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ABSTRACT 

Increasing public concerns over odors and air regulations in non-attainment zones 

necessitate the remediation of a wide range of volatile organic compounds (VOCs) generated in 

the poultry-rendering industry. Currently, wet scrubbers using oxidizing chemicals, such as 

chlorine dioxide (ClO2), are applied to remove VOCs. However, little information is available on 

the kinetics of chlorine dioxide reaction with rendering air pollutants, which limits wet scrubber 

design and optimization. Kinetic analysis indicated that chlorine dioxide does not react with 

aldehydes under typical conditions, while thiols and disulfides rapidly reacted with chlorine 

dioxide. Moreover, pH can affect their reaction rates significantly. In order to obtain the kinetic 

data without the study of their complex reaction mechanisms, artificial neural networks (ANNs) 

were used to model the reactions of chlorine dioxide and VOCs. For the oxidation of single 

VOC, a standard three-layer back-propagation ANN was developed to predict the reaction rates. 

For VOC mixtures, a Ward ANN provided the best performance. The final models can be used to 

predict the initial ClO2 reaction rates with ethanethiol or DMDS for the design and optimization 

of wet scrubbers. 
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CHAPTER 1 

 

INTRODUCTION 

 

The promulgation of “Odor Control Rules”, increasing public concerns, and EPA air 

regulations in non-attainment zones necessitate the remediation of a wide range of volatile 

organic compounds (VOCs) generated in the rendering industry. Currently, wet scrubbers using 

oxidizing chemicals, such as ClO2 are utilized to treat VOCs.  However, little information is 

available on the kinetics of ClO2 reactions with rendering air pollutants, which limits wet 

scrubber design and optimization (Kastner and Das, 2002).  

  The overall goal of our research is to study the chemical reaction kinetics of chlorine 

dioxide and VOCs, to model the reactions using artificial neural networks, and to provide a 

kinetic basis for the design and optimization of web scrubbers and potentially develop process 

control methodologies.  

In Chapter 2, an experimental study was performed to determin if chlorine dioxide would 

react with straight chain and branched aldehydes, recently identified in rendering emissions. The 

kinetics of chlorine dioxide reaction with rendering air pollutants was also studied. Two model 

compounds, ethanethiol and dimethyl disulfide (DMDS) were selected for the kinetic study. 

Besides reaction orders, reaction rate constants, the effect of pH and temperature on the reaction 

rate were determined. A wet scrubber model utilizing the kinetic data was developed to predict 

scrubber performance. 
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Artificial neural networks (ANNs) have been intensively in chemistry and drug design in 

recent years (Zupan and Gasteiger, 1999). In Chapter 3, we used ANNs to model the reactions of 

chlorine dioxide with single VOC compound (ethanethiol and DMDS individually) without the 

study of the reaction mechanisms. To use the experimental data efficiently, k-fold cross 

validation was adopted to develop and evaluate ANN models. Through the selection of suitable 

network architectures and network parameter optimization, a standard three-layer feed-forward 

ANN with back-propagation learning algorithm was developed for the modeling. 

In Chapter 4, experiments of the reaction of chlorine and VOC mixtures were designed 

and data were acquired in a spectrophotometer with an automatic stopped flow system. Based on 

the experimental data, a more complex neural network model, the Ward net, was used to predict 

the reaction rate of chlorine dioxide with VOC mixtures.  

Conclusions and future work have been summarized in Chapter 5. 
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CHAPTER 2 

 

KINETICS AND MODELING OF ODOR OXIDATION USING CHLORINE DIOXIDE FOR 

EMISSION CONTROL WITH WET SCRUBBERS 

 

2.1 INTRODUCTION 

Poultry rendering operations convert organic wastes to products such as feed additives 

and fertilizer. In poultry rendering operations feathers are typically hydrolyzed in batch mode to 

breakdown the keratin (Prokop, 1974) and the meat by-products or offal are typically treated 

batch or continuous, with varying residence times depending on the mode of operation (Prokop, 

1985 and 1991). In some cases, the hydrolyzed feathers are then combined with offal and dried. 

In both of these steps, volatile organic compounds (VOCs) are generated, some of which are 

odorous. Overhead vapors from the feather hydrolyser and driers are passed through condensers 

to remove some VOCs.  The non-condensables are typically passed through wet scrubber units to 

remove the VOC fraction not removed in the condensers.   

Venturi scrubbers, packed-bed wet scrubbers, and biofilters have been used for odor 

removal in the rendering industry (Prokop, 1991). Venturi and packed-bed wet scrubbers are 

sometimes coupled together since the Venturi is a single stage scrubber (i.e., limited mass 

transfer capabilities) and acts to reduce temperature at particulate levels. A variety of oxidizing 

chemicals have been used as oxidizing agents, including sodium hypochlorite, chlorine gas, 

chlorine dioxide (ClO2), and ozone/NaOCl (Prokop, 1991).  Removal efficiencies based on odor 
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units ranged from 99% to 93-96% for processes using a Venturi and a packed-bed wet scrubber 

(water and NaOCl) and a single packed-bed system (ClO2) treating low intensity odors, 

respectively (Prokop, 1991). However, design data, such as optimum chemical concentration, 

were not reported.  Moreover, removal efficiencies were based on odor units, which give no 

indication of individual and total VOC removal efficiencies.   

For poorly, water soluble VOCs, mass transfer from the gas phase must be coupled with 

rapid reaction in the liquid phase for high removal efficiencies in wet scrubbers. Thus, removal 

efficiencies will depend not only on Henry’s Law, but on the reaction rate and order in the liquid 

film. It is theorized that chemical oxidizing agents react with many of the odor causing 

compounds in rendering emissions (e.g., H2S, methanethiol). Recently, major compounds 

consistently identified in rendering emissions included dimethyl disulfide, methanethiol, octane, 

hexanal, 2-methylbutanal, 3-methylbutanal, and 2-methylpropanal (Kastner and Das, 2002). The 

two branched aldehydes, 2-methylbutanal and 3-methylbutanal, were typically the largest 

fraction of the VOC mixture. Hexanal, 2-methylbutanal, and 3-methylbutanal have been 

associated with negative odor properties and chemical smells (Brewer et al., 1999; Hrudey et al., 

1988).  Hexanal has been identified as the primary odor causing compound in the overuse of 

frying oil and the branched aldehydes associated with wastewater odors. However, kinetic data 

specific for the VOCs generated in the rendering industry is lacking, without which optimal 

scrubber design is impractical (Overcamp, 1999).  Kinetic data suggest that typical oxidizing 

agents used in wet scrubbers (e.g., ClO2 and ozone) do not react or react slowly with many of the 

VOCs in rendering plant waste gases (Rav-Acha and Choshen, 1987; Hoigne and Bader, 1994), 

however, the kinetics of reaction between ClO2 (and other oxidizing agents) with the major VOC 

fractions in rendering emissions has not been measured. Reaction rate constants ranging from 4 x 
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104 to 3 x 108 (L/mol/s) are reportedly required to achieve rapid removal in wet scrubbers 

(Overcamp, 1999). Benzaldehyde, a representative aldehyde periodically measured in rendering 

emissions (Barnes and MacLeod, 1982) has a reported reaction rate constant of less than 3 x 10-4 

(L/mol/s) with ClO2 (Hoigne and Bader, 1994). Thus, critical data are lacking to assess and 

design wet scrubbers for total VOCs.   

The objectives of this research were to determine if ClO2 would react with straight chain 

and branched aldehydes recently identified in rendering emissions, and to determine the kinetics 

of ClO2 reaction with rendering air pollutants, and develop a wet scrubber model utilizing the 

kinetic data to predict scrubber performance.  These data will provide a basis for lowering VOC 

emissions (both odorous and ozone contributing) via process improvements. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Chemicals 

All chemicals were of reagent grade and ethanethiol, 2-methylbutyraldehyde, and hexanal 

were obtained from Aldrich.  Dimethyl disulfide was obtained from Acros Organics. All buffer 

solutions were prepared at 0.2M and included sodium acetate-acetic acid (pH 3.6), sodium 

phosphate dibasic-sodium phosphate monobasic (pH 6.9), and carbonate-bicarbonate (pH 9 and 

11.02). Chlorine dioxide was prepared in a SVP-PureTM Chlorine Dioxide Generator (EKA 

Chemicals Inc.) and the chemical reaction used to generate chlorine dioxide was the following 

(Tenney, 1997): 

 

NaClO3+1/2 H2SO4+1/2 H2O2 → ClO2+1/2 O2+1/2 Na2SO4+H2O  (1) 
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The chlorine dioxide solution, typically ranging in concentration from 2.0-2.1 g/L, was 

stored at 4°C up to 4 months before use.  The maximum absorbance wavelength for ClO2 was 

confirmed to be 358 nm via manual scanning and the molar absorptivity was calculated by 

measuring absorbance at 358 nm at several different concentrations (6-60 mg/L) and found to be 

1195 L mol-1 cm-1.  Chlorine dioxide concentrations were confirmed using the iodometric 

method (Greenberg et al., 1992). 

2.2.2 Kinetic analysis 

2.2.2.1 Rate law 

Experiments were designed such that the volatile organic compound (e.g., 2-

methylbutanal) was in excess relative to ClO2 and the rate law could be considered pseudo-first-

order (Hoigne and Bader, 1994).  

