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Abstract

The field of computer vision comprises various disciplines including topics such as back-

ground modeling, object tracking, and object detection. The research contained in this

manuscript investigates two important aspects of computer vision, namely contour tracking

and static object detection. These areas are elements of the more generic process of object

analysis. The material discussed within, originated from the requirements of two unique

research groups at the University of Georgia.

The Nanoscience group in the Physics and Astronomy department required a tracking

application for their research on dynamic wettability of nanostructured surfaces. The initial

specifications required a software program that could analyze recorded videos of a water

droplet spreading on different surfaces fabricated from nanotube arrays. The Contour Tracker

utilizes advanced object tracking techniques to track the outer contour of the water droplet.

Part I outlines the contour tracking problem and the proposed Contour Tracker solution.

The Visual and Parallel Computing Lab has many projects in their repertoire including

research on surveillance and monitoring system design. A common goal of surveillance sys-

tems is to detect stationary objects within the scene. A static object could indicate several



scenarios depending on the location of the scene. For instance, an idle object in an airport

may be someone’s forgotten luggage or worse, an explosive device, whereas static objects on

the side of the street could indicate an illegally parked vehicle. Part II describes a simple

and flexible method for static object detection.

Index words: Active Contours, Snakes, Kalman Snake, Contour Tracking, Multiscale
Background Model, Static Object Detection, Surveillance System
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Chapter 1

Introduction

Dynamic wettability of a nanostructured surface is an important property for many liquid

related applications of nanostructures. In Part I of this manuscript, a software application

employing an active contour model is developed to analyze the evolution of the precursor

(outer rim) boundary of a water droplet as it spreads on a nanostructured surface. Exper-

iments show reasonable agreement between the results of the Contour Tracker and those

obtained via manual measurements.

In Part II, a multiscale background scheme is applied to dynamic scene analysis. The

length of time that an object remains stationary in a scene is a common feature provided by

computer monitoring systems. For instance, in an airport environment, an object observed to

be unattended for an abnormal amount of time could indicate a security threat or someone’s

left-luggage. The extraordinary size of such buildings makes detection a tedious and error-

prone activity for humans. By automating the detection process, the overall monitoring

system benefits from greater coverage and quicker response times. The results show that a

multiscale approach to static object detection performs well in indoor situations.
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Part I

Image-based Metrology of a Water

Droplet Spreading on Nanostructured

Surfaces 1

1S. Cheng, J. G. Fan, X. Luo, S. M. Bhandarkar, and Y. P. Zhao. 2006. Submitted to 2006 IEEE
Transactions on Nanobioscience.
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Chapter 2

Introduction

Wettability measurement of a solid surface is a topic of great importance in a variety of

problem areas ranging from ink-jet printing, painting, corrosion, biofoiling, DNA immobi-

lization, cell growth, and tissue engineering. The wettability of a surface is affected by both

the surface chemistry and topography. It has been demonstrated that a micro/nano patterned

surface can greatly alter the surface wettability such that a hydrophobic surface becomes

more hydrophobic and a hydrophilic surface becomes more hydrophilic [13]. Moreover, super-

hydrophobic surfaces (contact angle > 150◦) have been achieved by treating nanostructured

surfaces with chemicals which have low surface energies [10]. Lau et al. have found that a

water droplet could easily spread on an as-grown carbon nanotube array. But once the array

was coated with polytetrafluoroethylene (PTFE), the surface exhibited superhydrophobic

behavior. The contact angle of the PTFE coated carbon nanotube array was observed to

increase as the height of the carbon nanotube array increased. The surface contact angle was

observed to provide a quantitative measure of the static wettability properties of the surface.

In addition to the measurement of static surface wettability properties, namely the con-

tact angle described above, the dynamic spreading of a water droplet on flat, rough or porous

surfaces has also been studied quite extensively [1, 2, 3, 4, 7, 17, 19]. Most investigations

have addressed the evolution of a liquid droplet over time, and it is believed that the radius

of the droplet R versus time obeys a simple power law, R ∝ tα, where α the characteristic

of a spreading regime due to a specific underlying physical mechanism. For example, for a

flat surface, α usually takes a value between 1/10 and 1/8, depending on whether the dom-

inant driving force is the capillary force or the gravitational force [1, 2, 3, 4, 6, 7, 17, 19].

3
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For a rough or porous surface, the spreading process becomes more complex and therefore,

parameters such as the roughness or porosity of the substrate and the viscosity of the liquid

have to be considered.

