

KORPAR: A RULE-BASED DEPENDENCY PARSER FOR KOREAN IMPLEMENTED

IN PROLOG

by

SOYOUNG KWON

(Under the Direction of Michael A. Covington)

ABSTRACT

Natural language parsing is the process of analyzing an input sentence by determining its

syntactic structure and representing that structure according to a given formal grammar.

However, it is often difficult to parse sentences correctly since the nature of language is

ambiguous and has many irregularities. If the word order is totally or partially free, the task of

parsing becomes more challenging. The process of parsing can be based on hand-coded heuristic

rules, probability, or a hybrid of both.

KorPar, described in this dissertation, is a parser for Korean based on hand-coded

heuristic rules, represented in unification-based dependency grammar and implemented in Prolog.

The dependency grammar provides an efficient way to parse the free word order of Korean,

while the unification-based features express complex grammatical facts without complicating the

parsing algorithm and, as a result, the parser can be easily modified for grammar correction,

implementation of probabilities for the grammar rules, and application to other languages.

 KorPar analyzes the structure of a Korean natural language sentence by

representing it as a set of dependency pairs. Since Korean is a partially free-word-order

language, KorPar accounts for restrictions on totally free order of the words in a sentence,

recognizes subcategorization features, restricts the order of dependents for a single head, matches

long-distance dependencies, and parses nouns that lack case markers. KorPar has been tested

with 100 consecutive sentences (more than 2000 words) from articles in the Chosun Ilbo

Newspaper. The F-score (harmonic mean of precision and recall rates) was 96.3%.

INDEX WORDS: Dependency grammar, Unification-based grammar, Parsing, Natural

language processing, Korean, Prolog

KORPAR: A RULE-BASED DEPENDENCY PARSER FOR KOREAN IMPLEMENTED

IN PROLOG

by

SOYOUNG KWON

B.A., Ewha Womans University, Korea, 1996

M.A., Ewha Womans University, Korea, 1998

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2006

© 2006

Soyoung Kwon

All Rights Reserved

KORPAR: A RULE-BASED DEPENDENCY PARSER FOR KOREAN IMPLEMENTED

IN PROLOG

by

SOYOUNG KWON

Major Professor: Michael A. Covington

Committee: Marlyse Baptista
Hyangsoon Yi

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
December 2006

 iv

DEDICATION

 To my parents, parents-in-law, my husband and my lovely two children who gave me

love and support.

 v

ACKNOWLEDGEMENTS

 I would like to thank Dr. Covington for believing in me and giving me endless support

throughout my courses, exams, and dissertation. I remember the first course that I have taken

from you and how poorly I have written my paper in the class. I have got the worst grade among

other courses, but I have learned the most valuable thing: to write only what you know and to

express your knowledge with concise and clear sentences. I am so grateful that you have given

me another chance and supported me during my graduate years. I will always cherish those years.

Also, I would like to thank Dr. Baptista for always being there for me and supporting me like a

sister. I have always admired your sincere warm heart and how you encourage us to pursuit our

career. I hope I have made you proud and also wish the very best for you and your family.

I am also so grateful to Dr. Yi for all her encouragement and objective opinions and support in

choosing my career. I have learned to plan my future with confidence thanks to you and hope

that I could someday give in return.

 Most of all, I would like to thank my family: my mom and dad who have sacrificed so

much for my education, my mother-in-law who has always supported and encouraged me to

finish my degree, my best friend and husband who I could not have made it without, and my

lovely son and daughter who are the best children that any parent can ever have. I love you all

so dearly!

 vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS...v

LIST OF TABLES... viii

LIST OF FIGURES ... ix

CHAPTER

1 Introduction..1

1.1 Statement of Thesis ...2

1.2 Overview of Dissertation...3

2 Related Work on Parsers Focusing on Korean ..5

2.1 Rule-based Framework..5

2.2 Probability Framework..11

2.3 Hybrid Framework ..11

3 Technical Background of KorPar ..13

3.1 Probability and Accuracy ..13

3.2 Dependency Grammar and Efficiency ..14

3.3 Rule-based Parser and Generative Power ...21

3.4 Satisfying 3.1, 3.2, and 3.3 with KorPar ...22

4 Theoretical Basis of KorPar...27

4.1 Dependency Grammar...27

4.2 Unification-based Grammar and GULP..29

 vii

4.3 Characteristics of Korean ..30

5 KorPar (Korean Parser)..33

5.1 Lexicon..33

5.2 Grammar Rules..37

5.3 Algorithm ..58

5.4 Troubleshooting Cases ..65

6 Results and Evaluations ...81

7 Conclusion ...86

 7.1 Contributions of KorPar ..87

7.2 Possible Future Improvements ..87

REFERENCES ..89

APPENDICES ...95

A Prolog Code of KorPar...95

B Several Examples of Input and Output of Test Sentences...111

 viii

LIST OF TABLES

Page

Table 1: Categories of PartofSpeech ..34

Table 2: Head and Dependent Pairs of KorPar..38

Table 3: Head and Dependent Relations as proposed by Kim, Kim, Seo, and Kim (1994)..........39

Table 4: Evaluation of the Overall Dependencies ...81

Table 5: Evaluation of Different Dependencies...82

 ix

LIST OF FIGURES

Page

Figure 1: Overall Algorithm of KorPar (in pseudo-code) ...59

Figure 2: Parsing Process of Sentence (12a)..61

Figure 3: Parsing Process of Sentence (73a)..71

 1

CHAPTER 1

INTRODUCTION

 Natural language parsing is an integral part of natural language processing, since it is

related to semantic interpretation, speech production, machine translation, information extraction,

question answering, and so forth. Parsers based on various formalisms have been developed on

both theoretical and statistical principles throughout the past decades. In recent years, statistical

parsers have been widely used to offset the highly ambiguous property of language. However,

the probabilistic parsers generally provide “the most likely” analysis, and in order to improve the

accuracy of results, a large corpus of annotated sentences is required. As a result, the latest trend

in parsing methods is to emphasize on a rule-based framework for accurate analysis and combine

probability-based framework for a wide-coverage and efficient analysis.

 The changes in the methods of parsing are also reflected in Korean parsers. In the 1980s,

parsers based on various grammar formalisms, such as phrase structure rules, categorial grammar,

and dependency grammar, were presented. Unfortunately, these parsers were not efficient and

could not analyze a wide range of ambiguous sentences in Korean. To improve the efficiency

and coverage of sentences, parsers based on statistics became popular in the 1990s. Nonetheless,

language cannot be analyzed or understood using only the probability method because, in most

cases, the parsing results are not accurate by simply providing the most likely analysis.

Furthermore, a large annotated corpus that entails an enormous amount of time and effort is

required to improve the accuracy of this method. Hence, nowadays, parsers based on grammar

 2

rules are re-emphasized and furthermore, a probability framework added to these rules can

improve the efficiency and accuracy of a parser.