 

aA (g→l) + bB (l) → cC  or  A + b/aB → c/aC    (2) 

 

where A = VOC, B = ClO2, C = product, and a, b, and c are molar coefficients of the 

reaction. In a well mixed batch reactor the rate law for the reaction is, 

 

mn ABk
dt
dB

b
r 2

1
=−=−       (3) 

 

where, r is the reaction rate, k2 is the rate constant and n and m are reaction orders with 

respect to each reactant.  If the VOC is added to the mixture in excess of ClO2, the rate law 

becomes 
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nBk
dt
dB

1=−
       (4) 

mAkk 21 =                    (5) 

 

For a reaction first-order in B, Equation 4 can be solved for B and a plot of ln[B0/B] 

versus time used to determine the pseudo-first-order rate constant, k1, where B0 is the initial 

concentration of the ClO2. If the ln[Bo/B] versus time plot is a straight line, then the reaction can 

be considered first order. The reaction order with respect to A (m) can be determined from 

Equation 5 by plotting ln(k1) versus ln (A), and for a straight line the slope is equal to m and the 

intercept equal to ln(k2).  

2.2.2.2 Batch method 

In early experiments reactions were measured by injecting chlorine dioxide stock 

solutions into UV cells (10 mm, 4 ml total volume) containing the VOC of interest. The mixture 

was rapidly mixed via inversion of the closed cell and ClO2 absorbance measured at 358 nm at 3-

sec intervals. Reaction temperature was controlled by using a thermostated UV cell at 23-25°C 

and pH was controlled from 3.5 to 11 using buffer systems. 

2.2.2.3 Stopped-flow method 

To increase kinetic accuracy a stopped-flow device (Hi-Tech Scientific, Model SFA-20) 

was connected to the spectrophotometer (Beckman DU 650).  Fresh reagent (ClO2) and substrate 

(VOC) were loaded in individual syringes and rapidly pumped through a thermostated line with 

an in-line mixer, into and rapidly out of a flowcell (10 mm optical path length), typically in less 

than 8 msec, and then finally into a stopping syringe, with a minimum volume per reaction of 

100 µl.  An external water bath (GAC Corp., Precision) and pump was used to maintain a 
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constant temperature in the thermostated line of the stopped-flow device and temperature was 

monitored using a thermocouple (Omega Digital Thermometer, Type T thermocouple). The 

initial concentration ratio of substrate (VOC) to reagent (ClO2) was maintained at least 5:1 to 

promote pseudo first order conditions.  A minimum of 20 ClO2 absorption data points were 

recorded during each run at 0.1 sec intervals, and at least two parallel kinetic runs were 

performed to determine a rate constant.  Control experiments were performed without the VOC 

present at each temperature and pH in which stopped-flow experiments were performed to 

measure the background loss in absorbance due to decomposition of ClO2. 

2.2.3 Rendering process 

Wet scrubber analysis was performed on a packed-bed, wet scrubber (ClO2, 50 mg/L - 1 

g/L) used to treat non-condensable gases from batch feather/blood hydrolyzers and continuous 

cookers. Removal efficiency analysis was performed on this first stage scrubber, which was 

sized to handle 33,994 m3/h (1.9 m diameter, 3.5 m of packing). The scrubbing solution 

consisting of chlorine dioxide was passed across the packing at 814 L/min with approximately 

90% recycle (i.e., 10% blow down). Scrubber analysis was performed as outlined in Kastner et 

al., (2002). 

2.2.4 Simulation (mass transfer with chemical reactions) 

The overall removal rate of the VOC in the scrubber was assumed to be a function of 

three resistances located in the gas film, liquid film, and bulk liquid (Levenspiel, 1999).  

 

A

lB

A

Al

A

Ag

A p

fkC
H

aEk
H

ak

r
++

=−
1

1

     (6) 
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where –rA is overall rate of VOC removal (e.g., moles/s) per unit reactor volume, E is the 

enhancement factor due to chemical reaction defined as the ratio of the rate of VOC transfer with 

chemical reaction to the rate of transfer without reaction, HA is the Henry’s Law constant for the 

VOC, a is ratio of the gas-liquid interfacial area to reactor volume, k is the reaction rate constant 

for the VOC, kAg and kAl are gas and liquid mass transfer coefficients for the VOC, CB the 

concentration of the oxidizing agent, pA the partial pressure of the VOC, and fl the fraction of 

liquid volume in the reactor. The enhancement factor was calculated using the instantaneous 

enhancement factor (Ei) and Hatta number (MH) as outlined in Levenspiel (1999). The Hatta 

number is defined as the ratio of the maximum VOC conversion in the liquid film to the 

maximum rate of mass transfer in the liquid film.  E, Ei, and MH all depend on the reaction order 

of the system. Juvekar and Sharma (1977) derived expressions for Ei and MH depending on the 

reaction order. 

 

*1
bA
B

D
DE o

A

B
i +=

      (7) 

 

Al

nom
mnA

H k

BAkD
mM

1*

1
2 −

+=
     (8) 

 

Once the rate equation is defined it can be used in a differential mass balance equation 

over an absorber for both the liquid and gas phases to develop the reactor design equation. The 

general reactor design equations for gas-liquid reactions are the following: 
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A
g

lB

A

Al

A

Ag
A

g

A

r

A p
F

fkC
H

aEk
H

ak
p

F
ar

dV
dY

++
−=

−
=

1
1

    (9) 

    l

g

A

B

F
bF

dY
dX

−=
      (10) 

 

The equations above assume plug flow in both the liquid and gas, and isothermal 

conditions. 

  

2.3 RESULTS AND DISCUSSION 

2.3.1 ClO2 kinetics 

Rapid reaction rates are required for poorly water soluble compounds to be removed at 

high removal efficiencies in wet scrubbers.  The chemical oxidizing agent, chlorine dioxide 

(ClO2), although widely used in the rendering industry did not react with hexanal and 2-

methylbutanal at pH 3.66 and 23-26°C.  This is supported by the fact that absorbance monitored 

at 358 nm did not change when ClO2 and these aldehydes were contacted, compared to the rapid 

change in absorbance for the reduced sulfur compounds (Fig. 2.1). The result that ClO2 does not 

react with hexanal and 2-methylbutanal (and thus we assume 3-methylbutanal as well) indicates 

that the aldehydes are removed via mass transfer only. These results also compare favorably to 

reactions of ClO2 with benzaldehyde, which has a reported rate constant less than 3 x 10-4 

(L/mol-s at pH 8) with ClO2 (Hoigne and Bader 1994).   
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2.3.2 Reaction order 

As previously noted, experiments were designed such that the volatile organic compound 

(e.g., 2-methylbutanal) was in excess relative to ClO2 and the rate law considered pseudo first 

order (Hoigne and Bader, 1994 & 1983). Under these conditions a plot of ln[Bo/B] versus time 

was used to determine the pseudo-first-order rate constant, k1 (considered first-order, n = 1,  if a 

straight line) and the reaction order with respect to A (m) determined by plotting ln(k1) versus 

ln(A) with the slope (assuming a straight line) equal to m and the intercept equal to ln(k2). Semi-

log plots of absorbance versus time for ethanethiol were linear (R2 ≥ 0.99) indicating pseudo-

first-order kinetics (data not shown). However, absorbance versus time plots for dimethyl 

disulfide (assuming first-order) were not linear (R2 < 0.95), suggesting a different mechanism or 

reaction order (Fig. 2.2). Consequently, an alternative rate law was theorized for dimethyl 

disulfide (DMDS) – an overall third order reaction, second order in ClO2 and first order in 

DMDS,  

                                                  12
3 ABk

dt
dBrB =−=−                                   (11) 

 
where, -rB is the reaction rate and k3 is the third-order rate constant.  If DMDS or A is 

added to the mixture in excess of ClO2, the rate law becomes second-order with respect to B or 

ClO2. 

 

     2
2 Bk

dt
dB

=−                    (12) 

 

                  (13) mAkk 32 =

 

12 



 

For a reaction second order in B, Equation 12 can be solved for B and a plot of (1/B – 

1/B0) versus time and used to determine the pseudo-second-order rate constant, k2, where B0 is 

the initial ClO2 concentration. If the plot is a straight line, then the reaction can be considered 

second order in ClO2 (n = 2).  A significant improvement in the goodness of fit to the kinetic data 

was obtained when assuming a pseudo-second order reaction for DMDS (Fig. 2.2).  

The reaction of ethanethiol with ClO2 was first-order in ClO2 (or B), since a plot of ln(k1) 

versus ln(B) yielded a straight line (Fig. 2.3) with the slope, m,  never significantly deviating 

from 1 (0.93 ± 0.03).  Consequently the overall reaction order for ethanethiol reacting with ClO2 

was determined to be second order, since k2 = k1/B remained constant. 

 

2.3.3 Temperature and pH dependence 

Since reaction rates are a function of temperature and pH, these parameters were 

systematically altered to determine their effect on VOC oxidation.  Regardless of the increase in 

temperature and pH, a significant increase in the reaction rate of hexanal and 2-methylbutanal 

with ClO2 did not occur (data not shown), contrary to ethanethiol and dimethyl disulfide, which 

showed a significant increase in the reaction rate with ClO2 as pH or temperature were increased 

(Fig. 2.4 and 2.5).  These data suggest that a majority of the VOCs in rendering emissions, that 

is, aldehydes, do not react with ClO2 and are only removed via absorption. 

