
SWI-Speech: An Interface Between
SWI-Prolog and Microsoft SAPI

Jonathan T. McClain
Artificial Intelligence Center
The University of Georgia

http://www.ai.uga.edu

May 8, 2003

Abstract

This paper describes the implementation and use of SWI-Speech,
an interface between SWI-Prolog and Microsoft SAPI (Speech Ap-
plication Programming Interface). SWI-Speech is a component of
PRONTO (Prolog Natural Language Toolkit), a package created by
the Artificial Intelligence Center at the University of Georgia. This
paper is divided into a discussion of how to use the current version
of SWI-Speech, as well as a discussion of the actual implementation
details of SWI-Speech.

1 Introduction

This paper describes the implementation and use of SWI-Speech, an interface
between SWI-Prolog and Microsoft SAPI (Speech Application Programming
Interface). SWI-Speech is a component of PRONTO (Prolog Natural Lan-
guage Toolkit), a package created by the Artificial Intelligence Center at the
University of Georgia. It is fully compatible with SWI-Prolog version 5 and
Microsoft SAPI version 5.

1



2 Motivations for interfacing SWI-Prolog and

SAPI

Prolog is extremely useful to those involved in programming applications for
processing natural language. Covington (1994), outlines a number of reasons
why Prolog is considered the most suitable language for natural language
processing (NLP), in particular:

1. Prolog provides a way to manipulate large and complex data structures,
such as lists of words, easily and efficiently.

2. A program written in Prolog is capable of modifying itself, allowing the
use of abstract programming methods.

3. A search algorithm, depth-first search, is built into Prolog and is easily
used in a number of natural language parsers.

4. Unification is also built into Prolog and can be used to build data
structures in a way that the order of processing does not matter.

Because of Prolog’s suitability for NLP, it would be strongly desirable
to manipulate language synthesis and recognition programs directly from
Prolog, where all the processing is done. Unfortunately, a number of these
sorts of packages are designed to be used by more conventional programming
languages such as C or C++, and it is difficult or impossible to access them
from other languages. In many cases, it is necessary to write methods in
another language to use these applications and then call them from a Prolog
program. Thus, a standard interface to applications of this sort would greatly
accelerate the development of NLP applications that require the recognition
and synthesis of language.

Microsoft SAPI is a little known speech recognition and synthesis engine
that is supported in all versions of Windows after Windows 95. The Mi-
crosoft Speech SDK (System Development Kit) version 5.1 is available for
free download from the Microsoft Speech Technologies Website. Speech SDK
5.1 is compatible with a number of programming languages, but most of the
documentation focuses on examples written in C++. In general, any pro-
gramming environment that supports OLE automation will work for writing
SAPI applications.

2



3 Using SWI-Speech

The following section describes how to use SWI-Speech within SWI-Prolog
applications. The SWI-Speech package consists of two files, SWI Speech.dll
and SWI Speech.pl. These files must be contained in the same directory while
being used. To begin using SWI-Speech, load SWI Speech.pl into Prolog as
follows:

:- ensure_loaded(’swi_speech.pl’).

SWI Speech.pl will handle the process of loading and controlling the low-level
methods contained in SWI Speech.dll. If direct control of these methods is
desired, use ensure_foreign_library_loaded/1 as described in the next
section.

3.1 Controlling speech recognition with SWI-Speech

SWI Speech.pl allows for the control of speech recognition using the predicate
listen/1. listen/1 accesses SAPI’s speech recogntion engine, listens for a
line of speech input, and returns the input in the form of a Prolog quoted
atom. This input can be easily converted to a list of characters using the
provided predicate atom_chars/2. An example of a query to listen/1 is
included below:

?- listen(Sentence).

Sentence = ’Hello world’

3.2 Controlling speech synthesis with SWI-Speech

SWI-Speech provides two predicates for the control of speech synthesis, speak/1
and speak_with_attributes/1. These methods differ by the amount of
control over voice output that they provide. speak/1 uses the default voice
settings of SAPI that are set by the user, giving the programmer no control
over how the final output sounds. It allows input to be in the form of a char-
acter list, or a quoted atom. Thus, the following two queries speak “Hello
world” with the default voice settings using speak/1:

?- speak("Hello world").

?- speak(’Hello world’).

3



On the other hand, speak_with_attributes/1 allows the programmer
to set the voice qualities desired for a particular application. Because the
likliehood of two different machines having the same voices installed on them
is very small, the Microsoft Speech SDK does not allow for the specification
of the exact voice to be used for speech output. Instead, it gives programmers
control over voice output through the use of attributes. SWI-Speech allows
for the control of four different attributes related to voice output, volume,
rate of speech, age, and gender.

