
e 

ev
en

ts

 
Figure 2.2 Histogram of the number of freeze events against the percentage of patterns generated by then that were predicted correctly 

  Blairsville model development and evaluation data, twelve-hour prediction period.  
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Figure 2.3 Histogram of the accuracy of the predictions as a function of the numerical value of the ANN output (certainty), 

  Blairsville model development and evaluation data, twelve-hour prediction period two state system.  
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Figure 2.4 Histogram of the accuracy of the predictions as a function of the numerical value of the ANN output (certainty), 
  Blairsville model development and evaluation data, twelve-hour prediction period three state system.  



 

44 

97 97

88 86 87
83

78

71

61 62

40

24

2 3

10

7 4 11 18

23

34
36

37

44

1 0 2
8 9

6
3

6 5
1

23

31

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12

number of hours to the observed frost event

pe
rc

en
ta

ge
 o

f f
re

ez
e 

pa
tte

rn
s 

pr
ed

ic
te

d 
as

 e
ac

h 
ca

te
go

ry

 
 

 Figure 2.5 Histogram of the percentage of freeze patterns predicted as function of the number of hours of the prediction period. 
Blairsville model development and evaluation data, twelve-hour ANN model. 
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CHAPTER 3  

FROST PREDICTION USING ARTIFICIAL NEURAL NETWORKS: A 

GENERALIZED CLASSIFICATION MODEL2 

                                                 
2 Ramyaa, R.W. McClendon and G. Hoogemboom. To Be Submitted to ASAE. 
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ABSTRACT 
 

Although frost can be desirable in some stages of horticultural plant development, 

frost during bloom or budding phases can seriously damage the plant causing a reduction 

in yield. Crops can be protected from frost damage using measures such as irrigation, 

provided irrigation is started prior to the temperature dropping below freezing. This 

would require a method to predict frosts, but a model for frost prediction would typically 

require access to local weather. Many locations that could potentially benefit from frost 

prediction do not have historical weather data, or even a local weather station. The goal 

of this study was to develop Artificial Neural Networks (ANNs) to predict frost for any 

given location in the state of Georgia. ANNs were developed using weather data from 

multiple locations and these ANNs were then evaluated for other locations where no 

historical weather data were available. It was found that the general ANN models could 

predict temperatures for a given location without historical data with reasonable 

accuracy. For instance, the average error measure of the general model developed using 

data from nine locations, when evaluated for 23 locations was 0.0957, which was only 

slightly higher than the average error measure of location-specific models which was 

0.0951. For 19 out of 23 locations, this general model performed as well or better than 

the location-specific models.  The four locations for which location-specific model out 

performed this general model were Blairsville, Dixie, Dublin and Savannah. Of these 

locations, Blairsville and Savannah were used to develop the general model, while the 

other two were not. Thus, the performance of this general model for a given location does 

not depend on the inclusion of this location for model development, or geographical 

proximity of a location to locations used for general model development. 



 

48 

Future research will focus on incorporating the general frost prediction model into a pre-

existing web-based information dissemination program, where it can be used as a 

decision support tool to aid farmers in protecting their crops from frost damage.       
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INTRODUCTION 

  Fruit crops such as blueberries and peaches are particularly susceptible to 

damage due to low temperatures during certain crop phases, especially flowering and 

early reproductive development. During these periods temperatures below freezing may 

damage the plants and temperatures near but above freezing might slow down plant 

growth and development. Frost is defined as the air temperature below 0oC. 

 To some extent, plants can be protected against frost using wind machines or 

irrigation. Irrigation is the most widely used means for frost protection of horticultural 

crops such as peaches and blueberries. However, for irrigation to be effective it must be 

started prior to the temperature dropping below freezing. Thus, there is a need for 

accurate local weather information and short-term weather predictions. The University of 

Georgia initiated the Georgia Automated Environmental Monitoring Network (AEMN) 

(Hoogenboom, 1996, 2000a, 2000b, Hoogenboom et al., 2000) to provide local current 

weather information. The AEMN is a network of 57 automated weather stations that 

measure air temperature, relative humidity, soil temperature at depths of 2 cm, 5 cm and 

10 cm, wind speed, wind direction, solar radiation, vapor pressure deficit and soil 

moisture at one-second intervals. The AEMN website (www.Georgiaweather.net) 

provides fruit growers and other users with access to near real-time weather information 

(Georgiev and Hoogenboom, 1998, 1999, Hoogenboom et al. 1998). However. the 

AEMN web-site currently does not have the capability to provide a local temperature 

prediction based on the most-recently observed data.  

A machine learning system developed for predicting weather typically would use 

prior weather data to extract knowledge about weather patterns and use this to predict 
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weather in the near future. A weather forecasting model developed for a single specific 

location using data from that location may not perform well for other locations, due to the 

differences in weather patterns between various locations (Ramyaa, 2004). Hence, 

location-specific models developed for each weather station might not be uniformly 

accurate throughout the state. In addition, there are many crop growing locations across 

the states that do not have historical weather data. However, decision makers at those 

locations could benefit from weather prediction.  Thus, a general model that can predict 

frosts and near frosts for any given location is needed. 

Artificial Neural Networks (ANNs) are a modeling tool that provide a robust 

approach to approximating real-valued as well as discrete-valued functions. These 

functions have traditionally been modeled using statistical methods. However, statistical 

modeling techniques such as linear regression can typically only approximate linear 

functions, whereas ANNS can learn functions of arbitrary complexity. For problems 

where the mapping of inputs into outputs is complex or obscure, ANNs are among the 

most efficient learning techniques currently known (Smith 1993).  