1.1 STATEMENT OF THESIS

 The parser, KorPar, presented in this dissertation, is a rule-based parser based on

unification-based dependency grammar and is implemented in Prolog. Also, KorPar can provide

a firm basis for implementing a hybrid parser by adding probabilities to the heuristic rules

introduced in this work.

 Korean is a partially free-word-order language. This means that most words in a sentence

are free in order, though there are restrictions on certain words. For example, the verb and the

attached postpositional tense marker and sentence-ending marker must be placed in the final

position of a sentence. On the other hand, the noun and the attached postpositional case marker

may be placed anywhere in a sentence, as long as they precede the verb. Dependency grammar

is widely used to describe the word order and structure of a sentence in Korean parsers (Chung &

Rim 2004; Kwon & Yoon 1991). However, many of the proposed parsers use probabilities (Lee

2002; Yoon 2002) and they lack a high accuracy rate, while others parse a sentence by taking the

words in reverse order (Kim, Kim, Seo, & Kim 1994) and therefore the parser needs to wait for

the entire words in the sentence to be input.

 The hand-coded parser, KorPar, has been tested with 100 sentences (from articles of the

Chosun Ilbo Newspaper) and showed a high performance rate of precision 97.6%, recall 95%,

and the harmonic mean of precision and recall rate, F-score 96.3%. Although the number of test

sentences is small, the sentences are composed of various dependency structures that seem to

apply to almost all possible structures in Korean. If dependency grammar is combined with

 3

unification-based grammar, the implementation of a Korean parser becomes simple and efficient.

By representing a word with features and a grammar with the unification of features, the parsing

algorithm is separated from the grammar allowing it to check syntactic, morphological, and

semantic dependency. In addition, grammar correction, implementation of probabilites for the

rules, and application to other languages can easily be achieved by modifying the lexicon and/or

the grammar of the parser and leaving the algorithm itself unmodified. KorPar is implemented

non-deterministically in Prolog using GULP (Graph Unification Logic Programming)

(Covington 1994a), a tool for implementing unification-based grammar.

1.2. OVERVIEW OF DISSERTATION

This dissertation investigates the rule-based Korean parser KorPar. It analyzes its accuracy

and efficiency and examines a number of potentially difficult troubleshooting cases and KorPar’s

ability to handle them.

Chapter 2 lists previous work related to parsing Korean. The proposed parsers based on

phrase structure rules, categorial grammar, lexicalized tree-adjoining grammar, dependency

grammar, and unification-based grammar are summarized. The proposed parsers based on

probability are then reviewed, followed by a final section that briefly introduces the latest hybrid

parsers of Korean, which have re-emphasized the rule-based framework.

Chapter 3 elaborates the characteristics of an ideal parser that has high accuracy, efficiency,

and generative power. The probabilistic framework is questioned in regards to accuracy, the

dependency grammar formalism is emphasized in regards to efficiency, and the rule-based

framework is supported for its generative power. The final section explains how KorPar meets

 4

all three conditions of an ideal parser, and provides support for the potential psychological

realism of KorPar.

Chapter 4 introduces fundamental knowledge related to this dissertation. Dependency

grammar, unification-based grammar, and the characteristics of the Korean language are briefly

explained.

Chapter 5 describes how the parser KorPar functions. The lexicon, dependency grammar,

and algorithm itself are explained in detail. In addition, the difficult cases for parsing Korean are

presented and solutions are provided using examples. The cases include subcategorization, long-

distance dependency, serial verb construction, adjectives and relative clauses, optional case

marker, and supplementation of the hand-coded rules with probability.

Chapter 6 presents the results and evaluations of testing 100 sentences with KorPar and

Chapter 7 concludes the dissertation by discussing its contribution and possible future

improvements.

 5

CHAPTER 2

RELATED WORK ON PARSERS FOCUSING ON KOREAN

 This chapter provides a summarization of previous work on parsing natural languages,

with a focus on Korean. Research on parsing Korean sentences began in the 1980s, mostly with

rule-based frameworks. Several different grammar formalisms were used in the rules of the

parsers. A number of these early parsers faced various problems, and some eventually developed

into a form similar to dependency grammar. In the mid 1990s, researchers tried to overcome

these problems by using probabilities in their parsers. More recently, because of the difficulties

in maintaining a large treebank and the limit in performing high accuracy rates by using only

probabilities, the latest trend in parsing re-emphasizes a rule-based framework, which can be

combined with a statistical framework.

2.1. RULE-BASED FRAMEWORK

2.1.1. PHRASE STRUCTURE GRAMMAR

 Lee, Kim, and Kim (1997) proposed a variation of the phrase structure rule with restricted

syntax. Since conventional phrase structure grammars are strict in word order, they needed a

flexible grammar to accept the free word order of Korean. Eventually, the grammar appeared

similar to dependency grammar:

We developed a variation of phrase structure grammar with restricted

 6

syntax in this paper. The restriction aims at reducing the combinatorial

complexity of rule numbers due to order sensitivity of phrase structure grammar.

The restricted form of phrase structure grammar proposed in this paper

resembles a dependency grammar. (Lee et al. 1997: 2)

For example, a sentence with a transitive verb in Korean can have either the subject preceding

the object or vice versa. Therefore, the conventional phrase structure rule needed to be modified

as (1), in order to parse the free word order of the subject and object.

(1) a. conventional non-restricted rule
 VP → NP + object marker NP + subject marker VP

 b. modified restricted rule
 VP → NP + object marker VP
 VP → NP + subject marker VP

According to Lee et al.’s grammar, the highest node in a sentence tree structure is VP and by

modifying the conventional phrase structure rule to the restricted rule, it accepts free-word-order

of subject and object in a sentence. The term “restricted” is used because the rule allows only

one functional word (in this case, object/subject marker) in the right hand side of the rule.

Eventually, the restricted phrase structure grammar is similar to dependency grammar by setting

a modifier-modifiee relation between two words (phrases).

 The proposed parser based on restricted phrase structure grammar showed almost a 50%

decrease in the number of parsed trees per sentence and also less parsing time compared to the

conventional non-restricted grammar.

 7

2.1.2. CATEGORIAL GRAMMAR

 Categorial grammar is a form of lexicalized grammar in which the syntactic rules are

expressed by categories, either primitive categories or functions. Primitive categories are

generally, N, NP, PP, S and functions are normally VP.

Categories can be combined by two general function application rules shown in (2).

(3) a. X / Y Y → X
 b. Y X \Y → X

For example, a transitive verb has the notation of (S\NP)/NP as (3) (Steedman 1993).

(3)

Therefore, analogously to cancellation in the mathematical fractions, the verb likes combine with

the object Warren and results in S\NP and in turn, the subject Dexter combines with S\NP and

results in S.