So far, there is still no systematic study of the dynamic spreading of liquids on nanos-

tructured surfaces [5]. Depending on the detailed surface structure, one could treat a nanos-

tructured surface either as a rough surface or as a porous surface. It would be interesting to

know if the spreading of a liquid droplet on such nanostructured surfaces follows a similar

dynamic scaling law as is observed for rough or porous surfaces. The study has the potential

to provide useful surface wettability information for applications that involve the interaction

of liquid droplets with nanostructures. For most dynamic spreading study, CCD cameras are

used to track the evolution of the water droplet on the surface. This kind of image/video-

based metrology offers a non-contact and nondestructive means to study the wettability

properties of nanosurfaces. One of the primary advantages of image/video-based metrolog-

ical techniques is that they entail minimal or no perturbation of the physical quantity being

measured. However, one of the major challenges posed by image/video-based metrological

techniques in the study of the dynamics of the spreading of a water droplet on a nanos-

tructured surface is the prohibitively large data processing requirement. In our study, the

spreading of water droplets on Silicon nanorod arrays is recorded using a CCD camera with

a very high shutter speed, capable of acquiring 210 frames per second (fps) at VGA frame

resolution (800 × 600 pixels). For a video recording of ∼10 seconds, which is the typical time

frame for a water droplet to spread completely on a wettable surface, one obtains over 2000

video frames of data. Although the study of the scaling law R ∝ tα may not require one to

necessarily analyze all the video frames, it would be advantageous to analyze as many frames

as possible thereby taking full advantage of the fast CCD camera. Moreover, for obtaining

further information such as the instantaneous droplet spreading speed v = ∆R/∆t, the

smaller the time interval ∆t, the more accurate the speed computation. Accurate measure-

ment of the instantaneous droplet spreading speed as a function of time would therefore
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entail the processing and analysis of a large number of video frames. Manual processing and

analysis of such large amounts of video data is onerous, error-prone and simply prohibitive.

Thus, computer vision techniques for the automated processing and analysis of the video

data are called for. In this paper we describe the design and implementation of computer

vision algorithms which can automatically extract and track the shape and size (dimensions)

of the spreading droplets in the video frames.



Chapter 3

Tracking of Droplet Contours in Video Frames

Figure 3.1 shows a typical video frame depicting the spreading of a water droplet on a

nanosurface comprising of Silicon nanorods. The inner contour of the droplet, termed the

contact line, denotes the position of the water droplet above the Silicon nanorods. The

outer contour termed the precursor, denotes the frontal envelope of the water droplet

as it spreads inside the nanorod channel. Although the outer contour of water droplet

in Figure 3.1 is almost circular, it could potentially deform to any shape depending the

hydrophobic/hydrophilic properties and the isotropic/anisotropic nature of the nanosurface.

Consequently, we model the outer contour of the water droplet using a snake which is an

active contour model capable of modeling a closed contour of irregular geometry. A snake

Figure 3.1: A single frame of the video showing a water droplet spreading on a Silicon nanorod
surface. Rc and Rp are the radii of the contact line and precursor, respectively.

6
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is an energy-minimizing spline proposed by [9] for the purpose of modeling contours of

irregular geometry. Snakes are guided by external constraint forces and influenced by image

forces that pull it towards features such as lines and edges. Snakes are active contour models

in the sense that they lock onto features in their spatial vicinity and continuously track the

locations of the features via a process of energy minimization. A snake is represented by a

set of points or snake elements (snaxels) where the local and global position of each snaxel is

determined by an energy function. The energy function contains terms that represent both,

the external constraint forces and the internal image forces. The goal is to use the snake to

find the desired image curve or contour by minimizing the energy function.

3.1 Snake Energy Function

The snake energy function is used to localize each snaxel within the image. Typically, the

energy function is divided into two primary components: external energy and internal energy.

The external energy is governed by image forces that attract the snaxels towards high-level

image features such as points, lines, and edges [9]. Since our research focuses primarily

on image contours, the natural choice for the external energy term is based on an edge

function computed using an edge detector. The internal energy, on the other hand, determines

the overall contour shape. The internal energy manipulates the snaxels location relative to

adjacent snaxels (local positioning) and generally consists of first-order and second-order

terms. The first-order term influences the snakes continuity while the second-order term

influences the curvature of the snake.
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The total energy E(S) of the snake S is defined as the sum of the total energy value

E(pi) (internal energy + external energy) of each snaxel pi as in Equation 3.1.

E(S) =

N
∑

i=1

E(pi) (3.1)

=
N

∑

i=1

EInternal(pi) + EExtenal(pi)

=

N
∑

i=1

α(pi)EContinuity(pi) + β(pi)ECurvature(pi) + γ(pi)EExternal(pi)

where the weights α(pi), β(pi), and γ(pi) are vectors of real-valued numbers representing the

contribution of each energy term to the overall energy of snaxel pi. A simplified version of

the energy function uses a snaxel-independent (constant) set of weights (i.e. for all i 6= j,

α(pi) = α(pj) = α, β(pi) = β(pj) = β, and γ(pi) = γ(pj) = γ). In summary, the energy

function is used to locate (external energy) and shape (internal energy) the snake within an

image.

The continuity energy focuses on spreading the snaxels evenly along the snake and is

defined in Equation 3.2.

Econt = (d̄ − ‖pi − pi−1‖)
2 (3.2)

where d̄ is the average distance between snaxels and ‖pi − pi−1‖ is the Euclidean distance

between snaxels pi and pi−1.

The curvature energy attempts to minimize the number of oscillations along the snake

and is given by Equation 3.3.