ANNs mimic the behavior of neurons in the brain. Computational neurons are the 

basic components of an ANN. Neurons are connected by links which have weights 

associated with them. These are computational units which calculate the activation 

function value of the sum of its inputs and pass it to other neurons via the links. ANNs 

work by capturing the complex relationships between inputs and outputs in their weights. 

Learning is a process of trying to correct the weight for each link. The error between the 

ANN output and the target output is used to adjust the weights of the links by using 

gradient descent. The data that are used are called the training data. Weight updating is 



 

51 

repeated until the error for the testing data, which is a data set disjoint from the training 

set, reaches a minimum. The training and testing data comprise the model development 

data set. Once training is complete, the ANN is applied to the evaluation data set, yet 

another data set disjoint from both training set and testing set, to determine its accuracy. 

ANNs have been used in several studies for estimating temperature and predicting 

frost. Robinson and Mort (1996) developed an ANN-based system to predict overnight 

frost formation in Sicily, Italy. Their output classified the input as weather conditions that 

would lead to a frost, e.g., defined as temperature below 1oC, during the next 24 hours or 

conditions that would not lead to a frost. They reported that the best ANN predicted two 

false alarms and one failure over the course of a 50-day model evaluation set. 

Ramyaa (2004) conducted a study to develop ANN models to classify the 

subsequent hours into frost, near frost and no frost. Data used in this study were for 

Alma, Blairsville and Fort Valley, which are locations representative of the main fruit 

growing regions in Georgia. Individual models were developed for these specific 

locations and these models were then evaluated for the other two locations. Though the 

study considered models developed using two locations, it was not geared towards 

developing and analyzing generalized models, i.e. models that are developed using 

several locations and expected to perform well for any arbitrary location. 

There have been previous studies that developed a generalized, heterogeneous 

model for forecasting temperature and predicting frosts. Blennow and Persson (1998) 

used a Geographic Information System (GIS) and a stepwise linear regression model to 

determine where frost could occur over an area covering 7.5 km2 of forested and 

heterogeneous region in Sweden. The model generated a map with areas delineated that 
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were prone to low temperature and frost after clear-cutting. The map provided useful 

information for efficient implementation of frost protection measures in forestry and was 

based on a simple methodology that can be applied in practical forestry.  

Bagdonas et al. (1978) reported several theoretical techniques for predicting 

minimum temperature. These theoretical methods should technically be usable for 

multiple locations when the correct values of the parameters in the equations are provided 

into the equations for each location. However, the difficulty of finding reliable values for 

parameters makes these equations have little practical value. Kanazawa (1999) developed 

a model for predicting temperature for specific climates depending on geographical 

location and time of season.  

Li et al. (2004) conducted a study in which they used weather data from 

neighboring weather stations to develop artificial neural network (ANN) models for 

estimating and interpolating daily maximum and minimum air temperature, and total 

solar radiation. Though this study helped the regions which do not have a local weather 

station, it did not predict future temperatures. 

Jain et al. (2003) developed a general ANN model to forecast air temperature for 

any given location in Georgia. They also developed location-specific models and found 

that the general models could predict temperatures for a given location without historical 

data with reasonable accuracy when compared to a location-specific model.  They 

attempted to deliver a prediction of a discrete function, i.e., frost or no frost for a given 

period, using the estimation of temperature, a continuous valued target function. This 

study was limited by the fact that it attempted to predict temperature, a continuous 

variable, which was then used to classify the future into frost or near frost.  
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Forecasting temperature is relevant to protecting crops from cold damage only because 

they can be used in forecasting frosts and near frosts. Hence, what is needed is a model 

that can classify the present weather conditions as leading to a) frost or b) a near frost or 

c) no frost. Most computer modeling tools require historical data to learn existing weather 

patterns in order to be able to predict future weather. A single weather station covering a 

large area might not give collect data that are representative for the entire area (Blennow 

and Persson, 1998), especially if the area is heterogeneous. Further, there are many 

locations which do not have historical weather data or with no weather data since they do 

not have a weather station/observation system. However, these locations will also benefit 

from weather prediction. 

 The goal of this study was to develop a general ANN model which could be used 

for frost forecasting for any location in Georgia. The specific objectives of this study 

were 1) determine the accuracy of a general model developed using historical data from 

multiple locations to predict frost for locations without historical data, 2) determine the 

number of locations needed to maximize the accuracy of a general model for each period 

of prediction, 3) compare the accuracy of a general model developed with data from 

multiple locations with models developed for specific locations. 

 

MATERIALS AND METHODS 

The models that were considered are three way classification systems, i.e., they 

classify the given weather pattern as leading to a) frost, b) near frost, or c) no frost. If the 

minimum temperature drops below 0oC within the prediction period, the prediction 

period is considered as having a frost. If the minimum temperature drops below 3oC but 
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stays above 0oC within the prediction period, the period is considered as having a near 

frost. If the minimum temperature within the prediction period remains above 3oC, the 

period is classified as having a no frost. The prediction periods considered were four 

hours, eight hours and twelve hours. 