The volume of speech output is controlled via the predicate set_volume/1.
The volume attribute must be set to a number between 0 and 100, with zero
being off and 100 being the loudest setting. Similarly, the rate of speech is
controlled by the predicate set_rate/1. The rate of speech must be set to
a number between -10 and 10, where -10 is the slowest, 10 is the fastest, and
0 is average. The following example speaks “hello world” at an average rate
of speech and at full volume:

set_rate(0),
set_volume(100),
speak_with_attributes("Hello world").

The age and gender attributes are controlled by the predicates
set_age(+Age,+Condition) and set_gender(+Gender,+Condition). The
settings of these attributes are used to search through the Windows Registry
for an appropriate voice. For both of the above predicates, the condition can
be set to either optional or required. The search will only return voices that
match the required attributes. If no voices match the required attributes,
then the default voice is returned. In contrast, the search will return voices
that do not match the optional attributes. However, voices that match the
optional attributes are preffered over those that do not. The age attribute
must be set to one of the following age groups; child, teen, adult, or senior.
The gender attribute must be set to either male or female. The following ex-
ample searches for an adult male voice, where the adult attribute is required
and the male attribute is optional:

set_age(adult,required),
set_gender(male,optional),
speak_with_attributes("Hello world").

4



4 SWI-Speech implementation

The development of SWI-Speech can be divided into two parts, the develop-
ment of C++ methods to control SAPI, and creating the interface between
the methods and SWI-Prolog. C++ was chosen because it is ideally suited
for both of these tasks. The general architecture of SWI-Speech consists of
a DLL (Dynamic Link Library) file containing a number of Prolog-accessible
predicates written in C++, and a companion Prolog file containing methods
to control these low-level methods more easily.

4.1 Creating and controlling foreign libraries for SWI-
Prolog

Creating a DLL file that is capable of being accessed by SWI-Prolog is facil-
itated by the C++ interface to SWI-Prolog provided by the file SWI-cpp.h.
This file comes with SWI-Prolog and can be found in the “include” directory
of an SWI-Prolog installation. SWI-cpp.h makes it easy to create predicates
that are accessible by SWI-Prolog and are written in C++. The definition
of hello_world/1 a simple predicate defined using SWI-cpp.h, along with
its output is included below (Wielemaker 2000):

PREDICATE(hello_world,1)
{
char * Name = A1;
cout << "Hello " << Name << endl;
return TRUE;
}

?- hello_world("Jon").
Hello Jon

This predicate takes a list of characters in Prolog and prints them to the
screen. There are a few aspects of this predicate that are worthy of note.
First, the arguments of PREDICATE() provide the name and arity of the
predicate. The arguments of a defined n-place predicate are accessible using
the macros A1 through An. Finally, and most importantly, the statement
char * Name = A1 shows how a Prolog defined type is converted to a native
C++ type. In this case, a list of characters is being converted to a character
string. Much of the difficulty in writing predicates such as this lies in the

5



process of type-conversion. This is because while most standard types are
easily converted, special types can be quite difficult since the conversions are
not defined by SWI-cpp.h. A quick solution is to find a simple type that can
be converted to both types and use it as an intermediary between them. For
more information regarding the specifics of type conversion, see Wielemaker
(2000).

After creating the DLL file containing predicates defined in C++, these
predicates must be loaded into SWI-Prolog in order to use them. The
provided predicate load_foreign_library/1 makes this simple. However,
when using load_foreign_library/1, one must be careful not to load the
same library twice. The following predicate loads a library only in the case
that it has not already been loaded:

ensure_foreign_library_loaded(ForeignLibrary) :-
foreign_library_loaded(ForeignLibrary),
!.

ensure_foreign_library_loaded(ForeignLibrary) :-
load_foreign_library(ForeignLibrary),
assert(foreign_library_loaded(ForeignLibrary)).

Thus, if the DLL is named SWI Speech.dll, then the following query must
be called before any of the predicates within it may be used:

?- ensure_foreign_library_loaded(swi_speech).

4.2 Controlling SAPI with C++

There were two primary methods that needed to be created in order to con-
trol SAPI via SWI-Prolog, a method to speak a line of text, and a method
to control the speech recognition engine. Although the speech recognition
engine was more difficult to get working at first, the speech synthesis method
eventually became the more complicated of the two due to SAPI’s capability
of controlling voice output.

4.2.1 Controlling speech recognition in SAPI

Before speech recognition is able to occur, the recognition engine and gram-
mar must be initialized. Once this is accomplished, the method for listening
is quite simple as can be seen below:

6



CComPtr<ISpRecoResult> cpResult;
while (SUCCEEDED(hr = BlockForResult(cpRecoCtxt, &cpResult)))
{

cpGrammar->SetDictationState( SPRS_INACTIVE );
CSpDynamicString dstrText;
char * mystring;
if (SUCCEEDED(cpResult->GetText(SP_GETWHOLEPHRASE, SP_GETWHOLEPHRASE,

TRUE, &dstrText, NULL)))
{

mystring = dstrText.CopyToChar();
cpResult.Release();
return (A1 = mystring);

}
cpGrammar->SetDictationState( SPRS_ACTIVE );

}

This code continues to loop until the recognition engine has finished and re-
turns a result to dstrText. The text in dstrText is then copied to mystring

to be converted back to a list of characters in Prolog.