Ecurv = ‖pi−1 − 2pi + pi+1‖
2 (3.3)

The external energy Eext attempts to position the snaxels in the proximity of edge pixels

in the image I(x, y) where the magnitude of the image intensity (grayscale) gradient ∇I(x, y)

is high and is given by Equation 3.4.

Eext = −|∇I(x, y)|2 (3.4)
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From Equation 3.4 it can be seen that high grayscale gradient magnitude values result in

lower values for the external energy Eext. The discrete grayscale gradient is computed using

a pair of convolution kernels to approximate the image intensity derivatives in the vertical

and horizontal directions. Equation 3.5 shows the vertical and horizontal kernels of a basic

gradient operator.

Gx =
[

−1 0 1

]

Gy =













1

0

−1













(3.5)

Let Ix(x, y) = I(x, y) • Gx and Iy(x, y) = I(x, y) • Gy where • denotes the convolution

operator. The image intensity gradient magnitude |∇I(x, y)| is given by Equation 3.6.

|∇I(x, y)| =
√

Ix(x, y)2 + Iy(x, y)2 (3.6)

Alternatively,

|∇I(x, y)| ≈ |Ix(x, y)| + |Iy(x, y)| (3.7)

The image intensity gradient direction θ(x, y) is given by Equation 3.8.

θ(x, y) = arctan

(

Iy(x, y)

Ix(x, y)

)

(3.8)

3.2 Snake Finding Algorithm

The snake finding algorithm is an iterative process and can be described as a greedy search in

the space of potential splines. The initial snake is generated either through user interaction

or using an image processing algorithm which can localize the desired feature. Preferably,

the initial snake should be located in the proximity of the feature of interest. The snake

finding algorithm progresses by updating each snaxel with a member within its M × M

neighborhood that minimizes the snake energy function. The algorithm terminates when a

predefined stopping criteria is met. The algorithm is summarized in Algorithm 1.

There are two typical choices for the stopping criterion. The first option is to halt the

snake finding algorithm after a preset number of iterations. The second option is to cease
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Algorithm 1 Snake Algorithm

1. Initialize a snake S0 = {p0
1, . . . , p

0
N} in the proximity of the desired image feature.

2. At iteration T+1, set pT+1
i to a member within the M × M neighborhood of pT

i that
minimizes E(pi) for all pi.

3. Repeat step 2 until one of the stopping criteria is met.

iterating if the number of snaxels moved in the previous iteration is less than a specified

threshold (i.e. the snake has settled sufficiently into a local minimum).

3.3 Kalman Snake

A common problem with the standard snake finding algorithm is its reliance on image forces

during the process of capturing the true contour. The result is that the contour tracking is

often ineffective if the snake ever finds itself in a homogeneous region. An obvious solution

is to estimate the location of the boundary and then position the snake in the proximity of

the boundary. The Kalman filter [21] is a recursive estimator which estimates the current

state of the system based purely on the previous state and the current measurement(s). The

recursive nature of the Kalman filter makes it a very efficient technique for object tracking.

The Kalman filter assumes that the dynamic system can be modeled using a linear set of

equations presented using the following customary notation:

xt = Axt−1 + w (3.9)

zt = Hxt + v

where xt and zt are, respectively, the estimated state of the system and the measurement

generated at time t. The state transition matrix A describes the relationship between the

current state and the previous state, whereas the measurement matrix H relates the current
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measurement to the current state. The terms w and v denote the noise components of the

model which account for any inaccuracies in the underlying model assumptions and the

imprecision inherent in real-life measurements. The process noise w and measurement noise

v are modeled as zero-mean Gaussian random variables with standard deviation q and r,

respectively. The entities A, H , w, and v are assumed to be time-invariant, however, certain

domain-specific knowledge may encourage the use of their time-dependent variants (i.e. A(t),

H(t), w(t), v(t)).

The model used for contour tracking assumes that the object boundary can be approx-

imated as an ellipse. This restriction simplifies the state representation since all that is

required are the parameters (a, b, c, d, f, g) of the general quadratic equation (Equation 3.10)

for an ellipse. The constraints on the ellipse parameters are given in Table 3.1.

ax2 + 2bxy + cy2 + 2dx + 2fy + g = 0 (3.10)

∆ =

∣

∣

∣

∣

∣

∣

a b d
b c f
d f g

∣

∣

∣

∣

∣

∣

J =

∣

∣

∣

∣

a b
b c

∣

∣

∣

∣

I = a + c

∆ 6= 0 J > 0 ∆/I < 0

Table 3.1: Defining Properties of an Ellipse

In addition to the ellipse parameters, the changes in the ellipse parameters are also

included in the state equation. These are required in order to model the movement of the

contour. Hence, the state variable xt can be represented as a 12-dimensional vector. The state

transition matrix A is easily derived from the set of equations relating each state variable in

one frame with the corresponding state variable in the subsequent frame (i.e. at = at−1+δat−1

and δat = δat−1). The state variable and state transition matrix are shown in Table 3.2.