The weather data were obtained from the Georgia AEMN for the years 1993 to 

2003. The locations that were selected covered most of the state of Georgia. Weather data 

from the following 23 locations were used in this study: Alma, Arlington, Attapulgus, 

Blairsville, Brunswick, Byron, Cairo, Camilla, Cordele, Dearing, Dixie, Dublin, Fort 

Valley, Griffin, Homerville, Midville, Nahunta, Newton, Plains, Savannah, Tifton, 

Valdosta, and Vidalia. Model development data were based on historical weather data for 

the years prior to 2001, although the installation date and starting year varied for each 

location. Depending on the location, four to nine years of data were available for these 

locations as summarized in Table 3.1. Model evaluation data were based on historical 

weather data from 2001 to 2003. All the locations had data from 2001 onward except 

Homerville, which had data beginning in 2003 and Nahunta, which had data beginning 

on day 82 of 2002 i.e. March 23, 2002. The model development and model evaluation 

data were restricted to the first four months of the year, as these are the months when 

frost conditions are likely to occur and can potentially cause damage to the crops.  

NeuroShell™ software (Ward Systems Group Inc. Frederic, MD, 1993) was used 

in this study to develop the ANNs. The ANN architecture used was standard back 

propagation ANNs based on prior research results (Ramyaa, 2004). Inputs for the ANN 

model included temperature, wind speed, humidity, solar radiation and rainfall, both 

current and prior values, along with the rate of change. Timing variables included day of 
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year and time of day. Models in this study were developed to predict frosts in three 

subsequent time periods: four, eight and twelve hours. 

Generalization in stages: 

One objective was to determine the accuracy of a general ANN model, developed 

using historical data from multiple locations, to predict frost for locations without 

historical data. An additional objective was to determine the number of locations needed 

to maximize the accuracy of a general model for each period of prediction. Then, the 

accuracy of models at various stages of generalization was compared. 

Generalization was conducted in stages so as to study its effect on the accuracy of 

the prediction. The first stage of model development was location-specific, i.e., models 

were developed with data from a single location. In the second stage, models were 

developed with data from two locations. The third stage consisted of models developed 

with data from four locations, and the fourth stage consisted of models developed withg 

data from nine locations.   

A set of locations was defined as a configuration.  For instance, the set of 

locations of Blairsville and Alma form a configuration. In the second stage of model 

development, three configurations were considered. Three sets of two locations each 

were used in this stage. For the third stage in which models developed with four 

locations, three configurations were also considered. Three sets of locations, each set 

consisting of four locations were used in this stage. For the fourth stage of model 

development, one nine-location configuration was considered.  

In the first stage, location-specific models were developed for Alma, Arlington, 

Attapulgus, Blairsville, Brunswick, Cairo, Camilla, Cordele, Dearing, Dixie, Dublin, Fort 
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Valley, Griffin, Midville, Newton, Plains, Savannah, Tifton, Valdosta, and Vidalia for all 

three prediction periods. Models were not developed for Byron, Homerville and Nahunta 

as they lacked data prior to 2001.  For the second stage of the study, models were 

developed using three configurations consisting of two locations each. For the first 

configuration, data from Blairsville and Fort Valley prior to 2001 were used. The second 

two-location configuration models were developed using the data from Alma and 

Blairsville and the third two-location configuration data set which consisted of data from 

Alma and Fort Valley. The third stage of the study had three configurations, each 

consisting of four locations. The first configuration consisted of model development data 

from Alma, Attapulgus, Fort Valley and Savannah. The second configuration of model 

development data used data from Alma, Attapulgus, Fort Valley and Blairsville. The 

third four-location configuration used data from Alma, Attapulgus, Fort Valley and 

Griffin. The fourth stage of the study consisted of one configuration with nine different 

locations. The model was developed using weather data from locations of Alma, 

Arlington, Attapulgus, Blairsville, Fort Valley, Griffin, Midville, Plains and Savannah. 

As above, the data used for model development were from the years prior to 2001. 

Data layouts: 

An unusual weather occurrence in one year of data for the chosen location may 

bias the results. Therefore, each configuration consisted of five different data layouts. A 

data layout consisted of a random sampling of years of data from the locations in a 

configuration, with the total number of years restricted to nine years. Thus, different data 

layouts for the same configuration will contain different years of the chosen locations(s). 

For instance, a stage two configuration of Blairsville and Alma might included weather 
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from 1992, 1994, 1995 and 1997 for Blairsville and 1991, 1995, 1998, 1999 and 2000 for 

Alma.  Nine years of data were used in each layout because the earliest weather data were 

from 1991, thus allowing for nine years of pre-2001 weather data. By keeping the number 

of years constant at nine years, it was ensured that no layout or configuration was 

advantaged or disadvantaged by having more or less years of data available.  

The ANNs for the three prediction periods were developed for each of the five 

data layouts. For each evaluation location, the error measures from the five different data 

layouts were then averaged to provide the error measure associated with a particular 

configuration for that time period of prediction. The error measure associated with a 

particular configuration for a particular period of prediction was then calculated.  

Performance Measure:    

 The performance measure developed in Ramyaa (2004) was used to quantify the 

error of the network on the evaluation data set. The misclassifications were sorted in the 

order of the damage they caused. Sorted from most damaging to least damaging is:  

(i) frost predicted as no frosts,  

(ii) near frost predicted as no frost, 

(iii) frost predicted as near frost,  

(iv) no frost predicted as near frost, 

(v) near frost predicted as frost and  

(vi) no frost predicted as frost.  