 Lee and Lee (1995) parsed Korean using categorial grammar, emphasizing the

morphological structure of the agglutinative language. In addition, they developed the parser to

parse spoken Korean by integrating phoneme-level inputs into morpheme-level inputs. However,

the result of morphological analysis was perfect while the syntactic analysis was poor with

 8

35.5% accuracy. Lee, Lee, and Lee (1995) further showed improvement of the parser to 61.8%

accuracy in syntactic analysis, by using n-best strategy along with the semantic processing.

Cho and Park (2000) furthered research in this area by using categorial grammar and

semantic knowledge to parse coordinate constructions. Since categorial grammar cannot

represent and use lexical information, such as meaning, tense, number, etc., they combined the

lexical semantic information to their system, which seemed similar to unification-based grammar.

2.1.3. LEXICALIZED TREE-ADJOINING GRAMMAR

 Tree-adjoining grammar consists of a set of elementary trees: initial and auxiliary trees.

These trees constitute the basic building blocks of the formalism and have the advantage of

stating dependency relations between nodes of trees which are further apart. The adjunction and

substitution operations build derived trees from elementary trees. (Noord 1993)

 Han, Yoon, Kim, and Kim (2000) developed a wide-coverage Korean grammar based on

lexicalized tree-adjoining grammar. This grammar analyzes inflectional morphemes,

derivational morphemes, and the subcategorization of verbs. In addition, the adjoining trees are

specified with features and the features are unified, allowing local constraints in

subcategorizations to be processed.

2.1.4. DEPENDENCY GRAMMAR

 Kwon and Yoon (1991) implemented a parser based on dependency grammar and

implemented in C language to parse free-word-order sentences in Korean. Here, each morpheme

is represented in feature structures and unification is performed on a head and dependent pair.

 9

They proposed an approach that could analyze languages that are free in word order and have

ellipsis, but did not provide any numerical evaluations.

 Nam, So, Kim and Kwon (1998) presented a Korean grammar checker for simple

sentences (without subordinate clauses or coordination) based on heuristic rules only.

 Kim, Kim, Seo, and Kim (1994) proposed a dependency parser that processes the words in

reverse order, from the last word of the input sentence to the first word. By processing an input

sentence in reverse order, the number of possible dependents decreases since Korean is a head-

final language and in turn, it increases the parsing speed. However, this approach lacks real-time

application as it requires the parser to wait for the input of the entire sentence.

 Germann (1999) presented a deterministic dependency parser for Japanese implemented in

C++. This parser also parses in reverse order based on heuristic hand-coded rules.

2.1.5. UNIFICATION-BASED GRAMMAR

 Unification-based grammar can be used to implement and extend various grammar

theories. Kwon, Yoon, and Kim (1990) presentend KORANS (KORean ANalysis System), a

parser based on Head-Driven Phrase Structure Grammar (HPSG). The rules based on HPSG is

expressed in binary form as (4).

(4) M → D H
 M → H
 (M: Mother Category, D: Daughter Category, H: Head)
 (from Kwon et al 1990:252)

However, the crossing of branches in Korean phrase structures is not allowed in (4). Thus, in

addition to the HPSG rules, they used heuristic rules based on the characteristics of Korean to

 10

link discontinuous constituents, which is a similar approach to Kim et al.’s modified phrase

structure grammar in Section 2.1.1.

 Kwon et al. (1990) further explained the heuristic rules with the sentence in (5).

(5)

 (SE: Sentence Ender)

 The first adverb maeu cannot be linked with either the second adverb simhake nor the verb

apu, based on the HPSG rules. So the heuristic rules based on Korean require the first adverb to

be linked with the second adverb, allowing a cross branching of the tree structure.

 As mentioned in Section 2.1.4, Kwon and Yoon (1991) described a unification-based

dependency parsing method implemented in the C language.

 Agel, Eichinger, Eroms, Hellwig, Heringer, and Lobin (2003) introduced Dependency

Unification Grammar (DUG), a linguistic programming language. Since pure dependency

grammar cannot represent all linguistic structures, DUG formalism uses two additional

operations: feature unification and tree transformation. Feature unification provides a detailed

 11

representation of a sentence and tree transformation simulates all operations on a given sentence

to form new ones such as paraphrasing, translating, summarizing, and so on.

2.2. PROBABILITY FRAMEWORK

 Statistical approaches for natural language processing became popular in the mid 1990s

(Charniak 1997; Samuelsson 2000). Korean parsing was no exception to this trend.

 Yoon (2002) presented a parser that is controlled not by hand-coded heuristic rules, but by

the statistical information extracted from the corpus. The dependency relation between words is

based on the probability of a lexical association between the words. The lexical association is

measured using linguistic knowledge and distance information from the corpus and the two

words that has the highest association are linked together. The precision rate was 84.8% and the

longer the sentence, the lower the precision rate.

 Chung and Rim (2004) applied a similar approach by using probabilities of distance

between words. Although the performance of the parser decreased 3.6%, it offered the

advantage of using less time and space. They argued that the parser performs better once it

considers additional contextual information.

2.3. HYBRID FRAMEWORK

 From the late 1990s, the rule-based framework was re-emphasized due to the accuracy

problem of the probability framework. Therefore, hybrid frameworks of rules and the

probabilities of the rules have been proposed.

 Cha, Lee, and Lee (2002) combined categorial grammar with statistics to parse sentences

with coordination, long-distance scrambling, double subjects, and double objects. In a similar

 12

approach, Clark, Hockenmaier, and Steedman (2002) presented a statistical English parser that

uses combinatory categorial grammar to derive dependency structures, focusing on long-distance

dependencies in coordinations, extractions, and raising verbs.

Kim, Kang, and Lee (2001) used valency information and the structural preference rule

along with statistical information from a corpus for resolving ambiguities in dependency parsing.

Lee & Choi (1997) also presented two kinds of algorithms based on probabilistic dependency

grammar: reestimation and best-first parsing. Both algorithms showed O(n3) time complexities.

Schneider (2003) introduced a hybrid dependency parser with low complexity for English. The

probabilities are based on the distance between the head and dependent and the categories of

words involved. Schneider pointed out the need for larger dependency-annotated corpora, since

English has low counts of long-distance dependencies.

Considering various different approaches to parse either a relatively free-word-order

language (such as Korean) or relatively fixed-word-order language (such as English), I propose a

rule-based parser based on dependency grammar for efficiencies in representing the structure of

partially free-word-order Korean sentences and unification-based grammar to identify head and

dependent relations in a simple manner. Although there are rule-based parsers for Korean

presented in the past, some lacked efficiency and some did not provide performance evaluations.

The rule-based dependency parser, KorPar, is efficient and shows high accuracy rate and is

implemented in Prolog for unification and backtracking. Also, it can be used as a basis for

implementing probability parsers by using the grammar rules in the parser. The next chapter

discusses the characteristics and advantages of KorPar compared to the previous proposed

parsers by explaining the technical background of the parser.