Rate constants for ClO2 reacting with ethanethiol and dimethyl disulfide both increased 

with temperature (Fig. 2.4), however there was no measurable reaction with the aldehydes at 

higher temperatures.  The reaction of ethanethiol appeared to follow the Arrhenius equation, but 

a semi-log plot of k3 versus 1/T appeared to deviate from a straight line for dimethyl disulfide 

(Fig. 2.4).  The activation energy for ethanethiol was found to be 13,000 cal/mol and the 
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frequency factor was 9.43 x 1010 L/mol/s (R2 = 0.997), compared to an activation energy of 

27,363 cal/mol and frequency factor of 2.285 x 1025 L2/mol2/s (R2 = 0.76) for dimethyl disulfide. 

Comparison of Fig. 2.4 and 2.5 indicates that pH had a more significant effect on the reaction 

rate, especially for ethanethiol.  As noted in Fig. 2.5, the second order rate constant for 

ethanethiol increased exponentially with pH.  Because the reaction rate was extremely fast above 

pH 5, it was difficult to obtain accurate kinetic data at higher pH values, and extrapolation was 

performed to estimate k2 at higher pH values (see discussion).  The second-order rate constant 

for ethanethiol was estimated as 4 x 104 and 4 x 106 (L/mol/s) for pH 6 and 8 respectively, 

similar to a value of 5 x 105 (L/mol/s) for 2-methyl-1 propane thiol at pH 8 (Hoigne and Bader, 

1994).  

Reaction rates were significantly larger for ethanethiol and dimethyl disulfide (DMDS), 

compared to the aldehydes and increased exponentially with pH.  The exponential increase in the 

rate constant with pH indicates the dissociated form of ethanethiol reacts at a much higher rate 

with ClO2. These results compare favorably to previously measured rate constants for ClO2 

reacting with 2-methyl-1-propanethiol (5 x 105 L/mol-s, pH 2-5.5) (Overcamp, 1999). The 

significantly different response of the rate constant for DMDS to an increase in pH (flat from pH 

3.6 to 7, followed by an exponential increase from 7 to 10.6) and the fact that DMDS does not 

dissociate suggests a mechanism different from ethanethiol (and thiols in general).  It is possible 

that a consecutive reaction occurs between DMDS (A) and ClO2 (B) that results in a product 

from the first reaction that dissociates and reacts at a much higher rate with ClO2 (i.e., A+B →C, 

C+B→ D).  
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2.3.4 Modeling 

The kinetic data for ethanethiol oxidation was used to model gas absorption with 

chemical reaction for methanethiol. First the Hatta (MH) number and Ei were calculated, 

assuming m = 1, according to: 

 

Al

BoA
H k

CkD
M 2=

     (14) 
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/
1+=

      (15) 

 

The liquid phase mass transfer coefficient was estimated using the correlation of Onda et 

al., (1959) which requires the liquid phase density, viscosity, diffusivity, and the total surface 

area of the packing. We also assumed that the kinetics measured for ethanethiol would be similar 

to methanethiol. Ethanethiol was chosen as the model compound because it was less volatile than 

methanethiol and a liquid at room temperature, and thus could be utilized in the batch kinetic 

studies. Additional assumptions were that b/a = b = 2 (Hoigne and Bader 1994) and the partial 

pressure of the VOC at the interface, pAi, equaled the partial pressure in the bulk gas phase, pA 

(as an initial guess in evaluating equation 15). 

Using the second order rate constant for ethanethiol reacting with ClO2 a Hatta number of 

1.8 was determined  at a pH of 3.66 (CB = 65 mg/L, T=35°C, P=1atm, Cg=4 ppmv). A Hatta 

number between 0.02 and 2 indicates that the reaction is slow enough to allow some of A (the 

VOC) to penetrate into the bulk liquid and react with B (ClO2) (Levenspiel, 1999). However, a 

small increase in pH would raise the Hatta above 2, allowing for all of the reaction to occur in 

the liquid film. This suggested that the overall rate equation (Equation 6) could be modified to 
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exclude any reaction in the bulk liquid. Since k2 and DAl are not strong functions of temperature 

(over the temperature range expected in an industrial scrubber), the effect of pH on the Hatta 

number (MH) was determined. In addition, since the instantaneous enhancement factor, Ei, was 

always five times greater than MH, E was assumed equal to MH, also indicating a pseudo first 

order reaction (Levenspiel, 1999).  The Enhancement factor, E or MH, increased significantly as 

the pH was slightly increased (Figure 2.6). The increase in E or MH above 2 indicated that the 

reaction would take place at the gas-liquid interface or all within the liquid film and thus 

significantly increase the overall removal rate (Levenspiel, 1999).   

Using experimental values for k2 and E=MH= Al

BA

k
CkD 2

the reactor design equation was 

solved numerically to determine the gas phase concentrations of the VOC (i.e., methanethiol) as 

a function of reactor height. Assuming dilute solutions and a pseudo first order reaction, the 

following changes were made to the design equations: 
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Equation 17 was assumed to apply over a differential change in reactor height and solved 

to predict the consumption of ClO2 over the column.  Pseudo first order kinetics was verified 

using equation 18; e.g., at an inlet ClO2 concentration of 1 g/L a 1.5% reduction in ClO2 is 

predicted (pAin=0.405 Pa or 4.05 ppmv, a 95% conversion, and see Table 2.1 for other inputs).   
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Using the model for mass transfer with chemical reaction, parameters based on vendor 

data, and estimates from the literature (Table 2.1), the predicted packing height required for a 

range of methanethiol conversions as a function of the reaction rate constant was calculated and 

compared to field scale data. The model predicts a significant increase in methanethiol 

conversion efficiency (using kinetics for ethanethiol) as the pH and thus overall reaction rate is 

increased (Figure 2.7). However, the model clearly under-predicts methanethiol conversion 

efficiency at the measured pH values of the scrubbing solution and reported operational packing 

height of the scrubber (Figure 2.7). 

It is unclear as to why the kinetic model did not predict the field scale results. One 

possibility was that the kinetics of ClO2 oxidation with methanethiol is faster than for 

ethanethiol. However, the pKa for methanethiol is 10.7, which is not significantly different from 

ethanethiol (pKa = 10.6) (Dean, 1992), indicating the effect of pH on the rate constant would be 

similar. Steric effects only accounted for a 16% reduction in the acid catalyzed esterification of 

CH3COOH versus CH3CH2COOH (Conners, 1990), and thus are unlikely to account for the 

apparently large difference in reaction rates between the field scale scrubber and the kinetic 

model. Order of magnitude changes in parameters obtained from correlations or the literature 

(i.e., kl, kg, DAl, b=1) and process inputs (Fg, Fl) couldn’t account for the differences as well.  

Other possibilities were that scrubbing solution pH was actually higher than that recorded using 

in-line probes or residual chlorine was produced via the on-site ClO2 generator which would 

react at a much higher reaction rate (Kastner and Das, 2002). The opposite appears to be true for 

the aldehyde fraction. Kinetic data coupled with the removal efficiency data and simulation 
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studies indicate that low removal efficiencies for the aldehydes and alkanes are due to lack of a 

reaction with ClO2.   

 

2.4 CONCLUSION 

Batch kinetic analysis can be used to rapidly screen oxidizing agents to determine if they 

oxidize and remove air pollutants in rendering emissions and can also be used to rapidly 

determine optimum operating conditions, such as pH and oxidizing agent concentration. 

Moreover, the kinetic data can be used in models to predict trends in removal efficiency in 

industrial scale scrubbers. 

The kinetic analysis also indicates that chlorine dioxide does not react with hexanal and 

2-methylbutanal (and presumably the entire aldehyhde fraction) over a wide range of pH and 

temperatures, which constitutes a major fraction of VOC emissions. Contrary to the aldehydes, 

ethanethiol (a model compound for methanethiol) and dimethyl disulfide rapidly reacted with 

ClO2. Moreover, an increase in pH from 3.6 to 5.05 exponentially increased the reaction rate of 

ethanethiol and significantly increased the reaction rate of dimethyl disulfide if increased to pH 9 

(these results should also apply to methanethiol). Thus, a small increase in pH could significantly 

improve wet scrubber operations for removal of odor causing compounds. Further research is 

required to improve wet scrubber models using kinetic analysis, including a more accurate model 

for disulfides and incorporation of multiple VOCs reaction kinetics with the oxidizing agent in 

the scrubbing solution.  The model could be used to optimize wet scrubber operations using ClO2 

or other oxidizing agents provided kinetic data are available. 
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Notation 

a  gas-liquid interfacial area per unit volume reactor (m2/m3)   

aw   area of packing wetted by the flowing liquid per unit volume of packed bed. 

A  absorption factor defined as (L / mG) 

Am  VOC liquid phase concentration (mol/m3) 

B0  ClO2 liquid phase concentration (mol/m3) 

CB  ClO2 liquid phase concentration (mol/m3) 

CBo  ClO2 liquid phase concentration (mol/m3) 

CT  Total liquid phase concentration (mol/m3)

DAl, DA Diffusivity of the VOC in the liquid phase (m2/s) 

DB  Diffusivity of ClO2 or ozone in the liquid phase (m2/s) 

E  Enhancement factor 

Ei  Instantaneous enhancement factor 

fl  ratio of liquid volume to reactor volume

Fg  molar flow rate the inerts in the gas phase (mol/s) 

Fl  molar flow rate of the inerts in the liquid phase (mol/s) 

g  gas phase 

G   volumetric flow rate of the gas stream 

Gm   superficial mass velocity of gas. 

h    Height of wet scrubber (m) 

HA  Henry’s Law contant, (m3-Pa/mol-s) 

kAg  gas phase mass transfer coefficient (mol/m2-s-Pa) 

kAl   liquid phase mass transfer coefficient (m/s) 

k’Al   liquid phase mass transfer coefficient with chemical reaction (m/s) 

k1  Pseudo first order rate constant (1/s) 

k2  Overall second order rate constant (l/mol/s) 

k3  Overall third order rate constant (l2/mol2/s2) 

KG   Overall mass transfer coefficient for the gas phase. 

l  liquid phase 

L   volumetric flow rate of the liquid stream 

MH  Hatta number 
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pA  Partial pressure of VOC at any point in the wet scrubber (Pa) 

pAi  Partial pressure of the VOC at the liquid-gas interface (Pa) 

pAo  Partial pressure of VOC at the inlet of the wet scrubber (Pa) 

m   slope of the equilibrium curve (equal to the Henry's law constant for dilute  

  solutions). 

rA   overall rate of VOC removal (e.g., moles/s) per unit reactor volume 

y1   mole fraction of the entering gas. 

y2   mole fraction of the exiting gas. 