The weighted sum of the misclassifications was calculated using the weight set which 

gives the weight 1 to the least damaging misclassification and weight 500 to the most 

damaging misclassification. The measure also included a normalizing factor to balance 
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the difference in the probability of occurrence of the different events, and a scaling factor 

to limit the measure between 0 and 1. 

 

RESULTS AND DISCUSSION 

Four-hour predictions: 

 The results for the models with a prediction period of four hours are presented in 

Table 3.2.  The results are summarized by stages, i.e. results for the location-specific 

models evaluated for all locations and then the models developed using data from two 

locations, four locations and nine locations. For the location-specific models of the first 

stage, the average of the error measures evaluated for 20 locations was 0.077 (SD: 0.013). 

The error measures ranged from 0.054 (SD: 0.047) for Dixie to 0.107 for Alma (SD: 

0.04) and Nahunta (SD: 0.42).  

For the models developed using data from two locations, the average error 

measure, when evaluated for 23 locations was 0.081(SD: 0.013) for the model developed 

for Blairsville and Fort Valley, 0.078 (SD: 0.011) for the model developed for Fort 

Valley and Alma, and 0.081 (SD: 0.012) for the model developed for Blairsville and 

Alma. The overall average for all the models developed using two locations over all 

configurations was 0.080. The error measure ranged from 0.060 (SD: 0.05) for the model 

developed for Fort Valley and Alma and evaluated for Brunswick to a maximum error 

measure of 0.114 (SD: 0.051) for the model developed using Fort Valley and Blairsville 

when evaluated for Nahunta.  

For the models developed using data from 4 locations, the average error measure, 

when evaluated for 23 locations for the model developed for Blairsville, Alma, 
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Attapulgus and Fort Valley was 0.091 (SD: 0.027), 0.083 (SD: 0.012) for the model 

developed for Savannah, Alma, Attapulgus and Fort Valley, and 0.092 (SD: 0.015) for 

the model developed for Griffin, Alma, Attapulgus and Fort Valley. The overall average 

for all the models developed using four locations over all configurations was 0.089. The 

error measure ranged from 0.056 (SD: 0.054) for the model developed for Savannah, 

Alma, Attapulgus and Fort Valley evaluated for Brunswick to a maximum of 0.119 (SD: 

0.043) for the model developed using Griffin, Alma, Attapulgus and Fort Valley 

evaluated for Nahunta.    

The average of the error measure for the models developed using data from nine 

locations evaluated for 23 locations was 0.073 with a standard deviation of 0.014. The 

error measure ranged from 0.054 (SD: 0.045) for Brunswick to 0.107 (SD: 0.059) for 

Nahunta. 

To summarize, the average error measure was 0.073 for 23 locations for the nine 

location model, 0.077 for the location-specific models evaluated for the locations for 

which they were trained, 0.080 for the two-location model averaged for all the three data 

layouts, 0.089 for the four-location model averaged for all the three data layouts. The 

nine-location model had the minimum error measure in 19 locations out of the 23 

locations selected for evaluation. The locations for which the nine-location model was 

not the best model were Blairsville, Dixie, Dublin and Savannah. For each of these four 

locations, the best results were obtained with the location-specific models. For the four 

locations where the site- specific model was better than the nine-location model, two of 

the sites, e.g., Dixie and Dublin, were included in the nine-location model and the other 

two, e.g., Blairsville and Savannah, were not. This indicated that the geographical 
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proximity of the evaluation site to the sites included in model development did not 

directly impact the performance. The four-location models and the two-location models 

did not produce the minimum error measure for any of the locations. 

Eight-hour predictions: 

The results for the models with a prediction period of eight hours are presented in 

Table 3.3.  The results are summarized by stages, i.e. results for the location-specific 

models evaluated for all locations followed by the models developed with data from two 

locations, four locations and nine locations. For the location-specific models of the first 

stage, the average of the error measures evaluated for 20 locations was 0.087 (SD: 0.015). 

Error measure ranged from 0.064 (SD: 0.05) for Dixie to 0.128 (SD: 0.05) for Nahunta.   

The average error measure for the two-location models, when evaluated for 23 

locations was 0.102 (SD: 0.055) for the model developed with data from Blairsville and 

Fort Valley, 0.100 (SD: 0.055) for the model developed with data from Fort Valley and 

Alma, and 0.098 (SD: 0.012) for the model developed with data from Blairsville and 

Alma. The overall average for all the models developed using two locations over all 

configurations was 0.094. The error measure ranged from 0.068 (SD: 0.053) for the 

model developed with data from Fort Valley and Blairsville and evaluated for Homerville 

to a maximum error measure of 0.150 (SD: 0.051) for the model developed with data 

from Fort Valley and Blairsville evaluated for Cordele.   

For the four-location model, the average error measure, when evaluated for 23 

locations, was 0.099 (SD: 0.027) for the model developed with data from Blairsville, 

Alma, Attapulgus and Fort Valley, 0.094 (SD: 0.012) for the model developed with data 

from Savannah, Alma, Attapulgus and Fort Valley was, and 0.103 (SD: 0.012) for the 
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model developed with data from Griffin, Alma, Attapulgus and Fort Valley. The overall 

average for all the models developed using four locations over all configurations was 

0.099. The error measure ranged from 0.067 (SD: 0.059) for the model developed with 

data from Savannah, Alma, Attapulgus and Fort Valley and evaluated for Brunswick to a 

maximum of 0.209 (SD: 0.061) for the model developed with data from Blairsville, 

Alma, Attapulgus and Fort Valley and evaluated on Fort Valley.    