4.2.2 Controlling speech synthesis in SAPI

The following predicate, swi_speak/1, takes a character list in Prolog and
speaks it using the default voice settings for SAPI:

PREDICATE(swi_speak,1)
{

ISpVoice * pVoice = NULL;
CSpDynamicString mystring;
HRESULT hr;
if (FAILED(::CoInitialize(NULL)))

return FALSE;
hr = CoCreateInstance(CLSID_SpVoice,NULL,CLSCTX_ALL,

IID_ISpVoice,(void **)&pVoice);
if( SUCCEEDED( hr ) )
{

mystring = A1;
hr = pVoice->Speak(mystring, 0, NULL);
pVoice->Release();
pVoice = NULL;

7



}
::CoUninitialize();
return TRUE;

}

This method begins by creating an instance of type ISpVoice called pVoice.
Once pVoice is initialized, the method simply copies the Prolog charac-
ter list into a SAPI defined type called CSpDynamicString and feeds it to
pVoice. Luckily in this case, a Prolog character list easily converts to type
CSpDynamicString and no intermediary is needed.

SAPI provides programmers with the ability to control certain charac-
teristics of speech output. In this way, it is possible to override the users
default settings and select the specific type of voice that should be used if
it is so desired. Control over these characteristics falls into two categories,
basic output control and attribute-based voice selection.

SWI-Speech provides Prolog programmers with control over two basic
output characteristics, rate and volume. Both of these aspects are controlled
directly via methods within the ISpVoice type, SetRate and SetVolume.
The rate of speech must be set to a number between -10 and 10, with -10
being the slowest and 10 being the fastest. Volume must be set between 0
and 100 with 0 being off and 100 being the loudest. The following example
illustrates how to set the rate of speech to its highest speed. Setting the
volume works in an exactly similar way.

hr = pVoice->SetRate(10);

Since SAPI usually comes standard with a variety of different voices,
and users also have the opportunity to obtain more voices from third-party
providers, SWI-Speech also provides a way to control what voice gets chosen
for speech output. This is done through the use of attributes. Attributes
are information relating to each voice that is stored in the Windows Reg-
istry. These attributes can be used to search through all of the available
voices and choose the one that best matches. This is done using a provided
method called SpFindBestToken. When using SpFindBestToken, there are
two categories of attributes that are used, required attributes and optional
attributes. SpFindBestToken returns only voices that match all of the re-
quired attributes. If SpFindBestToken is unable to find any voices that
match all of the required attributes, the default voice is chosen. Optional
attributes on the other hand, only influence the voice that is chosen. Thus,

8



if there are two voices that match all of the required attributes, the one with
the most optional attributes that are also met is the one that is returned
by SpFindBestToken. A call to SpFindBestToken appears in the following
example:

hr = SpFindBestToken(SPCAT_VOICES, required, optional, &pCurVoiceToken);

SWI-Speech gives programmers control of two different attributes, age
and gender. The age attribute can have four values, child, teen, adult, and
senior. The gender attribute can be set to either male or female. When
SpFindBestToken is called, the attributes must be in the same format as the
following, "Age=Adult". Thus, it was found that it was easiest to control
the creation of these attribute lists within Prolog and then pass them to the
DLL for processing.

5 Future Work

There are a few capabilities of SAPI that SWI-Speech does not currently
address. First, SAPI gives programmers the ability to define new grammars
for the speech recognition engine. At present, SWI-Speech only allows the
use of the default grammar provided with SAPI. Although this grammar
is quite extensive (the author has not yet found a word that it could not
identify), this may not be acceptable in some special cases. SWI-Speech
also currently does not address one searchable attribute of voices for speech
synthesis, the vendor attribute. This attribute would allow programmers to
search for voices that were created by a specific vendor.

All in all, SWI-Speech is a good tool that gives Prolog programmers
access to the SAPI speech engine without having to deal with the problems
of interfacing. This package would help speed up the work of anyone involved
in NLP application development with SWI-Prolog.

References

Covington, Michael A. (1994). Natural Language Processing for Prolog Pro-
grammers. Upper Saddle River, NJ: Prentice-Hall.

Microsoft. Microsoft Speech Technologies Website Available online at
http://www.microsoft.com/speech.

9



Wielemaker, Jan (2000). A C++ Interface to SWI-Prolog Available online
at http://www.swi-prolog.org/packages/pl2cpp.html.

10