YA  mole fraction of the VOC based inerts in the gas phase 

x1   mole fraction of the exiting liquid. 

x2   mole fraction of the entering liquid. 

XB  mole fraction of ClO2 based on inerts in the liquid phase 

ρG   gas phase density 

S  Cross sectional area of wet scrubber (m2) 

 

π  Sum of the partial pressure of the components in the gas phase 
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Table 2.1 Model inputs for wet scrubber with chemical reaction. 

Parameter Input and Units Description 

a 85                       m2/m3 Total packing surface area 

b 2 Moles of ClO2 consumed per mole of 
VOC consumed 

CBo 15                       mol/m3 Inlet ClO2 concentration 

CT 55,317                mol/m3 Total concentration of liquid phase 

DAl 1.2 x 10-9            m2/s Diffusivity of the VOC in water at 35°C 

fl 0.1 Ratio of liquid volume to reactor volume 

Fg 390.74                mol/s Gas flow rate 

Fl 771.6                  mol/s Liquid flow rate 

HA 376                     m3-Pa/mol-s Henrys Law constant, 35°C 

kAg 1.89 x 10-5          mol/m2-s-Pa Gas phase mass transfer coefficient 

kAl 7.83 x 10-4          m/s Liquid phase mass transfer coefficient 

k2 0.0025 – 6 x 106       m3/mol-s Second order rate constant 

π 101,324.6           Pa Sum of partial pressures 

pAo 0.405                  Pa Inlet VOC partial pressure 

T 35                      °C Temperature of liquid scrubbing solution 
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Fig. 2.1 Batch reaction of ClO2 (98 mg/L) with hexanal ( ) and 2-methylbutanal ( ), and the 

reduced sulfur compounds ethanethiol ( ) and dimethyl disulfide ( ) at pH 3.36. The 

concentration of the volatile organic compound was 477 mg/L to maintain a 4:1 ratio of VOC to 

ClO2 and pseudo- first-order conditions. 
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Fig. 2.2 Change in absorbance for the reaction of ClO2 with dimethyl disulfide (DMDS) 

assuming pseudo first order kinetics (second order overall), ( ) and pseudo second order (third 

order overall), ( ).  
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Fig. 2.3  Plot of k1 versus substrate concentration for ethanethiol reacting with ClO2 (20-50 

mg/L) at temperatures of 22-24°C ( ), 35-37°C ( ), and 40°C ( ), and a pH of 3.58. The 

concentration of ethanethiol ranged between 100-500 mg/L to maintain a 5:1 ratio of ethanethiol 

to ClO2. 
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Fig. 2.4  Arrhenius plots for the overall rate constants of ClO2 reacting with ethanethiol ( ) and 

dimethyl disulfide ( ) at pH 3.6 (hexanal and 2-methyl butanal did not react with ClO2 at 

increasing temperatures). 
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Fig. 2.5  Effect of pH on the second and third order rate constant of ClO2 reacting with 

ethanethiol ( ) and DMDS ( ) at a temperature ranging between 23-25°C. 
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Figure 2.6  The effect of ClO2 concentration (A) at three different inlet methanethiol 

concentrations, 4 ( ), 10 ( ), and 25 ( ) ppmv on Ei and the effect of pH on the Enhancement 

factor, E, for methanethiol (B). All parameters in the model were calculated at a temperature of 

35°C and the rate constant measured for ethanethiol was assumed valid for methanethiol.   
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Figure 2.7  The effect of pH (i.e., reaction rate constant) on the packing height required for 

different methanethiol removal efficiencies predicted via the model versus experimental data (pH 

3.0, ; pH 3.5, ) measured in an industrial scale scrubber (4 m packing height) using ClO2. All 

parameters were calculated using a temperature of 35°C and an inlet ClO2 concentration of 1 g/L, 

and experimental conversion efficiencies were based on a detection limit of 0.3 ppmv (Kastner 

and Das, 2002). 
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MODELING REACTION KINETICS OF CHLORINE DIOXIDE AND VOLATILE 

ORGANIC COMPOUNDS WITH ARTIFICIAL NEURAL NETWORKS1
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Abstract  

Wet scrubbers are primarily used in the rendering industry to remove odorous harmful 

organic compounds. Chlorine dioxide is the major oxidant used in wet scrubbers to oxidize those 

volatile organic compounds (VOCs). Reaction kinetic data of chlorine dioxide and VOCs are 

important to wet scrubber design and optimization, but they are lacking. Deriving reaction 

kinetic equations through the study of their reaction mechanisms is difficult because the reaction 

of chlorine dioxide and VOCs is complicated and involves multiple steps and several 

intermediate products. Therefore, artificial neural networks are applied here to model the 

reaction kinetics without the prior knowledge of reaction mechanism. A k-fold cross validation 

approach was adopted to partition the data and evaluate model performance. Through the 

selection of suitable network architectures and network parameter optimization, a standard three-

layer feed-forward network with back-propagation learning algorithm was developed to predict 

the initial reaction rate of chlorine dioxide with ethanethiol and dimethyl disulfide. For 

ethanethiol, the average mean square error (MSE), mean absolute error (MAE), and R squared 

value the model produced on the three production data sets (pH 3.73, 3.92, 4.01) are 17.807, 

3.471, and 0.9279 respectively. For DMDS, the average MSE, MAE, and R squared value the 

model produced on the four production data sets (pH 5.26, 6.92, 7.62, and 9.02) are 4.437, 1.589, 

and 0.8566, respectively. A final model can be developed by using all the available data patterns 

as training data without a testing data set. The final model then can be used to predict the initial 

ClO2 reaction rates with ethanethiol or DMDS for the design and optimization of wet scrubbers. 

 

Keywords: artificial neural network, chlorine dioxide, volatile organic compounds, kinetics, 

modeling 
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3.1 INTRODUCTION 

Poultry rendering operations convert organic wastes (feathers, offals, dead birds, blood, 

and hatchery byproducts) to products such as feed additives and fertilizer. The non-condensable 

gases produced during this process contain a wide range of volatile organic compounds (VOCs) 

that are typically passed through wet scrubbers units (Fig. 3.1) for air pollution control. Major 

VOCs identified in rendering emissions include dimethyl disulfide (DMDS), methanethiol, 

octane, hexanal, 2-methylbutanal, 3-methylbutanal, and 2-methylpropanal (Kastner and Das, 

2002). The mechanism of VOC removal through wet scrubbers involves mass transfer and 

chemical oxidation. Chlorine dioxide is usually used as the oxidant in wet scrubbers. Thus, the 

reaction rate of chlorine dioxide and VOCs is one of the major factors that determine wet 

scrubber removal efficiency. Unfortunately, kinetic data of the reaction of chlorine dioxide and 

VOCs generated in the rendering industry are lacking, so the design and optimization of wet 

scrubbers are limited (Kastner et al., 2003). 

With the resurgence of artificial neural networks (ANNs) in the mid-1980s (Russell and 

Norvig, 1995; Smith, 1993), ANNs have been applied in a wide variety of domains. The first 

well-known application of ANNs in chemistry and chemical engineering occurred in the late 

1980s (Bulsari, 1995). ANNs have become a powerful and popular tool in chemistry and 

chemical engineering (Gasteiger and Zupan, 1993; Bulsari, 1995; Zupan and Gasteiger, 1999). 

Compared to traditional statistical methods such as multiple linear regression, principle 

component analysis, and principle component regression, ANNs have the advantages of 

nonlinear mapping, no prior knowledge requirement, and robustness to noisy data.  

ANN research was initially motivated by the observation that biological learning systems 

are built of very complex webs of interconnected neurons. ANNs provide a general, practical 
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method for learning real-valued, discrete-valued, and vector-valued functions from examples. 

Learning algorithms such as back-propagation use gradient descent to adjust network weights to 

best fit a training set of input-output pairs (Mitchell, 1997). Because of its black-box 

characteristic, ANNs have been used in chemical reaction kinetic modeling by many researchers 

in recent years (Psichogios and Ungar, 1992; Blanco et al., 1995; Galvan et al., 1996; Bryjak et 

al., 2000; Safavi et al., 2001).  

In this research, we will study the reaction kinetics of chlorine dioxide with two VOCs: 

ethanethiol and DMDS. In theory, reaction rates can be calculated from reaction rate equations. 

But it is difficult to derive these kinetic equations from their reactions, because oxidations of 

disulfides and thiols involve many steps and several intermediate products. The final oxidation 

product of disulfide is sulfonic acid. Figure 3.2 shows possible reaction steps and intermediates. 