For the nine-location model, the average error measure for all 23 locations was 

0.090 (SD: 0.016). The actual error measure ranged from 0.065 (SD: 0.053) for 

Brunswick to 0.128 (SD: 0.06) for Nahunta.  

 Comparing the averages of different stages of generalization, the location-

specific models performed the best, followed by generalization using nine locations, the 

two-location and four-location models. The average error measure was 0.087 for the 

location-specific models when evaluated for the locations for which they were trained, 

0.090 for the nine-location model when evaluated for 23 locations, 0.094 for the two-

location model averaged for all the three data layouts, and 0.099 for the four-location 

model averaged for all the three data layouts. Note that the location-specific models were 

evaluated only for the locations they were trained for, and the general models were 

evaluated for all locations.  

For the 23 locations that were selected for evaluation, the general model with nine 

locations gave the minimum error measure, or was tied for the minimum error measure, 

in 19 locations. The locations where it was not the best model were Blairsville, Dixie, 

Dublin and Savannah. For each of these locations, the best results were obtained using 

the location-specific models. Of the four locations where the site-specific model was 



 

62 

better than the nine location model, two of the sites, e.g., Dixie and Dublin, were 

included in the nine-location model and two locations, e.g., Blairsville and Savannah, 

were not. This is in support of the claim that the geographical proximity of the evaluation 

site to the sites that were used for model development did not affect the performance. The 

two- and four-location models did not produce the minimum error measure for any of the 

locations, though their results were comparable to the location- specific models. 

Twelve-hour predictions: 

 The results for the models with a prediction period of twelve hours are presented 

in Table 3.4.  The results are summarized by stages, i.e. results for the location-specific 

models evaluated for all the locations and then the models developed using data from two 

locations, four locations and nine locations. For the location-specific models of the first 

stage, the average of the error measures evaluated for 20 locations was 0.092 (SD: 0.012). 

Error measure ranged from 0.074 (SD: 0.054) for Dixie to 0.128 (SD: 0.05) for Nahunta.  

For two-location models, the average error measure, when evaluated for 23 

locations was 0.121 (SD: 0.016) for the model developed with data from Blairsville and 

Fort Valley, 0.097 (SD: 0.012) for the model developed with data from Fort Valley and 

Alma, and 0.098 (SD: 0.012) for the model developed with data from Blairsville and 

Alma. The overall average for all the models developed using two locations over all 

configurations was 0.105. The error measure ranged from 0.068 (SD: 0.053) for the 

model developed with data from Fort Valley and Alma and evaluated for Brunswick to a 

maximum error measure of 0.148 (SD: 0.063) for the model developed with data from 

Fort Valley and Blairsville evaluated on Nahunta.   
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For four-location models, the average error measure, when evaluated for 23 

locations for the model developed with data from Blairsville, Alma, Attapulgus and Fort 

Valley was 0.172 (SD: 0.040), 0.102 (SD: 0.012) for the model developed with data from 

Savannah, Alma, Attapulgus and Fort Valley, and 0.111 (SD: 0.015) for the model 

developed with data from Griffin, Alma, Attapulgus and Fort Valley. The overall average 

for all the models developed using four locations over all configurations was 0.128. The 

error measure ranged from 0.067 (SD: 0.059) for the model developed with data from 

Savannah, Alma, Attapulgus and Fort Valley evaluated for Brunswick to 0.206 (SD: 

0.059) for the model developed with data from Blairsville, Alma, Attapulgus and Fort 

Valley and evaluated on Cairo.    

For the nine-location models, the average of the error measures evaluated for 23 

locations was 0.095 (SD: 0.013). The actual error measure ranged from 0.075 (SD: 0.05) 

for Brunswick to 0.128 (SD: 0.055) for Nahunta.  

Comparing the averages of different stages of generalization, the location-specific 

models performed the best, followed by generalization using nine locations, the two-

location models and then the four-location models. The average error measure was 0.095 

for the location-specific models when evaluated for the locations for which they were 

trained, 0.092 for the nine-location model when evaluated on 23 locations, 0.105 for the 

two location models averaged over all the three data layouts, 0.128 for the four location 

models averaged over all the three data layouts. Not that, the location-specific models 

were evaluated only for the locations they were trained for, and the general models were 

evaluated on all the locations.  
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Out of the 23 locations that were selected for evaluation, the general model with 

nine locations gave the minimum error measure, or was tied for the minimum error 

measure, in 19 locations. The locations where it was not the best model were Blairsville, 

Dixie, Dublin and Savannah. For each of these locations, the best results were obtained 

using the location-specific models. Of the four locations where the site specific model 

was better than the nine site model, two of the sites, e.g. Dixie and Dublin, were included 

in the nine location model and two locations, e.g. Blairsville and Savannah, were not. 

This result is consistent for all three prediction periods and indicates that the performance 

of a model on an evaluation set is independent of the geographical proximity of the 

evaluation site to the sites included in model development. The two-location and four-

location models and the two location models did not produce the minimum error measure 

for any of the locations, though their results were comparable to the location-specific 

models.  