The ellipse parameters are the measured variables; hence, a 6-dimensional vector is used

to represent the measurement variable zt. The relationship between the measurement variable
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and the state variable is given by the measurement matrix H . Both matrices are shown in

Table 3.3.

xt = [a, b, c, d, f, g, δa, δb, δc, δd, δf, δg]T

A =



























1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 0 0 0 1



























Table 3.2: State Variable xt and the State Transition Matrix A

zt = [a, b, c, d, f, g]T

H =











1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 1 0 0 0 0 0 0











Table 3.3: Measurement Variable zt and the Measurement Matrix H

The Kalman snake requires an initial state x0 and state covariance matrix P0 to commence

the recursive snake finding algorithm. The Contour Tracker treats the user-generated initial

snake as the starting state x0. The state covariance matrix P0 is set with values determined

from experimental data generated using a standard snake. The choice of x0 is reasonable

since the user will presumably initialize the snake finding algorithm with a high-quality

preliminary snake.

The Kalman snake begins with the a priori prediction of the current state x−

t based on the

previous state xt−1. A measurement zt is generated by running the snake finding algorithm,

on frame ft, starting with the ellipse described by the parameters in xt−1. The next step

is to combine x−

t and zt to update the Kalman filter’s a posteriori estimate xt. After the
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Kalman filter has generated the current state xt, the snake algorithm is performed on frame

ft using xt as the initial snake. The steps are repeated iteratively until all frames have been

processed. The Kalman snake algorithm is summarized in Algorithm 2.

Algorithm 2 Kalman Snake Algorithm

1. Initialize the a posteriori state x0 and a posteriori state covariance P0.

2. Predict the a priori estimate x−

t based on the previous state xt−1.

3. Generate a measurement zt by performing the snake algorithm starting with xt−1.

4. Update the filter’s a posteriori estimate xt by combining x−

t and zt.

5. Run the snake finding algorithm using xt.

6. Return to step 2 if there are more frames.

3.4 Gradient Vector Flow

The Kalman snake is a valid approach to resolving the initialization problem; however, it

has its own set of weaknesses. Its main drawback is that it is designed to model strictly

linear systems. A contour whose movement is not representative of a linear model will not

benefit from using the Kalman snake algorithm described above. [22] propose the gradient

vector flow (GVF) field as an alternative solution to the initialization problem. The GVF

targets the external energy term of the snake equation. In traditional snakes, computation of

the external energy term typically involves standard edge detection algorithms that use the

gradient or Laplacian operators. The GVF expands upon these approaches by using the edge

maps to detect the changes in the gradient. The GVF field is the vector field v[u(x, y), v(x, y)]

that minimizes the energy functional defined in Equation 3.11.

E(v) =

∫ ∫

µ(u2
x + u2

y + v2
x + v2

y) + |∇f |2|v −∇f |2dxdy (3.11)

where f is an edge map (or gradient magnitude map) of the original gray-scale image I(x, y)

(i.e. f(x, y) = |∇I(x, y)|2). In Equation 3.11, one can notice that the second term dominates
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in areas of high discontinuities (associated with large values of |∇f |), whereas the first term

dominates in homogeneous regions. The result is a gradual dispersion of the gradient vectors

away from object boundaries. This property of the GVF assists the snake algorithm in

capturing the contour because it extends beyond the distance afforded by standard gradient-

based vector fields.

3.5 Droplet Parameter Extraction

Given the ellipse parameters of the droplet boundary from each frame, certain features of

the droplet contour can be computed using the equations in Table 3.4. The point (x0, y0) is

the center of the ellipse, a′ and b′ are the radii of the major and minor axis respectively, and

θ is the angle of rotation of the major axis.

x0 =
cd − bf

b2 − ac
y0 =

af − bd

b2 − ac

θ =
1

2
arctan

(

2b

c − a

)

a′ =

√

√

√

√

2(af 2 + cd2 + gb2 + 2bdf − acg)

(b2 − ac)
[

(c − a)
√

1 + 4b2

(a−c)2
− (c + a)

]

b′ =

√

√

√

√

2(af 2 + cd2 + gb2 + 2bdf − acg)

(b2 − ac)
[

(a − c)
√

1 + 4b2

(a−c)2
− (c + a)

]

Table 3.4: Ellipse Feature Equations



Chapter 4

Description of Experimental Setup

The nanostructured surface used for the current study is comprised of Silicon nanorods and

was prepared by a process of glancing angle deposition (GLAD). A detailed description of the

GLAD process is beyond the scope of this paper, but is discussed in [5, 15, 16, 23]. Briefly,

in the GLAD process, an RCA-1 cleaned p-type Silicon (100) substrate is installed in an

electron beam evaporation system (Torr International, Inc.), in such a way that the normal

to the substrate surface makes an angle θ = 86◦ with the incoming vapor (Figure 4.1). The

evaporation system is then pumped down to a base pressure of around 10−6 − 10−7 Torr.

During the vapor deposition, a stepper motor rotates the substrate azimuthally about its

surface normal at an angular speed of 0.05rev/sec. The film thickness and deposition rate

are monitored using a quartz crystal microbalance (QCM). The Silicon nanorods prepared

Figure 4.1: A sketch showing the glancing angle deposition method for growing nanorods.