 13

CHAPTER 3

TECHNICAL BACKGROUND OF KORPAR

3.1. PROBABILITY AND ACCURACY

 Parsers with a probability framework heavily depend on treebanks and morphological

taggers. According to Zeman (2002), a parser’s accuracy can decrease depending on the

treebank design and the errors of the morphological tagger. Zeman argues that building a

treebank and/or morphological tagger requires a complicated and expensive effort and it may not

always have a positive effect on the performance of the parser. It is apparent that the extraction

of information from the corpora needs to be facilitated by human linguistic knowledge: hand-

coded rules.

 Rayner, Boullion, Hockey, Chatzichrisafis, and Starlander (2004) compared two versions

of a speech translation system, a grammar-based language model and a statistical language

model. Both systems were carried out on the same corpus and evaluation was based on the

performance of translation. They concluded that the grammar-based language model system

outperformed the statistical one due to its ability to present more predictable interface to the user.

 Therefore, the ideal framework in natural language processing is to create a broad-

coverage, rule-based parser, using additional statistical methods to adapt the rule-based system

automatically and to acquire information from the corpora (Richardson 1994). The hybrid

system has practical application because creating a large corpus database for a probability

framework, is expensive, time consuming, and lacks highly accurate performance.

 14

3.2. DEPENDENCY GRAMMAR AND EFFICIENCY

A parser provides a syntactic structure of unrestricted natural language based on certain

syntactic representations such as constituency grammar or dependency grammar. KorPar

presents structures of input sentences based on dependency grammar. Compared to constituency

grammar, dependency grammar is a suitable syntactic representation for parsers of relatively

free-word-order languages.

3.2.1. DEPENDENCY GRAMMAR VS CONSTITUENCY GRAMMAR

There are two different types of structural descriptions widely used, constituency

grammar and dependency grammar.

Constituency grammar (CG) represents a sentence as a certain constituent (phrase), which

in turn consists of smaller constituents (phrases) or words. Therefore, CG groups words into

constituents. For example, The dog chased the cat is represented as:

(6) a.

 15

b.

The structure in (6a) represents the sentence based on phrase structure rules, whereas (6b) is

based on the X-bar theory. Both representations group the cat to generate a noun phrase, while

chased is added to generate a verb phrase and the dog is added to complete the whole sentence.

According to Jackendoff (1977), the labels of the nodes in (6a) have no theoretical explanations

as to why N is related to NP and V is related to VP. In particular, where did the node S come

from? The labels NP or VP are just symbols, unrelated to N and V respectively, and could have

been labeled as X or Y. In comparison, the labels of the nodes in (6b) do have explanations.

The central claim of X-bar theory is that the labels N, N′, and NP are related, and this is known

as the “endocentric constraint.” This constraint states that all constituents (phrases) must have a

head and this head projects to a higher node. V, V′, and VP are related in the same way, as are P,

P′, and PP.

 Dependency grammar (DG) links two words at a time, one being the head and the other

being the dependent. Normally in a sentence, all but one word depend on another word. The

 16

one word that does not depend on another word is the ultimate head of a sentence.1 There are

several different criteria for deciding head and dependent pairs, which will be discussed in detail

in 4.1. The representation of the sentence above is shown in (7).

(7)

The dependency pairs are graphically represented by a downhill line from the head to the

dependent. In DG formalism, the actual word is linked with another word to create a

dependency tree.

 The difference between CG and DG is that DG does not have higher nodes (intermediate

levels). The actual words are linked together, not the abstract nodes. Although there are no

intermediate levels in DG, the notion of constituency does exist. Covington (1992) describes a

constituent in DG as a head and its dependents, their dependents, and so on, recursively. The

only difference is that DG does not emphasize the notion of constituency, but rather the relation

between a head and its dependent(s).

1 Hudson (1984) argues that sentences with raising verbs have multiple heads. For example,
John in John seems to like Mary has two heads: seems and like.

 17

3.2.2. CONSTITUENCY GRAMMAR AS DEPENDENCY GRAMMAR

 Recent developments in the formalism of CG have made it much more like DG. First, the

change from the phrase structure rules to the X-bar theory shows that CG is becoming similar to

DG. The difference between the two, as mentioned in 3.2.1, is the endocentric constraint. In the

X-bar theory, every constituent (phrase or sentence) should have a head, but in phrase structure

grammar, there is no head for a sentence. The S node in (6a) is not a projection of any other

nodes in the tree and therefore, the sentence lacks a head. However, in the X-bar tree, in general,

V is the head of VP, N is the head of NP, and I is the head of IP (which is similar to S node in

phrase structure rules), and the constituents in each phrase other than the head are its dependents.

In X-bar theory, the ultimate head of a sentence is I (the inflection of the verb in a sentence) and

the subject occupies the Spec of I. Like DG, which analyzes the verb in a sentence to be the

ultimate head2 and the subject to be the dependent of the verb, CG started to show supremacy of

verbs.

 Second, the “VP-internal hypothesis” emphasizes verbs also. This hypothesis of the

Government and Binding Theory claims that the subject initially occupies the Spec position of

VP (Webelhuth 1995). Sentences with expletives can support this hypothesis as in (8).

2 In general, the ultimate head in English sentences is analyzed to be the verb. In comparison,
KorPar analyzes the postpositional sentence-ending marker that attaches to the verb to be the
ulimate head.

 18

(8) a.

 b.

Two sentences with the same meaning can be expressed either with or without an expletive there.

If it is expressed with the expletive there, someone occupies the Spec position of VP and there

occupies the Spec of IP (8a). If the same meaning is expressed without the expletive there, we

can assume that someone in the Spec of VP in deep structure has moved to the Spec position of

IP in surface structure (8b). Again, the subject depends on the verb and this hypothesis shows

the supremacy of verbs, similar to DG. Therefore, the representation of the sentence He locked

the door based on CG and DG becomes similar when following the VP-internal hypothesis.

 19

(9) a.

 b.

If there were only one non-terminal level in (9a), the tree structures based on the X-bar theory

(9a) and dependency grammar (9b) would become even more identical as in (10).

(10)

 Third, Chomsky’s Minimalist Program (1995) questions the necessity of the intermediate

bar-levels. He argues that only the head and the maximal projection relate to the interpretation

 20

of the logical form (LF) and the phonetic form (PF) interface. The maximal projection can be

labeled using the label of the head, and labeling the higher nodes can be eliminated since the

feature information is included in the head. Therefore, according to the Economy Principle,3 the

intermediate levels should be abandoned and labeling higher nodes should be considered

redundant. This results in the bare phrase structure. Schneider (1988) showed the representation

for the noun phrase, the dog, based on the bare phrase structure (11a) and DG (11b). (11a)

shows the process of ‘merge’4 in bare phrase structure: the and dog merge together and the head

of the phrase is dog. (11b) shows the head dog and the dependent the by drawing a downhill line

from head to dependent.