Oxidation of thiol proceeds stepwise, producing disulfide initially, and finally sulfonic acid (Oae, 

1977). Besides reactant concentrations, major factors that affect the reaction rate of the oxidation 

process include pH, temperature, and time. The relationships among the variables affecting the 

reaction rate, called the rate law, in many cases are non-linear. Also it is difficult to develop one 

rate law equation that adequately predicts the reaction rate as a function of these important 

variables. 

The goal of this research was to use ANNs to model the reaction of chlorine dioxide and 

two VOCs (ethanethiol and DMDS) for subsequent use in designing wet scrubbers. The 

developed model would predict the initial reaction rate of chlorine dioxide with the VOCs based 

on inputs of initial concentrations of chlorine dioxide and VOCs, temperature, and pH. The 

objectives of this study were to: 
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1. Collect kinetic data on the reaction of chlorine dioxide and ethanethiol using a 

UV-VIS spectrophotometer and a stopped-flow device; 

2. Collect kinetic data of the reaction of chlorine dioxide and DMDS using a similar 

approach; 

3. Calculate the initial reaction rates from the collected experimental data and 

partition data sets for model development and model evaluation. 

4. Develop ANN models for the reactions of chlorine dioxide and the VOCs and 

evaluate the performance of the models. 

 

3.2 MATERIALS AND METHODS 

3.2.1 Chemicals 

All chemicals used in the study were of reagent grade. Ethanethiol was obtained from 

Aldrich, and DMDS was obtained from Acros Organics. Chlorine dioxide was prepared in an 

SVP-PureTM Chlorine Dioxide Generator (EKA Chemicals Inc.). The solution, about 2.2 g/L, is 

stored in dark bottles at 4°C up to 4 months. The maximum absorbance wavelength of ClO2 

checked by wavelength scanning was 358 nm and its molar absorptivity was calculated to be 

1195 M-1cm-1. Chlorine dioxide concentrations were confirmed using the standard iodometric 

method (Greenberg et al., 1992). 

3.2.2 Instruments 

The oxidation of DMDS and ethanethiol are fast reactions, therefore a stopped-flow 

device (Hi-Tech Scientific, Model SFA-20) was connected to a UV-VIS spectrophotometer 

(Beckman DU 650). Fresh reagent (ClO2) and substrate (VOC) were loaded in individual 

syringes and rapidly pumped through a thermostated line with an in-line mixer into and out of a 
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flow cell (10mm optical path length), typically in less than 8 milliseconds. The mixture then 

flowed into a stopping syringe with a minimum volume per reaction of 100 µL. An external 

water bath (GAC Corp.) with a pump (Precision) was used to maintain constant temperatures for 

the stopped-flow device. 

3.2.3 Data acquisition 

The initial concentration ratio of VOC to ClO2 was equal to or larger than 5 to satisfy 

pseudo-first order conditions (Steinfeld, Francisco, and Hase, 1999). A minimum of 20 ClO2 

absorption data points was recorded during each run and the minimum data recording interval 

was 0.1 second. Most runs had a parallel replicate experiment, and some had three replicates. 

The initial reaction rate of chlorine dioxide was calculated by the method of numerical forward 

differencing based on the experimental data. The generation of one observation (or data pattern) 

usually required more than two hours including chemical solution preparation, instrument 

operation, and data processing. Therefore, the number of data patterns for ANN model 

development and evaluation are limited. 

3.2.4 Neural network model development and evaluation 

NeuroShell 2.0 (Ward System Group) was used to develop the ANN models. Separate 

models were developed for ethanethiol and DMDS. The four inputs to the ANN were VOC 

initial concentration, ClO2 initial concentration, pH, and temperature. Imported data were scaled 

by the software. The ANN output was the initial consumption rate of ClO2. All data were 

partitioned into model development and model evaluation sets. The model development data set 

was further partitioned into training data set and testing data set. The training data set was used 

to adjust ANN weights. The testing data set was fed forward through the ANN one time only to 

determine when to stop training and to save weights. Here the model evaluation data set is 
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referred to as the production data set. After extracting training, testing, and production data sets, 

users can select from several ANN architectures. ANN parameters such as initial connection 

weights, learning rate, momentum, and stop training criteria can be set manually. In our study, 

training was stopped and weights were saved automatically when the network produced 

minimum error on the testing data set. Network performance was evaluated on production data 

sets by statistical criteria of R squared, mean squared error (MSE), and mean absolute error 

(MAE). R squared is the coefficient of multiple determination, which is a statistical indicator 

usually applied to multiple regression analysis. The higher R squared value, the better fit of the 

model. MSE is the mean of the square of the actual value minus the predicted value over all 

patterns in the production data set. The unit of MSE here is (mg L-1 s-1)2. MAE is the mean over 

all patterns of the absolute value of the actual minus the predicted, and its unit is mg L-1 s-1. 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 Model development for ethanethiol 

3.3.1.1 Data partition 

The experimental data set for the modeling of the reaction of chlorine dioxide and 

ethanethiol consisted of 89 data patterns (including replicates) were used to build and evaluate 

ANN models. Through the initial experiments and model development we found that of the four 

inputs, pH is the most important factor that affects the initial consumption rates of chlorine 

dioxide. Therefore we partitioned the data such that pH values used in the production data set 

were not used in model development (training and testing). Other input values in production sets 

may or may not been used in training and testing sets. After extracting the production data, 25% 

of the remaining data was randomly drawn to be the testing data set and the data left were used 
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as the training set. Value ranges of inputs and the numbers of patterns in each pH group are listed 

in Table 3.1. The only output is the initial reaction rate of chlorine dioxide. 

For small data sets, usually k-fold cross-validation approach is recommended, in which 

cross validation is performed k different times, each time using a different partitioning of the 

data into model development and model validation sets, and the results are then averaged 

(Mitchell, 1997). In our modeling, in order to efficiently use available data as well as accurately 

evaluate the performance of ANN models, 5-fold cross validation strategy was used here. During 

each data partition, one group of pH data was held as the production data set and was not used in 

training and testing. Seven pH levels were observed in the experimental data: 3.58, 3.61, 3.73, 

3.92, 4.01, 4.21, and 4.55. We grouped pH 3.58 and 3.61 together because these two buffers have 

very close pH values. When the pH reached 4.21, the reaction of chlorine dioxide and ethanethiol 

was very fast, but the instrument was not fast enough to record the very initial stage of reaction, 

so the data contain considerable noise. Also for the pH of 4.55, there are only seven patterns, so 

we grouped data at pH 4.21 and 4.55 into one set. Thus, we created five pH groups: 3.58 & 3.61, 

3.73, 3.92, 4.01, and 4.21 & 4.55. Each of these pH groups was used once in production with the 

rest of the data in model development. 

3.3.1.2 Network architecture selection 

ANN models were initially developed with several ANN architectures such as the 

standard back-propagation nets and Ward nets. After optimization of network parameters, which 

include hidden layers, hidden nodes, activation functions, initial weights, learning rates, and 

momentums, a three-layer standard back-propagation ANN had the highest accuracy (smallest 

prediction error) on the five production data sets. Activation functions in each layer are shown in 

Fig. 3.3. The ANN was used for all subsequent model development. 
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3.3.1.3 Network parameter optimization 

Each MSE, MAE, and R squared value shown from Table 3.2 to Table 3.4 were the 

average value on the five production data sets (as mentioned in the data partition section). For 

the standard ANN with one hidden layer (initial weights 0.1, learning rate 0.1, and momentum 

0.1), results in Table 3.2 shows that three hidden nodes produced the smallest MSE and MAE, 

and the highest R squared. The number of hidden nodes had a greater effect on the model 

accuracy. The ANN with too many hidden nodes is easily to overfit data, while those with only a 

few nodes are not powerful enough to capture the relationships among inputs and outputs.  

The effect of different initial weights under fixed learning rate and momentum (both 0.1) 

on the three-hidden node ANN was compared in Table 3.3. Small initial weights are usually 

recommended because it makes the output locate in the sensitive region of the logistic function 

(Mitchell 1997; Smith 1993). Large initial weights cause long training times and are more easily 

to overfit data. Here, the model prediction accuracy was not so sensitive to the initial weight 

settings. An iterative search for the optimum learning rate and momentum (initial weights 0.1) 

was done in Table 3.4. A suitable learning rate and momentum can prevent the network from 

being trapped in local minimum error surface. The best learning rate and momentum were 0.l 

respectively.  

3.3.1.3 Modeling 

The final ANN model is a standard three-layer back-propagation network (3 nodes in the 

hidden layer) with the following parameter settings: 0.1 initial weights, 0.1 learning rate and 0.1 

momentum. Modeling statistics on the five production data sets are listed in Table 3.5. The 

model made the prediction at the first production set (pH = 3.58 & 3.61) by extrapolation at the 

low pH boundary, therefore, the R squared value is very low.  ANNs are not generally used in 
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extrapolations outside the range of input values. For the production data set at 4.21 and 4.55, the 

R squared value is also low. There are two reasons. First, this pH group is located at the high pH 

boundary, so the network predicted reaction rates by extrapolation. Another reason causing the 

degradation is that the reaction of ethanethiol and chlorine dioxide above pH = 4.21 is so fast that 

the spectrophotometer cannot capture the changes of chlorine dioxide absorption at the beginning 

stage of the reaction. So, data above pH = 4.21 are noisy. The results for the other three 

production data sets (pH 3.73, 3.92, 4.01) were averaged yielding an average R squared value of 

0.9279, an average MSE of 17.807, and an average MAE of 3.471.  