15
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through the GLAD process were vertically aligned on the substrate. The spatial distribution

of the nanorods was observed to be statistically uniform. This is shown by the top-view and

cross-sectional view scanning electron microscope (SEM) images in Figure 4.2. The inter-

nanorod separation distances and the heights of the nanorods are easily controllable. The

morphological parameters obtained from the SEM images are as follows: the average diameter

of the nanorods at the top of the nanostructured surface dt = 133 ± 34nm, the average

inter-nanorod separation distance L = 280 ± 106nm, and the average nanorod height h =

1106± 104nm. For the purpose of measurement and analysis of the dynamics of wettability,

a 3µL water droplet was dispensed through a 250µL Hamilton syringe onto a sample of the

freshly prepared nanostructured surface. A very slow approach speed was utilized in order

to minimize the effect of the impact of the water droplet on the surface. The video of the

dynamics of the spreading droplet was taken with a fast CCD camera (Pyramid Imaging

Inc.) and recorded using the XCAP software (EPIX, Inc.). During the entire experiment, the

temperature was maintained at ∼ 25◦C and the humidity was maintained at ∼ 23%.

Figure 4.2: Top-view and cross-sectional view of Silicon nanorods grown by glancing angle
deposition (GLAD). The deposition rate was 0.2nm/sec. The scale bar is 2µm.

The Contour Tracker application was developed using the Open Source Computer Vision

(OpenCV) Library (introduced by Intel Corporation), in conjunction with Microsoft’s Visual

C++ .Net architecture. The gradient vector flow algorithm was implemented using the code

developed by [22]1.

1available at http://iacl.ece.jhu.edu/projects/gvf/



17

The application employs the snake algorithm to track a single contour within a video or

sequence of frames. The current version features the two aforementioned common variations

of snake tracking algorithms: the standard snake developed by [9] and the Kalman snake

developed by [20]. Four additional external energy operators are included for added func-

tionality. They are the Sobel operator, the Canny operator, edge detection with embedded

confidence [14], and the gradient vector flow field [22].

The outputs of the program are a tab-delimited text file specifying the ellipse parameters

(a through g) and droplet parameters (center point, major and minor axes, and rotation angle

of the major axis) for each frame as well as the video displaying the estimated location of

the contour. Figure 4.3 through 4.6 are screenshots of the Contour Tracker. Figure 4.3 is the

main screen of the application which displays the current frame being processed. Figure 4.4

is the tracking parameters dialog screen showing the available tracking options. Figure 4.5

shows an example of an initialized contour. Figure 4.6 shows the captured droplet boundary.

Figure 4.3: Contour Tracker main
screen.

Figure 4.4: Tracking parameters dialog.
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Figure 4.5: Image of an initialized con-
tour.

Figure 4.6: Image of a snake capturing
the water droplet boundary.



Chapter 5

Results and Analysis

Figure 5.1 shows a comparison of the precursor radius Rp obtained through manual measure-

ment and determined by the Contour Tracker. We can observe that manual measurement

provides a limited number of data points, some of which are unacceptable, whereas the

contour tracking program provides a smooth plot. Linearization of the two curves using a

log-log scale (Figure 5.1(b)) for values of t < 3.5 seconds yields two different values for the

scaling exponent α: 0.136 resulting from manual measurement and 0.146 resulting from the

contour tracking program. We trust the result from the contour tracking program since the

graphical user interface (GUI) allows us to examine the evolution of the tracked contour on

a per-frame basis. Any tracking errors will be evident in the GUI. Table 5.1 compares the

precursor radius at three different time instances as obtained from manual measurements

and the Contour Tracker.

Figure 5.1: Comparison of the evolution of the precursor radius Rp over time t calculated
from manual measurement and using the Contour Tracker on a (a) linear scale and (b)
log-log scale.
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Time (second) 0.053 1.055 5.273
Manual (mm) 2.491 3.731 4.639
Contour Tracker 2.513 3.829 4.819
Percent difference (%) 0.9 2.6 3.7

Table 5.1: Comparison of the precursor radius Rp obtained from manual measurements and
the Contour Tracker at 3 time instances.

Figure 5.2 plots the evolution of the instantaneous droplet spreading speed, which is

obtained simply via the temporal differentiation of the curves in Figure 5.1 followed by a

5-adjacent point smoothing procedure. For small values of t, the values of the instantaneous

droplet spreading speed resulting from manual measurement and the contour tracking pro-

gram differ; this can be attributed to measurement accuracy. However, for large values of

t, we observe that the speed from the contour tracking is very noisy. The fact is, for large

values of t, the change in the precursor radius from one frame to the next is very small (less

than one pixel for a single frame interval). However, since the current version of the contour

tracking program only outputs integer values for the contour position it is not well-suited

from a metrological standpoint for cases where the changes in contour position are very

small. Subpixel interpolation techniques are called for under these circumstances.



21

Figure 5.2: The instantaneous spreading speed of the precursor radius obtained from the
temporal differentiation of the curves in Figure 5.1 followed by a 5-adjacent point smoothing
procedure.