(11) a.

 b.

3 A principle which requires that (all other things being equal) syntactic representations should
contain as few constituents and syntactic derivations involve as few grammatical operations as
possible (Radford 1997).
4 The operation that combines lexical items or partial trees with others is called ‘merge’. Merge
is always a binary relation, that forms larger units out of those already constructed (Schneider
1988).

 21

Accordingly, examples (11a) and (11b) appear the same, except for the repetition of the head in

(11a).

 Kornai and Pullum (1990) also argued that the X-bar theory has developed with too much

emphasis on the bar levels. They contended that it is more important to establish what the head

of the constituent in question is, than to label the higher nodes. In other words, the “headedness”

should be emphasized for the descriptive power of representing languages.

 Therefore, the X-bar theory introduced the notion of “headedness” in CG, and since then,

CG has become similar to DG.

3.2.3. WHY IMPLEMENT DEPENDENCY GRAMMAR IN KORPAR?

There are two main advantages of dependency grammar. One advantage is that DG has

fewer nodes than CG. There are no abstract higher nodes, no empty nodes, no traces, and no

transformations (movements). In the practical field of parsing, the grammar should be as simple

as possible for ease of implementation of the algorithm. If the parser needs to simply link the

actual words, not analyze additional abstract units, then the task becomes easy and

straightforward. In addition, parsing based on DG is achieved one word at a time, while CG

must wait for constituents to be formed.

 However, when we consider the complexity of the parsing task, it could be the case that

parsers that use CG or DG formalism are NP-complete. According to Barton, Berwick, and

Ristad (1987), if agreement features are considered in the grammar, the complexity becomes

exponential. We need to take into account that it is rare for a natural language to have

ridiculously long sentences that typify the worst-case complexity of a parser (Covington

1994b:193-194; Voll, Yeh, and Dahl 2001).

 22

 Another advantage of DG is its ability to represent the free word order of languages in a

simple formalism. Since DG links two words at a time, word order is not emphasized as in CG.

Moreover, if “non-projectivity” is allowed, the grammar can accept totally free-word-order

languages. Non-projectivity means that the arcs in the dependency tree can be crossed. (See (71)

in Section 5.4.2.) In other words, DG can represent discontinuous constituents, which often

appear in free-word-order languages.

3.3. RULE-BASED PARSER AND GENENRATIVE POWER

 As mentioned in Section 3.1, natural language processing, and specifically natural

language parsing, should be based on linguistic knowledge to achieve a better performance in

accuracy. It is difficult to implement a parser based solely on probability. The parser requires

rules that explain how an input sentence is grammatical and that provide the internal structure of

the sentence (Jäarvinen & Tapanainen 1998). In other words, a parser needs rules that are

generative. A generative grammar must consist of a set of rules that define classes of well-

formed sentences. These sets of rules assign a structural description to each well-formed

sentence that provides a basis for explaining native speakers’ judgments about pronunciation,

meaning, structure, and structural relations. We call a grammar with these rules a descriptively

adequate grammar.

3.4. SATISFYING 3.1, 3.2 AND 3.3 WITH KORPAR

3.4.1. RULE-BASED DEPENDENCY GRAMMAR

 23

KorPar uses a rule-based framework of unification-based dependency grammar. The

grammar rules are hand-coded based on dependency grammar to accept the free order of the

words in a sentence and the unification-based grammar simplifies the task of identifying the head

and dependent relations. Therefore, it shows high accuracy performance and has generative

power because of the heurisitic rules in the grammar, and also shows efficiency in

implementation since it is based on dependency grammar.

3.4.2. PSYCHOLOGICAL BACKGROUND TO SUPPORT KORPAR

Jackendoff (2002) provided a perspective on how language is perceived and produced by

re-evaluating the concept of generative grammar introduced from Chomsky’s Aspects of the

Theory of Syntax in 1965 to the Minimalist Program. According to the mainstream generative

grammar, human can produce and perceive unlimited number of new utterances and also,

utternces with great length and complexity. For example, sentences such as, We have a young

child and our chef has twins so we know how difficult it is to find a first rate restaurant that

doesn’t shudder when you show up at the door with kids in tow (from Jackendoff 2002:39), could

be understood and produced by the combinatoriality of finite list of lexical items and finite set of

grammar. Jackendoff does agree with this concept, but he points out that it is mistakenly

syntactocentric: syntax is the only generative component and it drives both phonology and

semantics. Instead, Jackendoff proposed a parallel constraint-based architecture, which views

syntax, phonology, and semantics as equally independent, generative and combinatorial levels of

structures. Also, each level of structure is characterized by its own set of primitives and

combinatorial principles (rules) and these three combinatorial systems are connected by interface

constraints, which are the words in the lexicon. The parallel constraint-based architecture is also

 24

non-directional: one can start with any piece of structure in any component and pass along the

information to any other component.

Accordingly, I believe that human perceive and produce unlimited new utterances based

on a limited set of lexicon and grammars, not based on probability. We do not guess the most

likely meaning and structure of a sentence, instead we parse a sentence with accuracy. Therefore,

a rule-based parser should be emphasized for its psychological plausibility. Also, the order in

which components are activated is not determined and KorPar follows a similar process by

unifying features order-independently.

 Hudson (1993) supported dependency grammar by arguing that the higher nodes in a tree

structure are psychologically implausible. He suggested that the hearer’s task is to establish a

syntactic and semantic relations between each word and its head. Therefore, building higher

nodes is irrelevant to this task. For example, in processing the sentence, I saw her yesterday at

UCL, the DG formalism is flat and simple as in (12a). Each adjunct yesterday and at UCL is

directly linked with the common head saw.

(12) a.

 25

 b.

 (from Hudson 1993:284)

 However, based on the CG formalism (more accurately, the Extended Standard Theory) as

in (12b), the relations between V and S changes from being separated by one VP to eventually

three VPs as each adjunct is added to I saw her. (Compare (12b) with (13).)

(13)

These changes in the tree structure should cause complexity of processing since each adjunct

introduces different structural relations between the verb and the sentence. But in reality, the

sentence is not problematic for a hearer and the hearer does not backtrack to set up a new relation

 26

between V and S. Therefore, the higher nodes VP that introduce the adjuncts are theoretically

odd.

A parser based on dependency grammar and Prolog can also be supported by Abney’s

(1989) analysis of human parsing. According to Abney, “Human parsing is deterministic in most

inputs, but if parsing is done non-deterministically, it backtracks. The human parser does not

pursue multiple parsing in parallel and it does not wait until the whole phrase (constituent) is

composed.”