Fig. 3.4 shows the prediction of the reaction rates for the production data set with a pH of 

3.73. This is the best prediction of the three production data sets, which had the lowest error and 

the highest R squared value. A linear regression line (y = 1.009x – 1.8362) was fit to the 

predicted versus observed reaction rates and is shown along the 1:1 line. It indicates that the 

model has a slight tendency to under predict the reaction rate. Fig. 3.5 is the prediction of 

reaction rates for the production data set with a pH of 3.92, which has a slightly higher MSE and 

MAE, a lower R squared value than the predictions of pH of 3.73 and 4.01. The linear regression 

line (y = 0.9822x – 3.6636) also shows the ANN tended to consistently under predict the reaction 

rate. Fig. 3.6 is the prediction of reaction rates at pH = 4.01. The linear regression line (y = 

0.76942x + 7.4952) shows that the ANN tended to over predict reaction rates lower than 35 mg 

L-1 s-1, and  to under predict reaction rates when they are above 35 mg L-1 s-1.  

After the model development and cross evaluation, a final model can be developed in this 

way for the future prediction (Mitchell, 1997): all the 89 patterns are used for training the three-

layer standard back-propagation ANN with the optimal parameter settings and there is no testing 

data set. Stop training when the learning epoch is equal to the average value of the three learning 
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epochs in the model development and evaluation using the three production data sets (pH 3.73, 

3.92, 4.01).   

As an example, the 89 patterns were randomly partitioned with approximately one third 

being placed in model evaluation (29 patterns). The remaining 60 patterns were then used as 

model development. To avoid the situation that one pattern is in the training set and its replicate 

is in the production set, we manually examined each pattern in the production set. If we find two 

parallel patterns are separated, then put them together back in the training data set. In order to 

use all possible patterns in training, no testing data set was used in this example. Based on the 

results of prior model development, the training was stopped when the learning reached 595 

epochs. After applying the ANN on the production set, the R squared was 0.9320. MAE and 

MSE were 3.903 and 25.291 respectively. Fig. 3.7 shows the predicted ClO2 initial reaction rates 

versus the observed values. A linear regression line (y = 0.8819x – 0.3856) was fit to the 

predicted versus observed reaction rates. It indicates that the model has a slight tendency to 

under predict the reaction rates. Compared to the previous average result on the three production 

sets (pH 3.73, 3.92, and 4.01), the general model has a higher R squared value, a slightly higher 

MAE and MSE.  

Fig. 3.8 shows that pH had a more significant effect than temperature on the initial 

reaction rate of chlorine dioxide in the reaction with ethanethiol. In (a), the initial concentrations 

of ethanethiol and ClO2 were low (175 mg/L and 20 mg/L), while in (b), they were higher (375 

mg/L and 40 mg/L). All the reaction rates were generated by the model using the same approach 

described above. The only difference was that all the 89 patterns here were used in model 

development. The production data set was generated manually. 
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3.3.2 Model development for DMDS 

3.3.2.1 Data partition 

For the reaction of DMDS and chlorine dioxide, a total of 149 data patterns (including 

replicates) were generated with the experiments which were used to develop and evaluate ANN 

models. The k-fold cross validation, here 6-fold, data partition strategy was used. All the pHs 

were divided into six groups as we had done for ethanethiol: 3.58 & 3.61, 5.26, 6.92, 7.62, 9.02, 

10.08 & 10.62. Each group of data was held as the production set once to evaluate the network 

performance. The four input variable ranges and the number of patterns in different pH groups 

are listed in Table 3.6. The only one output was the initial reaction rate of chlorine dioxide. 

Testing data sets were randomly extracted, which is one third of the amount of training data. 

3.3.2.1 Modeling 

Like the model developing process for ethanethiol, we compared the performance of 

different architecture neural networks and optimized network settings: hidden layers, hidden 

nodes, initial weights, learning rates and momentum. The ANN that had the smallest prediction 

error still was the standard three-layer back-propagation net with three nodes in the hidden layer. 

Initial weights, learning rate, and momentum were still 0.1, respectively. To avoid repetition, the 

selection process is omitted here. 

The ANN modeling statistical results on the six production data sets are shown in Table 

3.7. The model had relatively large MSE and MAE and low R squared value at the two 

production data sets: pH 3.58 & 3.61 and 10.08 & 10.62. The average MSE, MAE, and R 

squared on the other four production data sets (5.26, 6.92, 7.62, and 9.02) are 4.437, 1.589, and 

0.8566, respectively. 
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The ANN model made the best prediction at pH = 5.26. It had the smallest MSE of 0.557 

and the smallest MAE of 0.477 as well as the highest R squared value of 0.9757. The linear 

regression line (y = 1.032x – 0.1836) in Fig. 3.9 shows the model made a very good prediction at 

this pH. A linear regression line (y = 1.1536x – 2.5994) was fit the data in Fig. 3.10 for the 

reaction at pH = 6.92. It shows the model tends to slightly under predict the ClO2 initial reaction 

rates that are below 18 mg L-1 s-1 and to slightly over predict the reaction rates that are faster than 

18 mg L-1 s-1. There is one pattern (with one replicate) that had the largest prediction error 

(observed value – predicted value = -10 mg L-1 s-1) in Fig. 3.10. The other three corresponding 

input values at this data point are:  500 mg/L DMDS, 66 mg/L ClO2, and 23°C. While another 

data point including its two replicates with the similar input values but different ClO2 

concentration (500 mg/L DMDS, 34 mg/L ClO2, and 23°C) only had a prediction error that is 

less than 3 mg L-1 s-1. The regression line (y = 1.068x + 1.1721) in Fig 3.11 shows that the model 

over predicted reaction rates at pH = 7.62. In Fig. 3.12, the linear regression line (y = 0.7025x + 

3.2628) ANN model over predicted reaction rates below 12 mg L-1 s-1, while it under predicted 

the reaction rates above 12 mg L-1 s-1.  

As an example, the 149 patterns were randomly partitioned with approximately 35% 

being placed in model evaluation (53 patterns). The remaining 96 patterns were then used as 

model development. It was also guaranteed that no patterns with same input values existed in 

both the training set and the production set. Based on the results of prior model development, the 

training was stopped when the learning reached 7034 epochs, which is the average learning 

epochs on the models of pH 5.26, 6.92, 7.62, and 9.02. The MSE, MAE, and R squared value on 

the production data set are 17.651, 2.827, and 0.9108 respectively. The linear regression line (y = 

0.8932x + 1.4299) in Fig. 3.13 shows the model predicted ClO2 initial reaction rates are very 
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close to the observed values when the reaction rates are lower than 20 mg L-1 s-1, and it tends to 

slightly under predict the reaction rates when they are faster than 20 mg L-1 s-1. Compared to the 

previous average result on the four production sets (pH 5.26, 6.92, 7.62, and 9.02), the general 

model has a better performance with a higher R squared value, a lower MAE and MSE.  

Fig. 3.14 indicates that the effect of pH on the reaction rates of chlorine dioxide in the 

reaction with DMDS was not as significant as that in Fig. 3.8. This is consistent with the 

experimental results since the dissociation of ethanethiol in aqueous solution is determined by 

pH. All the reaction rates in Fig 3.14 were generated by the model using the same approach as in 

Fig. 3.8. 

 

3.4 CONCLUSION 

Artificial neural network is a good approach to model complex reaction kinetics without 

the prior knowledge of reaction mechanisms. When only a small data set is available, k-fold 

cross validation can efficiently use more data in developing models and is more accurate to 

evaluate model performances. A final model was developed by using all the available patterns as 

training data set without testing. Stop training when the learning epoch is equal to the average 

value of the all learning epochs in the k-fold evaluation. To avoid the overfitting problem, a 

standard three-layer feed-forward network is powerful enough to capture the relationships among 

inputs and the output. The network model has high accuracy when the prediction is done within 

the input ranges. The two final models can be used to predict the initial reaction rates of ClO2 

with ethanethiol or DMDS for the future wet scrubber design and optimization. 

The prediction accuracy can be improved if more data patterns are available to develop 

the ANN models. Chemical reaction experiments with more combinations of different initial 
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chlorine dioxide and VOC concentrations (not necessarily to satisfy the pseudo-first reaction 

condition) as well as more pH levels can be designed in the future work. Faster response 

spectrophotometer with an automatic stopped-flow system can be used to reduce noises in the 

data acquired from very fast reactions. 
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Table 3.1 Input value ranges and the number of patterns in the modeling of ethanethiol and 

chlorine dioxide reaction 

Inputs Value range 

Ethanethiol concentration, mg/l 100, 175, 250, 375, 500 

Chlorine dioxide concentration, mg/l 10 - 56 

Temperature, °C 23, 26, 30, 32, 35, 37, 40 

Groups 3.58, 3.61 3.73 3.92 4.01 4.21, 4.55 
pH 

 Number of patterns 29 12 11 12 25 

 

 

Table 3.2 Effect of hidden node numbers on the performance of standard nets with one hidden 

layer in the modeling of the reaction of chlorine dioxide and ethanethiol.   