Discussion 

The general model to predict frosts and near frosts for four, eight and twelve 

hours ahead was developed using two, four and nine locations. It was found that the 

performance of these general models performance was comparable to that of the location-

specific models. The nine location model performed the best for all three prediction 

periods. For 19 out of the 23 locations for which the models were evaluated, the nine 

location model gave the least error measure. The four locations for which the general 

model consistently for all three prediction periods resulted in the highest error measures 

were: Blairsville, Dixie, Dublin and Savannah. From these four sites. Blairsville and 

Savannah were used in the general model development. Hence, inclusion of a location or 
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the geographical proximity between the evaluation location and the locations included in 

training does not affect the performance in an obvious way. 

The averages of the error measures of the various models were determined for 

each evaluation location. It was found that Nahunta had the highest average error 

measure for prediction periods of four and twelve hours and had the second highest 

average error measure for the prediction period of eight hours. Further, it was observed 

that Homerville also had the highest error measure for all three prediction periods. This 

might be because these two locations had less data that could be used for evaluation. 

Nahunta only included data for 2003, while Homerville had data starting on day 82 in 

2002 (March 23rd 2002) and 2003. Additional experiments that were conducted supported 

the conclusion that a reduced evaluation data set had an impact on overall model 

performance for a particular site.  For instance, the evaluation set for Brunswick 

consisted of the years 2001, 2002 and 2003. The general model with nine locations had 

an error measure of 0.75 when evaluated with this data set. When the general model was 

evaluated for a reduced data set of Brunswick with data for 2003 only, it had an error 

measure of 0.82.  

In general, if the evaluation data set had less number of frost events, then it had a 

lower error measure. For instance, Brunswick had approximately seven frost events, the 

lowest number per year on average and it consistently had the lowest average error 

measure for all models and for all three prediction periods. Though it is generally the case 

that the average error measure increases with the number of frost events in the evaluation 

data set, this is not always true. For instance, Arlington has around 15 frost events per 
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year on average, which was higher than many locations. However, Arlington had an error 

measure for all three locations that was below average. 

 

SUMMARY AND CONCLUSIONS 

The objectives of this study were to 1) determine the accuracy of a general model 

developed using historical data from multiple locations to predict frost for locations 

without historical data, 2) determine the number of locations needed to maximize the 

accuracy of a general model for each period of prediction, 3) compare the accuracy of a 

general model developed with data from multiple locations with models developed for 

specific locations. 

To accomplish the first objective ANN models were developed to predict 

temperature at a location without historical weather data using a model developed with 

data from locations with historical data. The average error measure for evaluating on all 

23 locations for the four-hour prediction for location-specific network was 0.079, for the 

two location models was 0.080, for the four location models was 0.088, and for the nine 

location models was 0.078. 

Performance of models developed using location-specific data, data from two 

locations, four locations and nine locations were compared. The nine-location data 

configuration was the best configuration compared to the configurations that had data 

from four and two locations. The nine-location configuration consisted of data from 

Alma, Arlington, Attapulgus, Blairsville, Fort Valley, Griffin, Midville, Plains and 

Savannah. It was also observed that accuracy of the general models was comparable to 

the models that were developed specifically for a location. Future research will focus on 
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developing hidden node optimized ANN models that can predict temperature for all 

durations starting from one hour to twelve hours in the future.  

Once the ANNs have been developed they would be incorporated into the pre-

existing web-based information dissemination programs, where they can be used as a 

Decision Support Tool to aid farmers in protecting their crops from frost damage.   Also, 

further experimentation can be done with the number of locations. Other areas of future 

work would be in building an expert system with more than one of the chosen models, 

using fuzzy logic to combine these models’ outputs into a system with better 

performance. 
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Table 3.1 Weather stations from the Georgia Automated Environmental Monitoring Network 
(AEMN) that were used in this study  

Locations ars of available data Pre- 2001 Data  
Alma 1993 - 2003 8 

Arlington 1997 - 2003 4 
Attapulgus 1993 - 2003 8 
Blairsville 1993 - 2003 8 
Brunswick 2000 - 2003 1 

Byron 2001 - 2003 0 
Cairo 1998 - 2003 3 

Camilla 1998 - 2003 3 
Cordele 1998 - 2003 3 
Dearing 1999 - 2003 2 

Dixie 1999 - 2003 2 
Dublin 1998 - 2003 3 

Fort Valley 1993 - 2003 8 
Griffin 1992 - 2003 9 

Homerville 2003 0 
Midville 1992 - 2003 9 
Nahunta 2002* - 2003 0 
Newton 2000 - 2003 1 
Plains 1992 - 2003 9 

Savannah 1993 - 2003 8 
Tifton 1992 - 2003 9 

Valdosta 1998 - 2003 3 
Vidalia 1998 - 2003 3 
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Table 3.2 Average error measure for the prediction period of four hours averaged over five data layouts.  