Therefore, an artificial parser should be able to analyze a sentence as similar as possible

to the human parser and at the same time, the implementation should be efficient in time and

space. In order to do so, we need to understand the psychological background of the human

parser and choose the appropriate formalism to represent the structure of a given natural

language input. As we have seen above, there are proposals that the human parser analyzes

languages based on some sets of grammars and therefore, I strongly believe that a rule-based

parser needs to be emphasized. Also, for efficiency in implementation, the DG formalism is

appropriate because it has fewer nodes (the actual words in a sentence) than CG formalism and it

easily represents free-word-order languages.

The next chapter will briefly introduce the criteria for identifying head and dependent

relations, the software tool for implementing unification-based grammar, and the characteristics

of Korean.

 27

CHAPTER 4

THEORETICAL BASIS OF KORPAR

4.1. DEPENDENCY GRAMMAR

4.1.1. BASIC CONCEPT OF DEPENDENCY GRAMMAR

 Dependency grammar describes sentence structures by linking individual words and

specifying their relations (Bauer 1979, Hays 1964). Each link will have a head and a dependent.

In general, the dependent is the modifier or complement and the head determines the attribute of

the dependent. The head is obligatory and the dependent is optional in a sentence. Although

there are variations in identifying head and dependent relations among languages, the ultimate

head—a head that is not a dependent of any other head—would normally be the single head for a

single sentence.

 The head and dependent pair can be represented graphically in many different ways. For

example, indentation can be used by placing the ultimate head in the leftmost position and

indenting its dependents or by drawing a line downhill from head to dependent or pointing an

arrow from head to dependent (Covington 1990).

4.1.2. CRITERIA FOR IDENTIFYING DEPENDENCY

 The term “head” has been used in the field of linguistics regardless of the grammatical

theory described. However, there is no single explicit notion of “head” that all linguistic theories

 28

agree upon. A head could have different meanings and functions in constituent grammar and

dependency grammar. There are several criteria that KorPar has chosen to follow when

identifying head and dependent pairs.

 According to Mel’čuk (2003), a single head and dependent pair is linked based on three

levels of dependencies: semantic, morphological, and syntactic dependencies. First, an argument

of a predicate semantically depends on its predicate. For example, the sentence, The boy gave

his friend a present can be analyzed such that each argument, the boy, his friend, and a present,

semantically depends on the predicate gave. In other words, the arguments need the predicate to

assign its semantic role in a sentence either as an AGENT, THEME, RECIPIENT, etc. Second,

if a word w1 assumes a certain morphological form under the influence of another word w2, then

w1 morphologically depends on w2. For example, in the sentences, He likes apples and They

like apples, the predicate like has different forms, depending on the subject argument. Third, the

syntactic dependency is an intermediate between semantic and morphological dependencies.

The dependency tree contains the meaning information (semantic) as well as the phonological

form (morphological) information of the dependency pairs.

 Similar to Mel’čuk, Kruijff (2002) proposed several characteristics of head and dependent

pairs. First, the head is obligatory and the dependent is optional. Second, the dependent

modifies the head, thus the pair becomes a hyponym of what the head alone refers to. Third, the

syntagm of the pair remains in the same category as the syntactic syntagm of the head. Fourth,

the head represents the external relation in a sentence. Fifth, the head decides the valency

structure. Sixth, the head contains the inflections. Finally, the head decides the morphosyntactic

form(s) of the dependent(s).

 29

There can be controversies between the final two criteria because the head can either

contain inflections and/or determine the inflections of the dependents. If we consider two

sentences, The child plays and The children play, should the subject be the head or the verb be

the head of these sentences? Kruiff explains these sentences as mutual dependency following

Mel’čuk (1988). Mutual dependency is defined as, “The main verb and its grammatical subject

are mutually dependent: the verb represents the clause but the subject controls the verb’s form.”

Furthermore, the verb is the head of the subject based on syntactic dependency and the subject is

the head of the verb based on morphological dependency. Therefore, dependency relations

cannot be indentified satisfying only one criterion or satisfying all the criteria.

4.2. UNIFICATION-BASED GRAMMAR AND GULP

 Unification-based grammar uses features and their values to represent grammar and

features are grouped into feature structures (Shieber 1986). Each feature structure has

information on meaning, part of speech, number, tense, case, subcategorizations, and so forth. In

KorPar, only the features that are related to the word are instantiated; the others are left

uninstantiated. These features and their values play a role in deciding syntactic, morphological,

and semantic dependency. The values of the instantiated features in the feature structure are

unified (matched or merged), order independently.

 Unification-based grammar is a mechanism that can be used in various grammar theories.

For example, dependency grammar can be implemented with feature structures, as (14a). The

dependency relations are shown in downhill lines and the features and their values are

represented in square brackets under the lexical item.

 30

(14) a.

 b. chased (subcategorization:2..tense:past)
 dog(case:nom..num:sg)
 the
 cat(case:acc..num:sg)
 the

The software tool, GULP (Graph Unification Logic Programming) (Covington 1994a),

facilitates the implementation of unification-based feature structures in Prolog. The syntax of

GULP is, for example, a:b..c:d, which represents a feature structure of a having the value b and

c having the value d, and all other features are uninstantiated. The operator ‘:’ joins a feature to

its value and the operator ‘..’ combines the feature and its value pairs to build more complex

structures. The GULP feature structures are automatically translated to their internal Prolog

terms when the program is compiled and then these structures are translated back when output by

print.

The same sentence in (14a) can be represented in unification-based dependency grammar

using GULP notations as in (14b). The features and their values are represented in parentheses,

alongside the lexical item, and the indentation shows the dependency relations. Compared to

(14a), the GULP notation is concise and simple for implementation.

 31

4.3. CHARACTERISTICS OF KOREAN

 There are three major characteristics of Korean that should to be addressed. The first

characteristic is the postpositional function words. These are bound morphemes, each carrying

different functions such as case marker, tense marker, and plural marker (Lee 2005).

 The second characteristic of Korean is word order. Korean is a partially free-word-order

language, such that most of the words in sentences are free in order. However, there are

restrictions on some words:

• Verb and postpositional verbal ending(s) must assume the final position of a sentence,

while the words before the verb are free or even omitted, as in (15a) and (15b).

• Postpositional function words must immediately follow the words they modify, as in (15c).

• Adverbs that modify verbs (in simple declarative sentences) may be placed in any position,

as long as they precede the verb. In comparison, adverbs that modify adjectives must be

placed immediately before the adjective, as in (15d).

• Adjectives and relative clauses must come right before the noun they modify, as in (15e).

These restrictions are illustrated with examples in (15).

(15) a. gang-a-ji ga go-yang-i lul chot nun -da.
 dog nom cat acc chase pres dec
 ‘The dog chases the cat.’

 b. go-yang-i lul gang-a-ji ga chot nun -da.
 cat acc dog nom chase pres dec
 ‘The dog chases the cat.’