Chapter 6

Concluding Remarks and Future Work

Dynamic wettability measurement and analysis of a solid nanostructured surface is a topic of

great importance in a variety of problem areas. The dynamic wettability analysis is performed

by measuring the evolution of the precursor (outer rim) contour of the water droplet as it

spreads on a solid nanostructured surface. We developed a computer program based on the

snake active contour model which is capable of precisely tracking the precursor contour of a

spreading water droplet in a high frame-rate video. Experiments show reasonable agreement

between the results of the tracking program and those obtained via manual measurement.

However, the current version of the contour tracking program is only able to detect the

outer rim or precursor contour of the water droplet. This alone is not enough to describe

the dynamics of the spreading behavior of the droplet. A fair comparison of the dynamics

of water droplet spreading on a nanostructured surface to that on a flat, rough or porous

surface requires information about the contact line and hence the length between the contact

line and the precursor as a function of time. This calls for being able to track the evolution

of the contact line. The contour tracking algorithm also needs to provide sub-pixel accuracy

in cases where the differences in contour pixel locations from one frame to the next are very

small. These research tasks will be pursued in our future work.
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Part II

A Multiscale Background Method for

Static Object Detection 1

1S. Cheng, X. Luo, S. M. Bhandarkar. 2006. To be submitted to 2007 IEEE Workshop on
Applications of Computer Vision.
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Chapter 7

Introduction

The detection of stationary objects is a primary objective for many security-based surveil-

lance systems present in train stations, airports, and other highly-populated locations. Imme-

diate detection of suspicious packages is vital to the safety of innocent citizens in the current

age of terrorists and primitive home-made explosive devices. On a more trivial scale, static

object detection can be used to signal incidents of left-luggage at transportation hubs as

well as detecting illegally parked vehicles on roadsides. This paper proposes a multiscale

background approach to static object detection.

Background modeling (sometimes referred to as figure-ground discrimination) is the pro-

cess of subtracting the background from an image in order to analyze the actions and

behaviors of foreground objects. Background identification is an important step in com-

puter vision applications, particularly in the field of surveillance and monitoring. A common

obstacle known as the sleeping person problem is encountered by most surveillance systems.

The sleeping person phenomenon occurs when a foreground object remains stationary for

an extended period of time. After a while, the foreground object will merge into the back-

ground image because the background model will begin to associate the object’s pixel as

the estimated background pixel. The merging time is dependent on the scale of the model.

Consequently, static objects in the scene can be detected by exploiting the sleeping person

problem and using a multi-model, or multi-scale, architecture.

The following chapters outline the proposed multi-scale approach to static object detec-

tion. Chapter 8 explains the multiple Gaussian mixture background model and the subse-
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quent multiscale strategy. Chapter 9 describes the experiment setup and results. Chapter 10

summarizes the results and suggests possible extensions to the research.



Chapter 8

Background Modeling

In computer vision, there are two common approaches to modeling the background image of

a real-time scene. The first method is to use a single color value for each background pixel.

Typical univalue color schemes use temporal averaging [8] or temporal median filtering [12] to

calculate the background pixel values. Although these methods are effective in scenes where

objects are in constant motion and the background is visible for the majority of the time,

they are not well-suited for busy scenes in which there are many moving objects, especially

if the objects are slow-moving. Another drawback of single color models is that bimodal

background pixels cannot be modeled using a single color value [18]. The second approach

combats these shortcomings by utilizing a multi-color scheme to model the background image.

The mixture of Gaussians (MoG) background model [18] is an adaptive background mixture

model in which each background pixel value is modeled as a set of Gaussian distributions.

The MoG performs well under various conditions such as different equipment, indoor/outdoor

environments, and a range of lighting scenarios [18].

8.1 Background Image Assumptions

In order to distinguish the background image from moving objects, there are assumptions

that must be accepted. The first assumption is that background pixel values tend to per-

sist for longer durations than pixel values of foreground objects. This assumption is natu-

rally true for scenes involving a few fast-moving objects. However, a scene containing many

objects (i.e. a busy scene) is a difficult scenario for less-sophisticated background models.

The second assumption relates to the busy scene problem and states that background pixel
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values recur more frequently than foreground pixel values. This situation occurs when fore-

ground objects periodically occlude the background image. The proposed background model,

which is explained in more depth in the following section, incorporates these assumptions

into its background pixel weighting system.

8.2 Multiple Gaussian Mixture (MGM) Background Model

The multiple Gaussian mixture (MGM) background model, developed by [11] and inspired

by the MoG, is a multi-color, statistical approach to background extraction. The MGM

model incorporates k Gaussian distributions for each pixel of the image Ix,y. From this

point forward, all terms are assumed to be associated with a particular pixel so the x and

y subscripts will be omitted. Each distribution, or color cluster, χi is characterized by the

following attributes:

1. µi: Mean.

2. σ2
i : Variance.

3. Ni: Weight.

4. tli: Time that χi was last updated.

5. ni: Number of image intensity values that have matched χi in the current time-slice.