Development Location- 
specific 
models  

Two-location Models Four-location Models Nine-
location 
Models  

Min  

 
Evaluation        

   
 (a)* 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 

Alma 0.107 0.099 0.098 0.101 0.097 0.095 0.104 0.092 0.092
Arlington 0.077 0.074 0.074 0.076 0.081 0.082 0.088 0.063 0.063
Attapulgus 0.094 0.086 0.085 0.088 0.089 0.088 0.096 0.074 0.074
Blairsville 0.073 0.083 0.081 0.086 0.096 0.09 0.103 0.081 0.073
Brnswk 0.069 0.061 0.06 0.063 0.061 0.056 0.066 0.054 0.054
Byron N/A 0.075 0.076 0.078 0.077 0.079 0.085 0.074 0.074
Cairo 0.074 0.069 0.071 0.075 0.074 0.079 0.093 0.059 0.059
Camilla 0.074 0.073 0.075 0.077 0.082 0.089 0.096 0.062 0.062
Cordele 0.076 0.079 0.081 0.083 0.086 0.092 0.096 0.076 0.076
Dearing 0.09 0.083 0.083 0.085 0.082 0.082 0.088 0.078 0.078
Dixie 0.054 0.066 0.066 0.07 0.075 0.075 0.088 0.069 0.054
Dublin 0.068 0.084 0.087 0.091 0.089 0.098 0.111 0.095 0.068
Fort Valley 0.081 0.114 0.073 0.07 0.198 0.076 0.066 0.063 0.063
Griffin 0.072 0.068 0.065 0.066 0.073 0.064 0.068 0.059 0.059
Homerville N/A 0.1 0.101 0.105 0.101 0.102 0.116 0.1 0.1 
Midville 0.089 0.091 0.085 0.089 0.104 0.086 0.098 0.08 0.08 
Nahunta N/A 0.107 0.108 0.111 0.108 0.11 0.119 0.107 0.107
Newton 0.076 0.086 0.08 0.085 0.109 0.093 0.108 0.072 0.072
Plains 0.081 0.085 0.073 0.075 0.109 0.074 0.08 0.064 0.064
Savannah 0.06 0.073 0.081 0.086 0.07 0.094 0.11 0.089 0.06 
Tifton 0.086 0.08 0.068 0.069 0.099 0.063 0.068 0.054 0.054
Valdsta 0.073 0.071 0.075 0.078 0.071 0.081 0.092 0.07 0.07 
Vidalia 0.07 0.068 0.07 0.075 0.076 0.082 0.095 0.059 0.059
* (a) – Blairsville, Fort Valley; (b) -  Fort Valley, Alma; (c) – Blairsville, Alma  
  (d) – Blairsville, Alma, Attapulgus, Fort Valley; (e) – Savannah, Alma, Attapulgus, Fort Valley; (f) Griffin, Alma, 
Attapulgus, Fort Valley 
  (g) - Alma, Arlington, Attapulgus, Blairsville, Fort Valley, Griffin, Midville, Plains and Savannah 
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Table 3.3 Average error measure for the prediction period of eight hours, averaged over five data layouts.  

Development Location- 
specific 
models 

Two-location models Four-locations models Nine- 
location 
models 

Min 

          
Evaluation           

  
(a)* 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 

Alma 0.118 0.11 0.11 0.113 0.107 0.106 0.115 0.105 0.105 
Arlington 0.087 0.087 0.088 0.09 0.091 0.093 0.099 0.084 0.084 
Aattapulgus 0.105 0.1 0.1 0.099 0.099 0.099 0.107 0.095 0.095 
Blairsville 0.084 0.097 0.096 0.101 0.106 0.101 0.114 0.102 0.084 
Brnswk 0.08 0.072 0.071 0.08 0.071 0.067 0.077 0.065 0.065 
Byron N/A 0.089 0.09 0.096 0.087 0.09 0.096 0.086 0.086 
Cairo 0.085 0.083 0.085 0.089 0.084 0.09 0.104 0.08 0.08 
Camilla 0.085 0.087 0.089 0.096 0.093 0.1 0.107 0.083 0.083 
Cordele 0.086 0.148 0.15 0.103 0.097 0.103 0.107 0.086 0.086 
Dearing 0.1 0.097 0.097 0.1 0.092 0.093 0.099 0.09 0.09 
Dixie 0.064 0.08 0.08 0.087 0.086 0.086 0.099 0.09 0.064 
Dublin 0.078 0.098 0.101 0.108 0.1 0.109 0.122 0.116 0.078 
Fort Valley 0.091 0.128 0.087 0.086 0.209 0.087 0.077 0.075 0.075 
Griffin 0.083 0.082 0.079 0.083 0.083 0.075 0.079 0.074 0.074 
Homerville N/A 0.068 0.078 0.122 0.083 0.113 0.127 0.121 0.068 
Midville 0.1 0.105 0.099 0.104 0.115 0.097 0.109 0.096 0.096 
Nahunta N/A 0.075 0.083 0.128 0.096 0.121 0.13 0.128 0.075 
Newton 0.087 0.1 0.095 0.103 0.12 0.104 0.119 0.083 0.083 
Plains 0.091 0.099 0.087 0.088 0.12 0.085 0.091 0.085 0.085 
Savannah 0.071 0.087 0.095 0.106 0.08 0.105 0.121 0.11 0.071 
Tifton 0.096 0.093 0.082 0.086 0.109 0.075 0.079 0.075 0.075 
Valdsta 0.083 0.087 0.091 0.099 0.082 0.092 0.103 0.082 0.082 
Vidalia 0.08 0.082 0.084 0.098 0.087 0.093 0.106 0.08 0.08 
* (a) – Blairsville, Fort Valley; (b) -  Fort Valley, Alma; (c) – Blairsville, Alma  
  (d) – Blairsville, Alma, Attapulgus, Fort Valley; (e) – Savannah, Alma, Attapulgus, Fort Valley; (f) Griffin, Alma, 
Attapulgus, Fort Valley 
   (g) - Alma, Arlington, Attapulgus, Blairsville, Fort Valley, Griffin, Midville, Plains and Savannah 
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Table 3.4 Average error measure for prediction period of twelve hours and four configurations, averaged over five data layouts.  