 32

 c. go-yang-i gang-a-ji ga lul chot nun -da.
 cat dog nom acc chase pres dec
 ungrammatical sentence

 d. nae ga aju ken cha lul po n -da
 I nom very big car acc see pres dec
 ‘I see a very big car.’

 e. nae ga jaju po -n cha ga ga n -da
 I nom often see rel car nom go pres dec
 ‘The car that I saw often, is going.’

 The third characteristic of Korean is subcategorization. There are many cases of null

arguments in Korean. Therefore, subjects and objects can be dropped and dependency grammar

can easily represent these sentences. For example, if a verb is categorized as having two

subcategories, it means that the verb can have, at the most, two subcategories. For example,

sentences with transitive verbs can have only one argument realized.

(16) gang-a-ji ga chot nun -da
 dog nom chase pres dec
 ‘The dog chases _.’

 These characteristics and also others will be further discussed in 5.4, concerning how

KorPar manages to recognize and correctly analyze them.

 33

CHAPTER 5

KORPAR (KOREAN PARSER)

 KorPar is a rule-based parser for Korean based on dependency grammar and unification-

based grammar. The dependency grammar can easily represent the structure of the free order of

words in a sentence by linking two words at a time. The features of each word are unified in

order to check syntactic, morphological, and semantic dependency for a single head and

dependent pair. The unifications of features are done order independently in the grammar, and

thus the grammar is separated from the algorithm itself.

KorPar has three sections: the lexicon, the dependency grammar, and the parsing

algorithm itself. It is implemented in Prolog and the choice of lexical entries, dependency rules,

and predicates in the algorithm introduce nondeterminism.5 (See Appendix for the Prolog

program listing of KorPar.)

5.1. LEXICON

 The lexicon is a list of words represented in feature structures, as shown in (17).

(17) word (PhoneticSounds, PartofSpeech(GULPFeatures)).

5 Harri & Oy (1998) introduced a dependency parsing algorithm that parses Finnish sentences
deterministically in linear time. Also, Germann (1999) presented a rule-based, deterministic
dependency parser for Japanese.

 34

PhoneticSounds is the actual input word from the sentence to be parsed. Categories of

PartofSpeech are shown below in Table 1.

Table 1. Categories of PartofSpeech

PartofSpeech Symbol Example
noun n gang-a-ji (‘dog’), yeungu (‘research’)

postpositional case marker pp ga (nom/vow/sing), i (nom/sing)
postpositional plural

marker
plp dul (plural)

adverbial post marker advp euro (‘to’, ‘as’), bute (‘since’)
verb v chot (‘chase’), malha (‘say’)

sentence-ending marker p da (declarative)
tense post marker tp nun (pres/con), go-iss (pres-prog)

copular verb cp -i (‘be’)
other kind of copular verb ccp dwe (‘become’)

serial verb marker serv -e
adjective adj i-ben (‘this time’), jen (‘previous’)

genitive post marker gen euy (‘of’), la-nun (‘so-called’)
numeral num myut (‘several’), du (‘two’)

c 1 ncv la-go (‘says-that’), wihaese (‘for’)
c 2 scs ha-go (‘and’), i-na (‘or’)
c 3 pcv go (‘that’), hae-do (‘although’)
c 4 vcv nun-ji (‘if’), l-surok (‘the-more’)
c 5 vcn -nun (pres), -n (past/vow)

adverb adv sil-jae-ro (‘in reality’), jemjem
(‘gradually’)

adverbs with tense tadv ap-euro (‘in the future’)
verb to noun vnp gi, eum
noun to noun nnp wha

quotation mark qm ‘…’ / ‘…’

Different Korean linguists and lexicographers use different numers of categories of words

in Korean. Choi (1971) presented ten categories: noun, pronoun, numeral, verb, adjective,

determiner, adverb, particle, copula, and interjection. Sohn (1999), on the other hand, presented

 35

eight categories: noun, pronoun, numeral, verb, adjective, determiner, adverb, and particle.

These categories are based on each word’s form, meaning, and function in a sentence.

KorPar categorizes words into categories similar to Choi’s (1971) and Sohn’s (1999),

though there are a few differences. Since the main goal of KorPar is to grammatically check an

input sentence and provide a syntactic dependency structure of the sentence, the categories of

PartofSpeech are based on the morphosyntactic dependency relations, and the semantic

properties are shown with the sem feature, which is one of the GULPFeatures.

Proper nouns and pronouns are categorized as nouns, since their syntactic relations and

functions are similar to those of nouns. There can also be consecutive nouns that make

compound words without any “connector.” (See also 5.4.3.)

Adjectives and determiners are categorized based on a different analysis. KorPar analyzes

adjectives as predicates that introduce relative clauses with the complementizer vcn and

determiners as “pure” modifiers of nouns, labeled as adj. (See also 5.4.5.)

 The particles are categorized into several different parts of speech based on their syntactic

functions. Sohn (1999) subcategorized the particles into case, delimiter, and conjunctive cases

and Lee (2003) subcategorized the particles as nominative, accusative, locative1, locative2, and

instrumental. In comparison, KorPar categorizes the postpositional particles as case marker,

plural marker, adverbial marker, tense marker, sentence-ending marker, serial verb marker,

genitive marker, verb to noun marker, noun to noun marker, and complementizer/conjunction.

The words that have similar meanings and functions to conjunctions/complementizers in English

are categorized as c. Based on their dependency relations, c is subcategorized into ncv, scs, pcv,

vcv, and vcn. For example, the postpositional complementizer pcv attaches to a sentence ending

marker p and is followed by a verb, whereas scs is the kind of postpositional conjunction that

 36

attaches to and is followed by the same part of speech (n, v, or cp). All five categories of the

complementizer/ conjunction are shown in (18).

(18) a. gamki -edo-bulguhago hakkyo - ey nao - ss -da
 cold although (ncv) school to come past dec
 ‘Although _ had a cold, _ came to school.’

b. hakkyo -ey ga -gena whesa -ey ga -n -da
school to go or (scs) office to go pres dec
‘Either _ go to school or to the office.’

c. ge -ga hakkyo -ey ga -n -da -go malha -n -da
he nom school to go pres dec that (pcv) say pres dec
‘He says that he goes to school.’

 d. hakkyo -ey ga -l-su-rok bae-u -nun geut -i man -da.
 school to go the more (vcv) learn (vcn) thing nom many dec
 ‘The more _ go to school, the more _ learn.’

The scs in (18b) uses the preceding verb ga as the dependent and the following verb ga as the

head.

 GULPFeatures are features notated in GULP syntax. These features are used in the

unification framework to link the head and dependent pairs later in the grammar section of

KorPar. There are seven features in the lexicon. The sem feature is the meaning of the word.

The tense feature is the tense information of the PartofSpeech tp. The num feature is the

number, either singular or plural. The case feature is either the nominative or accusative case for

the nouns and the subcat feature is the subcategorization feature for the verbs. If the value is 1,

it means that the verb is an intransitive verb. If the value is 2, it means that the verb is a

transitive verb. The ending feature is a sound agreement between the head and the dependent.