Hidden node number MSE MAE R squared 

2 69.036 5.749 0.5477 

3 24.072 3.824 0.6813 

4 37.158 4.695 0.5844 

5 31.015 4.170 0.5689 

7 32.377 4.070 0.5491 

 
Note 1: Initial weights, learning rate, and momentum were all 0.1. Results were the average values on the 
five production data sets. 
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Table 3.3 Selection of standard net initial weights in the modeling of chlorine dioxide and 

ethanethiol reaction1

Initial weights 0.01 0.05 0.1 0.3 0.5 

MSE 29.651 26.778 24.072 31.932 34.386 

MAE 4.532 4.096 3.824 4.688 4.717 

R squared 0.6626 0.6722 0.6813 0.6550 0.6468 

 
Note 1: The ANN had three hidden nodes. Learning rate and momentum were both 0.1. Results were the 
average values on the five production data sets. 

 

 

Table 3.4 Effect of learning rates and momentum on the performance of standard nets for the 

modeling of chlorine dioxide and ethanethiol reaction1

Learning rate Momentum MSE MAE R squared 

0.1 0.01 28.842 4.417 0.6652 

0.1 0.05 29.033 4.451 0.6647 

0.1 0.1 24.072 3.824 0.6813 

0.1 0.3 29.577 4.254 0.6629 

0.1 0.5 30.372 4.510 0.6602 

0.01 0.1 28.084 4.400 0.6679 

0.05 0.1 26.034 4.099 0.6747 

0.3 0.1 25.549 3.981 0.6764 

0.5 0.1 30.261 4.355 0.6606 

 
Note 1: The ANN had three hidden nodes. Initial weights were 0.1. Results were the average values on 
the five production data sets. 
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Table 3.5 Statistics of the prediction of chlorine dioxide initial reaction rates with ethanethiol 

using a standard back-propagation ANN 

pH 3.58, 3.61 3.73 3.92 4.01 4.21, 4.55 

MSE 20.804 6.433 21.156 25.833 67.415 

MAE 3.315  2.084 4.195 4.135 6.733 

R squared 0.2322 0.9484 0.9060 0.9294 0.7319 
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Table 3.6 Input value ranges and number of patterns in the modeling of DMDS and chlorine 

dioxide reaction 

Inputs Value range 

DMDS concentration, mg/l 100, 175, 188, 250, 375, 500 

ClO2 concentration, mg/l 4 - 79 

Temperature, °C 23, 26, 30, 32, 35, 37, 40 

Groups 3.58, 3.61 5.26 6.92 7.62 9.02 10.08, 10.62 
pH 

Number of patterns 29 12 28 18 26 36 

 

 

Table 3.7  Statistics of the prediction of chlorine dioxide initial reaction rates with DMDS using 

a standard back-propagation ANN 

pH 3.58, 3.61 5.26  6.92 7.62 9.02 10.08, 10.62 

MSE 129.628 0.557 8.672 3.058 5.459 159.243 

MAE 6.872  0.477 2.405 1.562 1.911 10.780 

R squared 0.6764 0.9757 0.8276 0.8063 0.8168 0.5724 
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VOC Free Outlet 

 

Fig. 3.1 Wet scrubber system 

 

 

 

Fig. 3.2 Oxidation of disulfide (Oae, 1977) 
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Fig. 3.3 Topology of a three-layer feed-forward neural network, activation functions for nodes in 

each layer. 
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Fig. 3.4  Prediction of ClO2 initial reaction rates with ethanethiol at 
pH=3.73

y = 1.009x - 1.8362
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Fig. 3.5  Prediction of ClO2 initial reaction rates with ethanethiol at pH = 
3.92

y = 0.9822x - 3.6636
R2 = 0.9842
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Fig. 3.6  Prediction of ClO2 initial reaction rates with ethanethiol at pH=4.01

y = 0.7649x + 7.4952
R2 = 0.9746
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Fig. 3.7 Prediction of ClO2 initial reaction rates with ethanethiol, 
general model

y = 0.8819x - 0.3856
R2 = 0.9672
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Fig. 3.8 (a) 
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Fig. 3.8 (b) 

 

Fig. 3.8 Effects of temperature and pH on the initial reaction rate of chlorine dioxide with 

ethanethiol. Initial concentrations of ethanethiol and ClO2 in (a) were 175 mg/L and 20 mg/L. In 

(b), they were 375 mg/L and 40 mg/L.
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Fig. 3.9  Prediction of ClO2 initial reaction rates with DMDS at pH = 
5.26

y = 1.032x - 0.1836
R2 = 0.9791

0

5

10

15

20

0 5 10 15 20

Observed ClO2 Initial Reaction Rate, mg L-1 s-1

Pr
ed

ic
te

d 
C

lO
2 I

ni
tia

l R
ea

ct
io

n 
R

at
e,

 m
g 

L-1
 s-1

1:1

 

60 



 

Fig. 3.10  Prediction of ClO2 initial reaction rates with DMDS at pH 
= 6.92

y = 1.1536x - 2.5994
R2 = 0.8832
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Fig. 3.11  Prediction of ClO2 initial reaction rates with DMDS at pH = 
7.62

y = 1.068x + 1.1721
R2 = 0.9624
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Fig. 3.12  Prediction of ClO2 initial reaction rates with DMDS at pH = 
9.02

y = 0.7025x + 3.2628
R2 = 0.8798
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Fig. 3.13 Prediction of ClO2 initial reaction rates with DMDS, general 
model

y = 0.8932x + 1.4299
R2 = 0.9112
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Fig. 3.14 (a) 
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Fig. 3.14 (b) 

 

Fig. 3.14 Effects of temperature and pH on the initial reaction rate of chlorine dioxide with 

DMDS. Initial concentrations of DMDS and ClO2 in (a) were 175 mg/L and 20 mg/L. In (b), 

they were 375 mg/L and 40 mg/L.
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CHAPTER 4 

 

MODELING REACTION KINETICS OF CHLORINE DIOXIDE AND MIXTURES OF 

VOLATILE ORGANIC COMPOUNDS  

 

4.1 Introduction 

As mentioned in Chapter 3, major VOCs identified in rendering emissions include 

DMDS, methanethiol, octane, hexanal, 2-methylbutanal, 3-methylbutanal, and 2-methylpropanal 

(Kastner and Das, 2002). In Chapter 2, we found that these aldehydes do not react with chorine 

dioxide at the normal reaction conditions. However, if the reaction kinetics of chlorine dioxide 

and VOC mixtures, such as ethanethiol and DMDS, can be modeled then these results can be 

used to design and optimize wet scrubbers. What we want to know most is the reaction rates of 

each VOC component respectively during the reaction, but it is difficult to directly measure the 

concentration change of the VOC component. Although ethanethiol absorbs lights in the organic 

solvent, heptane, at 229 nm with a very low molar absorption coefficient of 165 (Perkampus, 

1992), we did not observe any absorption in a water solution in the wavelength range from 200 

nm to 400 nm. DMDS absorbs at 252 nm in water solutions, but the molar absorption coefficient 

also is very low. It has absorptions at 254 nm in 96% ethanol with a molar absorption coefficient 

of 275 (Perkampus, 1992). Moreover, one of the intermediate oxidation products of ethanethiol 

is also a disulfide, which will cause absorption overlap with DMDS in the mixtures. Given the 

potential interference of the oxidized by-products on the determination of ethanethiol and 
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DMDS, and our inability to measure the by-products, we measured the absorption of chlorine 

dioxide to calculate the reaction rate. 

The reaction of chlorine dioxide and VOC mixtures are more complicated than the 

reaction of single VOC component. It involves parallel reactions, consecutive reactions, and 

competitive reaction steps (Zuman and Patel, 1984; Steinfeld et al., 1999). Given the complexity 

and non-linearity of such a system, we proposed to use ANNs to model the reaction. Actually, 

some researchers have used ANNs in the modeling of multiple component mixture reaction 

kinetics. Blanco et al. (1995) applied ANNs to model multiple component mixture reaction 

kinetics. They used the scores of a principle component model as input data to the ANN model 

and compared the ANN approach with two traditional statistical methods: projection to latent 

structures (PLS) and principle component regression (PCR). Both linear and non-linear systems 

were tested by these three methods. The results provided by the three methods on linear system 

were comparable, but in non-linear systems, the ANN method clearly outperformed the other 

two. Galvan et al. (1996) discussed the use of ANNs for fitting complex kinetic data. In their 

case studies, they compared the ANN approach with traditional kinetic identification methods. 

Their results showed that ANNs could be used to deal with the fitting of complex kinetic data to 

obtain an approximate reaction rate function in a limited amount of time, which can be used for 

design improvement or optimization. 

All the kinetic data of the reaction of chlorine dioxide with ethanethiol and DMDS 

mixtures were acquired in a Hi-Tech KinetAsyst™ Stopped Flow System (Hi-Tech Scientific, 

model SF-61SX2), a computer controlled instrument for the study of rapid reaction kinetics. Two 

regents can be rapidly mixed in the sample handling unit and reactions with time courses from a 

few milliseconds to several seconds can be monitored. A Deuterium (UV) lamp was used and the 
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wavelength range for UV single shot mode was from 190 nm to 380 nm. For most reactions, the 

typical instrument parameter settings were: 100 data points, 249 oversample, 0.1 ms filter time, 

and 10-20 seconds run time. For several very fast reactions at high pH, the filter time was 

changed to 0.01 ms (minimum value) and the run time was shortened to 1~5 seconds. The goal 

of this chapter was to use ANNs to model reaction kinetics of chlorine dioxide and the mixtures 

of ethanethiol and DMDS on bench scales.  