The background updating process employs a two-stage approach. The initial stage tallies

the statistical properties of the pixel value for each of the k distributions. The image intensity

It in frame t is compared to each of the k color clusters. It matches cluster χi if It falls within

2.5 standard deviations of χi’s mean (i.e. µi − 2.5σi ≤ It ≤ µi + 2.5σi). A match results

in the updating of µi and σ2
i according to Equations 8.1 and 8.2, respectively.

µi = µi +
1

L
(It − µi) (8.1)

σ2
i = σ2

i +
1

L
[(It − µi)

2 − σ2
i ] (8.2)
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where L is an integer representing the inverse of the learning rate. The use of an integer

speeds up the algorithm by avoiding floating-point arithmetic. If It does not match any of

the clusters, then the cluster with the lowest weighting N is replaced with a new cluster χj

where µj = It, σ2
j = σ2

0, Nj = 1, nj = 1, and tlj = t. The variance σ2
0 is initialized to a high

value because it is assigned to newly created clusters.

The second phase of the background updating model occurs every F frames and involves

updating the cluster weights. Each color cluster is assigned a weight Ni representing the

likelihood that χi corresponds to the actual background pixel value. Ni takes into account

the two important assumptions of background pixels mentioned in Section 8.1, the amount

of time a certain color persists (duration) and its recurrence frequency. At each interval F ,

the cluster weights are updated according to the duration and recurrence frequency weight

update rules described by Equations 8.3 and 8.4, respectively. The recurrence frequency

affects the cluster weight only if the cluster has been sufficiently represented (i.e. ni > δ

where δ is an integer) during the recent time slice.

Ni = Ni +















F, if ni > F/2

ni, otherwise

(8.3)

Ni =















Ni + F/2, if ni > δ and t − tli > 2F

Ni, otherwise

(8.4)

All clusters satisfying the condition Ni > Nmax/3 where Nmax = max(Ni), are deemed to

represent a background pixel value. Once the background pixels have been determined for the

current frame, if Nmax > 1.25∆, then each Ni is scaled by a factor of 4/5. This is necessary

because if N is unbounded, then a cluster with a relatively large N would dominate the

system making it difficult for other clusters to be considered as part of the background. Any

cluster with N = 0 or t − tl > ∆ is deleted. The full background model updating procedure

is described in Algorithm 3.
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Algorithm 3 Background Model Updating

1. If It matches χi, then update µi and σ2
i using Equations 8.1 and 8.2. Set ni = ni + 1.

2. If It does not match χi, then replace the cluster with the lowest N value with a new
cluster initialized with µ = I
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period of time. Bt includes all objects that have been motionless for a period Ts > t where

Ts ≈ Ni/frame rate. It can be shown that if i ≤ j, then Bj ⊆ Bi. In other words, objects in

the coarser scale background image will also be present in the finer scale background image.

A system that utilizes two background models, Bi and Bj where i < j, is able to detect

objects that have been static for at least i seconds (i.e. Ts ≥ i) because after approximately

i seconds, the object will merge into the background of Bi, but remain in the foreground

of Bj . The location of the object can be determined by generating a difference background

image DBi = Bi − Bj .



Chapter 9

Experiment and Results

The multiscale background updating model is tested on two unique video sequences. Both

scenarios are situated in an indoor environment: a living room and a train terminal 1. In both

experiments, the four model parameters are set to k = 4, L = 1024, F = 60, and δ = 20. In

other words, four Gaussian distributions are used for each pixel, the learning rate is set to

1/1024, weight updates occur every 2s (60 frames), and the recurrence threshold is set to 20

updates.

9.1 Living Room

For the living room scenario, two background models, B30 and B60, are trained for approx-

imately 5400 frames (∼180s). This ensures that both models are sufficiently trained since

∆B30
= 2700 and ∆B60

= 5400. The training period consists of a static background scene

with minimal illumination changes. Immediately after the training period, a person enters

the scene, places a laptop bag on the ground, and proceeds to leave the camera’s field of

view. The laptop bag remains in the scene for approximately 3750 frames (∼125s), at which

time a person retrieves the bag returning the scene to its original state.

Figure 9.1 shows the state of the overall system at frame 5753 (∼192s). Figure 9.1(a) and

(b) show the background image generated by B30 and B60, respectively. It can be seen that

the laptop bag is still present in the foreground of both background models. Figure 9.1(c) is

the difference background image DB30 and Figure 9.1(d) shows the original image from the

1The train terminal video is provided by the PETS2006 workshop with the support and collab-
oration of the British Transport Police and Network Rail.
http://www.cvg.rdg.ac.uk/PETS2006/index.html
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video. Since DB30 shows no image, it can be concluded that the object has been static for

less than 30s and hence, no warning is issued.

Figure 9.1: Images of frame 5753. (a) Background image B30. (b) Background image B60. (c)
Difference background image DB30 = B30 − B60. (d) Monitor view.

Approximately 976 frames (∼32.5s) after the bag is placed in the scene, the object begins

to merge into the background of B30. Figure 9.2 is a snapshot of the system at frame 6729.