Development Location- 
Specific 
models  

Two-location models Four-location models Nine-
location 
models 

Min 

    
Evaluation       

  
(a)* 

 
 ( b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 

Alma 0.112 0.111 0.113 0.113 0.109 0.114 0.123 0.103 0.103
Arlington 0.086 0.089 0.09 0.09 0.097 0.1 0.106 0.084 0.084
Attapulgus 0.097 0.098 0.1 0.099 0.102 0.107 0.114 0.095 0.095
Blairsville 0.085 0.097 0.098 0.101 0.103 0.108 0.121 0.102 0.085
Brnswk 0.085 0.113 0.078 0.08 0.178 0.075 0.084 0.075 0.075
Byron N/A 0.125 0.096 0.096 0.184 0.098 0.104 0.095 0.095
Cairo 0.082 0.123 0.086 0.089 0.206 0.097 0.111 0.08 0.08 
Camilla 0.089 0.126 0.095 0.096 0.2 0.107 0.115 0.089 0.089
Cordele 0.101 0.133 0.104 0.103 0.197 0.111 0.115 0.101 0.101
Dearing 0.101 0.133 0.1 0.1 0.198 0.1 0.107 0.099 0.099
Dixie 0.074 0.114 0.08 0.087 0.195 0.093 0.106 0.098 0.074
Dublin 0.086 0.134 0.106 0.108 0.201 0.117 0.129 0.116 0.086
Fort Valley 0.091 0.087 0.09 0.086 0.085 0.094 0.084 0.084 0.084
Griffin 0.087 0.115 0.083 0.083 0.178 0.083 0.086 0.08 0.08 
Homerville N/A 0.146 0.121 0.122 0.195 0.12 0.134 0.12 0.12 
Midville 0.103 0.133 0.103 0.104 0.195 0.104 0.116 0.101 0.101
Nahunta N/A 0.148 0.128 0.128 0.189 0.129 0.137 0.128 0.128
Newton 0.093 0.129 0.099 0.103 0.2 0.112 0.126 0.093 0.093
Plains 0.093 0.123 0.09 0.088 0.192 0.093 0.098 0.085 0.085
Savannah 0.082 0.127 0.101 0.106 0.19 0.112 0.128 0.11 0.082
Tifron 0.106 0.123 0.088 0.086 0.187 0.082 0.087 0.075 0.075
Valdsta 0.099 0.128 0.098 0.099 0.188 0.099 0.11 0.097 0.097
Vidalia 0.093 0.128 0.095 0.098 0.199 0.101 0.114 0.092 0.092
* (a) – Blairsville, Fort Valley; (b) -  Fort Valley, Alma; (c) – Blairsville, Alma  
  (d) – Blairsville, Alma, Attapulgus, Fort Valley; (e) – Savannah, Alma, Attapulgus, Fort Valley; (f) Griffin, Alma, 
Attapulgus, Fort Valley 
   (g) - Alma, Arlington, Attapulgus, Blairsville, Fort Valley, Griffin, Midville, Plains and Savannah 
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CHAPTER 4 

SUMMARY AND CONCLUSION 

 

The ultimate goal of this study was to develop ANNs that predict frost and no 

frost and that can be incorporated in a DSS to help farmers with protecting their crops 

from cold damage. ANNs were developed to predict frosts and near frosts for four, eight 

and twelve hours ahead. Initially data from Fort Valley, Blairsville and Alma were used. 

Experiments involving duplication of frosts to stratify the data were conducted.  Also, 

models were developed with various combinations of data from the three locations. The 

models with the most frost events, such as Blairsville, performed best. .  For instance, for 

the two-state classification systems for twelve hours, the false positive percentage and 

false negative percentage were 28% and 5% for Blairsville, 43% and 1% for Fort Valley, 

48% and 0.6% for Alma. The error measure, i.e., a normalized, weighted sum of the 

misclassifications, of the three-state classification system for twelve hours was 0.091 for 

Fort Valley, 0.085 for Blairsville, and 0.112 for Alma. 

In the second part of this study models were developed to predict frost and near 

frost for a location that did not have historical weather data based on stations with 

historical weather data. The ANN models that were developed using data from the nine-

location configuration were the most accurate models. The nine locations included Alma, 

Arlington, Attapulgus, Blairsville, Fort Valley, Griffin, Midville, Plains and Savannah, 

Georgia. The average error measures for evaluating on all 23 locations for the four-hour 

prediction for location specific network was 0.079, for the two location models was 
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0.080, for the four location models was 0.088, and for the nine location models was 

0.078. 

Future research will focus on developing programs that can use the ANNs 

developed and successfully incorporate them into the pre-existing web-based system to 

create the DSS that will help farmers protect their crops from frost. Expert systems that 

incorporate the four, eight and the twelve hour networks and form one system to predict 

frost would be desirable. Also, these frost predicting networks can be used in conjunction 

with the already existing temperature forecasting networks. The expert systems 

developed for the above mentioned systems can be enhanced by using fuzzy logic. Other 

machine learning techniques like decision trees, rule based systems developed using 

Genetic Algorithms can also be tried. Other areas to explore include more 

experimentation with the system studies – for instance, trying out three output nodes for 

the three state classification systems, with one node corresponding to each output 

category. 

 