 

4.2 Modeling 

The four input ranges and number of patterns in different pH groups are listed in Table 

4.1. Reaction temperature was fixed at 30°C. The ANN output was the initial reaction rate of 

chlorine dioxide. A total of 159 patterns (including replicates) are available to develop and 

evaluate ANN models. Similar to Chapter 3, all the data were partitioned according to pHs into 

training, testing, and production sets. When we tried to use 4-fold cross-validation method to 

develop and evaluate ANN models, we found that the ANN models with many architectures 

predicted very poorly at the pH boundary values (R squared is zero) by extrapolations. ANN 

models predicted reaction rates for the mixtures with higher R squared value when interpolating. 

So, we only used two pH production sets, 4.72 and 5.80, to evaluate ANN models. 

Through network architecture selection and parameter optimization, we found that Ward 

nets (Fig. 4.1) had the smallest prediction error on the two production data sets (pH 4.72 and 

5.80). Table 4.2 shows the effect of different hidden node numbers on the performance of the 

Ward net. The performance of six hidden nodes had no big difference with four hidden nodes, so 

four hidden nodes were used for all hidden layers in the Ward net. The optimized learning rate, 

momentum, and initial weights were 0.1, 0.1, and 0.1. Therefore, a Ward net with six hidden 
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nodes in each hidden layer and above parameter settings were used for all the following model 

development. Table 4.3 shows the final model prediction statistic results on the four production 

data sets. The model performance degraded significantly when the predictions were made by 

extrapolation at the boundary pH values. 

The Ward net predicted better at pH = 5.80 than pH = 4.72, as shown in Fig. 4.2 and Fig. 

4.3. In Fig. 4.2, the predicted reaction rates scatter around the 1:1 line. While in Fig. 4.3, 

predicted data points are more close to the 1:1 line. The R squared value for the pH = 5.80 

production set is much higher than the latter. MSE and MAE at pH = 5.80 are also higher 

because the absolute reaction rate is increased at high pH values.  

An additional ANN model was developed by randomly partitioning the 159 patterns into 

a training set (70 patterns), a testing set (39 patterns), and a production set (50 patterns). To 

avoid the situation that one pattern is in the production set while its replicates is in the training or 

testing set, we manually examined each pattern in the production set. If we find replicates are 

separated, then put them together back in the training data set. We also found that the production 

data set included all the four pH levels. Training was stopped when the ANN had the smallest 

error on the testing set. As shown in Table 4.3, the model had the best performance with the 

highest R squared value. Fig. 4.4 shows the observed reaction rate versus the predicted reaction 

rate. 

The reason that we needed more complicated networks to model the reaction of chlorine 

dioxide and the mixtures of ethanethiol and DMDS but did not achieve better performance 

compared with the models of single VOC compound may lie in two facts. First, the oxidation of 

VOC mixtures is more complicated than the oxidation of single VOC compounds, because more 

reaction steps and more intermediate products are involved. Secondly, the number of available 
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data patterns to develop and evaluate the ANN model was limited (most patterns had two 

replicates). Furthermore, pH is an important factor (ethanethiol and DMDS have different pH 

sensitivities), but there are only four different pH values for the model development and 

evaluation.  

 

4.3 Conclusion 

The reaction of chlorine dioxide with mixtures of ethanethiol and DMDS is more 

complicated than the reaction involves only single VOC component. Ward nets with four hidden 

nodes in each hidden layer have been used in order to model the reaction kinetics, whereas in 

Chapter 3, we only need to use a standard 3-layer back-propagation ANN to model the reaction 

of single VOC compound. As stated in Chapter 2, pH has great influence on the oxidation rate of 

ethanethiol and DMDS. For mixtures, there are only four different pH levels available for 

developing and evaluating ANN models. Therefore, the network prediction was not as good as 

the results for single compound. To improve the model accuracy, more patterns are needed to 

develop and evaluate the ANN model. 

71 



 

REFERENCES 

Blanco, M., Coello, J., Iturriaga, H., Maspoch, S., and Redon, M., 1995. Artificial Neural 

Networks for multicomponent kinetic determinations. Anal. Chem., 67, 4477-4483. 

Galvan, I. M., Zaldfvar, J. M., Hernandez, H., and Molga, E., 1996. The use of neural networks 

for fittng complex kinetic data. Computers and Chemical Engineering, 20, 1451-1465.  

Kastner, J. K., and Das, K. C., 2002. Wet scrubber analysis of volatile organic compound 

removal in the rendering industry. Journal of the Air & Waste Management Association, 52, 

459-469. 

Perkampus, H., 1992. UV-VIS atlas of organic compounds (second edition). Weinheim: VCH 

Verlagsgesellschaft mbH. 

Steinfeld, J. I., Francisco, J. S., and Hase, W. L., 1999. Chemical kinetics and dynamics. New 

Jersey: Prentice Hall. 

Zuman, P., Patel, R. C., 1984. Techniques in organic reaction kinetics. New York: John Wiley & 

Sons, Inc. 

 

72 



 

Table 4.1 Input ranges in the reaction modeling of chlorine dioxide and mixtures of ethanethiol 

and DMDS (reaction temperature 30°C) 

Inputs Value range 

Ethanethiol concentration, mg/l 0, 5, 10, 15, 20 

DMDS concentration, mg/l 0, 5, 10, 15, 20 

Chlorine dioxide concentration, mg/l 29 - 91 

Groups 3.71 4.72 5.80 7.03 
pH 

 Number of patterns 39 45 45 30 

 

Table 4.2 Effect of hidden node number on the performance of Ward nets in the modeling of the 

reaction of chlorine dioxide and mixtures of ethanethiol and DMDS (pH = 4.72 and 5.80) 

Hidden node number MSE MAE R squared 

3 62.433 6.657 0.3731 

4 45.026 5.392 0.4670 

6 38.685 5.159 0.4183 

 

 

Table 4.3 Modeling statistics of the reaction of chlorine dioxide and VOC mixtures  

pH 3.71 4.72 5.80 7.03 Random partition 

MSE 3.856 19.718 70.333 602.959 13.638 

MAE 1.713 3.635 7.149 22.062 2.274 

R squared 0 0.1530 0.7809 0 0.8753 
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Fig. 4.1 Topology of a Ward net, activation functions, and nodes in each layer 
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Fig. 4.2  Prediction of ClO2 initial reaction rates with ethanethiol and 
DMDS mixtures at pH=4.72  
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Fig. 4.3  Prediction of ClO2 initial reaction rates with ethanethiol and 
DMDS mixtures at pH = 5.80 
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Fig. 4.4 Prediction of ClO2 initial reaction rates with ethanethiol and 
DMDS mixtures, randomly partitioning data.
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

 

The kinetic analysis indicated that chlorine dioxide does not react with hexanal and 2-

methylbutanal over a wide range of pH and temperatures, which constitutes a major fraction of 

VOC emissions. Contrary to the aldehydes, ethanethiol and dimethyl disulfide rapidly reacted 

with ClO2. Moreover, an increase in pH from 3.6 to 5.05 exponentially increased the reaction 

rate of ethanethiol and significantly increased the reaction rate of dimethyl disulfide if increased 

to pH 9. Thus, a small increase in pH could significantly improve wet scrubber operations for 

removal of odor causing compounds. The results explain why aldehyde removal efficiencies are 

much lower than methanethiol and DMDS in wet scrubbers using ClO2. The overall order of the 

reaction of chlorine dioxide and ethanethiol is a second-order reaction. For dimethyl disulfide, it 

is a third-order oxidation reaction. Incorporating oxidation kinetics into a wet scrubber model 

predicted increasing removal efficiency with increasing pH (i.e., reaction rate) but did not 

adequately predict results in an industrial scale scrubber. 

ANNs are a good approach to model complex reaction kinetics without the prior 

knowledge of reaction mechanisms. When only a small data set is available, k-fold cross 

validation can efficiently use more data in developing models and is more accurate to evaluate 

model performances. For the reaction of chlorine dioxide with single VOC compounds, such as 

ethanethiol or dimethyl disulfide, a standard three-layer feed-forward network with back-
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propagation learning was powerful enough to capture the relationships among the reaction 

conditions and the initial reaction rate of chlorine dioxide. The network model had higher 

accuracy when the prediction was done by interpolation. Its performance degraded at boundary 

values.  

The reaction of chlorine dioxide with mixtures of ethanethiol and DMDS is more 

complicated than the reaction involves single VOC component. Ward nets with four hidden 

nodes in each hidden layer had been used in order to better model the reaction kinetics. Because 

the data for developing and evaluating the ANN model is limited, especially the available pH 

levels, the network prediction was not as good as the results for the single VOC compound. 

Further work should be done in the modeling of the reaction of chlorine dioxide with VOC 

mixtures. More reaction kinetic data under different pH levels are necessary to train the ANN in 

order to improve the model performance for VOC mixtures. For very fast reactions at high pH 

that are not satisfy the pseudo first-order condition, suitable instrument adjustments, such as 

using shorter path length cell,  are suggested to reduce the instrument noises (Operator’s Manual 

for the SF-61SX2 Stopped-flow System). 
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APPENDICES 

 

A. Changes of Absorptions at 358 nm and 250 nm in the Reaction of ClO2 with Ethanethiol and 

DMDS Mixtures at Different pH Levels (An Example) 

Fig. A.1 Absorption changes at 358 nm in the reaction of 60 mg/L ClO2 

with 10 mg/L ethanethiol and 10 mg/L DMDS mixtures at 30ºC and 
different pH levels
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Fig. A.2 Absorption changes at 250 nm in the reaction of 60 mg/L 
ClO2 with 10 mg/L ethanethiol and 10 mg/L DMDS mixtures at 30ºC 
and different pH levels
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