Figure 9.2(a) and (b) show the states of B30 and B60, respectively. The object is present

in B30, but does not appear in B60 implying that the object has been static for more than

30s, but less than 60s. This is confirmed in DB30 shown in Figure 9.2(c). The 30s warning

indicator is shown in Figure 9.2(d) as a yellow bounding box around the object.

Figure 9.2: Images of frame 6729. (a) Background image B30. (b) Background image B60. (c)
Difference background image DB30 = B30 − B60. (d) Monitor view with warning indicator
(shown as a yellow bounding box).
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9.2 Train Terminal

Unlike the controlled, quiet scene of the living room, the train terminal video is a more

complicated scenario. Three background models, B5, B15, and B20, are instantiated to supply

the system with both a warning period (5 ≤ Ts < 15) and a higher priority alarm signal

(Ts ≥ 15). The flexibility of the multiscale approach is shown by using this two-stage alert

system.

Throughout the entire video, various people pass through the scene simulating the move-

ment of real-life commuters. The training period for this experiment is set to around 1800

frames (∼20s), which is equivalent to the largest ∆ of the three background models. Approx-

imately 1700 frames (∼57s) into the video, a man enters the scene with a long carrying case.

He lingers around the target area for approximately 30s, at which time he leans the case up

against the railing and proceeds to leave the scene. For the remainder of the video, the object

remains in the same location while commuters continue navigating through the camera’s field

of view, occasionally hiding portions of the object.

Figures 9.3 through 9.5 show key frames of the video at three separate time instances.

For each of the figures, (a) through (c) show the three background models B5, B15, and B20,

respectively. Also, (d) and (e) are the difference background images DB5 and DB15, and (f)

is the image shown on the monitor display.

Figure 9.3 is a snapshot of frame 2792 in which the man has left the carrying case against

the railing and begins to exit the scene. The object has been static for less than 5 seconds

since DB5 does not identify any connected components large enough to classify as an object.

The foreground (black) pixels of DB5 can be attributed to the non-uniform distribution of

the object pixels in the scene. For example, the majority of movement occurs within the

walking area of the train terminal and because of the camera angle, the quieter portions of

the scene (i.e. pixels in the upper area of the image) receive less pixel value variation than

their busier counterparts.
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Figure 9.3: Images of frame 2792. (a) Background image B5. (b) Background image B15. (c)
Background image B20. (d) Difference background image DB5 = B5 − B15. (e) Difference
background image DB15 = B15 − B20. (f) Monitor view.

Figure 9.4 shows the state of the system at frame 2946. This is approximately 5 seconds

after the object was left unattended, which agrees with the theoretical time when the static

object should merge into B5. The static object appears in DB5 indicating that the object

has been stationary for greater than 5 seconds. The system notifies the monitoring party by

displaying a yellow bounding box around the object in the system’s monitor view.

Once the object remains idle for more than 15 seconds, an alarm is triggered and the

proper authorities are notified automatically so that they can attend to the potential danger

immediately. Figure 9.5 shows the video at frame 3219, which is approximately 15 seconds

after the initial time the object was left. The alarm is displayed as a red bounding box around

the object in the system’s monitor view.
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Figure 9.4: Images of frame 2946. (a) Background image B5. (b) Background image B15. (c)
Background image B20. (d) Difference background image DB5 = B5 − B15. (e) Difference
background image DB15 = B15 − B20. (f) Monitor view with warning indicator (shown as a
yellow bounding box).

Figure 9.5: Images of frame 3219. (a) Background image B5. (b) Background image B15. (c)
Background image B20. (d) Difference background image DB5 = B5 − B15. (e) Difference
background image DB15 = B15 − B20. (f) Monitor view with alarm indicator (shown as a
red bounding box).



Chapter 10

Concluding Remarks and Future Work

The results of the study show that using a multiscale background scheme is a valid approach

to dynamic scene analysis. The system was able to signal a warning when an object remained

stationary for the specified amount of time. Although the system performed reasonably well, a

few weaknesses were exposed while performing the experiments. The first problem concerns

the accuracy of the system when the background models are not sufficiently trained (i.e.

Ft ≪ ∆, where Ft is the length of the training period in frames). Consequently, if the models

do not have the correct estimate of the background image, foreground objects will merge

into the background sooner than expected.

Another issue related to the training problem is the situation in which portions of the

same object merge into the background at different rates. This problem could result in

undersized connected components which will affect the object detection process. Another

consequence of the merging problem is the difficulty of getting a sharp transition between

the warning and alarm stages.

A more accurate assessment of the proposed scheme can be obtained by integrating the

model into a real-time, online monitoring system. In an online situation, the processing speed

of the entire system is of utmost concern. Fortunately, the multiscale approach is well-suited

for a parallel computer architecture where each model can be managed independently using

a multi-processor system.

The sleeping person problem has a counterpart known as the waking person problem. The

waking person scenario occurs when an object that originates in the background is moved. A

missing objects detection feature could be implemented by utilizing the effects of the waking
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person problem. This function is useful in theft prevention systems. It could also be used

to find misplaced items in a crowded room. The drawbacks, improvements and suggestions

discussed in this chapter will be investigated in future studies.
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