If the end of the preceding dependent is a vowel, then the following head must begin with a

 37

consonant, and vice versa. The values vow and con are decided by the value of the dependent.

For example, the noun gang-a-ji is a dependent that has the value vow and the postpositional

case marker ga is the matching head that has the same value. The feat feature helps differentiate

dynamic verbs and stative verbs since they have a different syntactic dependency relation, used

either attributively or predicatively. (See also 5.4.5.)

Several examples of words in the lexicon are shown in (19).

(19) word(gyosoo,n(ending:vow..sem:professor)).
 word(saebyuk,n(ending:con..sem:dawn)).
 word(ga,pp(case:nom..ending:vow..num:sing)).
 word(un,pp(case:nom-topicalization..ending:con..num:sing)).
 word(euro,advp(ending:con..sem:to-or-as-or-with)).
 word(jugo-bad,v(ending:con..subcat:2..sem:exchange..feat:dyn)).
 word(ul-geut-i,tp(tense:future..ending:con)).
 word(myun-se,vcv(ending:vow..sem:as-or-while)).

5.2. GRAMMAR RULES

5.2.1. ORDER RESTRICTIONS

As mentioned in 4.3, Korean is a head-final language and the dependent is always

placed before the head. The head can be either adjacent or not adjacent to the dependent,

depending on the pair. For example, an adjective and an adverb (modifying an adjective) must

immediately precede the word they modify. On the other hand, the postpositional case markers

should precede (but do not have to be adjacent to) the verb.

 In order to implement these differences in word order restrictions, once a word enters the

parsing algorithm, the notation of the word changes to a list Node, as in (20).

 38

(20) [Number, ListofDependents, PhoneticSound,PartofSpeech,GULPFeatures].

Number is the position of the word in a sentence. ListofDependents is the list of all the

dependent(s), each dependent’s dependent(s), and so on. The Number atom is used in the

Conditions of the dependency rules to state the order restriction (see (21)). For example, if the

Number of the dependent is N1 and that of the head is N2, the “adjacency restriction” states that

N2 is N1 + 1, and the “preceding restriction” states that N1 > N2.

5.2.2. HEAD AND DEPENDENT PAIRS

The dependency rules are represented in the form shown in (21).

(21) check_dh(Dependent,Head) :- Condition.

Two Node lists, Dependent and Head, are paired. Condition states the order restrictions (using

Number) and the feature agreement restrictions (using GULPFeatures).

The head and dependent pairs are linked based on PartofSpeech. KorPar checks the

parts of speech of the head and the dependent. Since Korean is a head-final language, the

ultimate head is the sentence-ending marker p, which always appears in a sentence. The head

and dependent pairs are listed in Table 2.

Table 2. Head and Dependent Pairs of KorPar

DEPENDENT HEAD
v cp p (ultimate head)

serv pcv vcv ncv pp adv advp v
n advp gen pp
adj nnp vnp n

adv adj

 39

n gen
n nnp
v vnp
v serv

p (subordinate clause) pcv
v vcv
n ncv

As mentioned in 4.1.2, there are several different criteria for identifying head and

dependent. Consequently, there could be debates on the identification of head and dependent

pairs in Korean. Kim, Kim, Seo, and Kim (1994) listed several different types of dependency

relations, as presented in Table 3.

Table 3. Head and Dependent Relations as proposed by Kim, Kim, Seo, and Kim (1994)6

Governor Dependent Dependency Relation
Noun noun, adnominal

transformation ending
Modification

Noun attributive and stative
adverb

Addition

Numeral pronoun, demonstrative
adnoun

Modification

Numeral Adnoun attributive and stative
adnoun

Modification

Verb noun, pronoun, numeral,
case particle

Case Relation

… … …

According to Table 3, the head and dependent relations are based on a larger unit compared to

KorPar. The head and dependent pairs listed in Table 2 are based on eujel, which is a basic unit

6 The term “governor” is used instead of “head” in several Korean parsers. Also, Kim et. al did
not provide the entire list of dependency relations.

 40

that has either a meaning or a function. In comparison, the head and dependent relations in

Table 3 are based on a word unit, which is a unit split by whitespaces. For example, in (18b),

hakkyo and ey are individual eujels since each have either a meaning or a function

(postpositional marker that indicates ‘location’), while hakkyo-ey is the word unit separated from

other word units by whitespaces in the writing system. Because Korean is an agglutinative

language where several morphemes combine to form words, there are controversies in the

definition and representation of heads and dependents (Kim, Choi & Lee 2003: 200).

The main goal of KorPar is to provide a dependency tree of the input sentence. As a

result, the parts of speech are categorized according to this goal and the head and dependent pairs

are stated based on semantic, morphological, and syntactic dependency.

Let us consider (22), for example.

(22) na nun ecey san eyes kkweng ul cap - ass - eyo
 I nom yesterday mountain on pheasant acc catch past dec
 ‘I caught a pheasant on the mountain yesterday.’

(from Sohn 1997: 293)

There are alternative word orders for this sentence.

(23) a. na nun san eyes ecey kkweng ul cap - ass - eyo

 b. na nun san eyes kkweng ul ecey cap - ass - eyo

 c. ecey na nun kkweng ul san eyse cap - ass - eyo

 d. na nun kkweng ul san eyse ecey cap - ass- eyo

 e. kkweng ul na nun ecey san eyse cap - ass- eyo

 f. san eyse ecey na nun kkweng ul cap - ass- eyo

 41

The sentences in (23) are a few (not all) of the alternative word orders for the sentence in (22).

The verb and postpositional particles attached to the verb cap - ass - eyo are always placed in the

final position of the sentences. However, the postpositional case marker and the adverbial

marker that attach to nouns are free in order. Which word, then, should be the ultimate head, and

how should we link the head and dependent pairs?

 In 4.1.2, the criteria for identifying head and dependent were introduced. A brief

summarization is as follows:

(1) The head is obligatory and the dependent is optional.

(2) The head and dependent pair is a hyponym of the head.

(3) The head determines the external relations and the valency structures.

(4) The head contains the inflections.

(5) The head determines the morphosyntactic form of the dependent.

 There are several reasons why KorPar analyzes the sentence-ender as the ultimate head in

a sentence. In Korean, a sentence marker (postpositional marker for declarative, interrogative,

imperative, honorific declarative, etc.) is usually obligatory in a sentence. These sentence-

ending markers show that the whole construction is a sentence (1).

 The sentence-ending marker optionally takes the tense marker. Therefore, according to the

head and dependent criteria above (1), the tense marker is a dependent of the sentence-ending

marker. The tense marker contains the inflection and it subcategorizes a verb. Therefore, the

tense marker is the head of the verb stem (4).

 42

 The verb stem determines the valency structure and, in the case of the verb cap, it requires

a subject, object, and optionally an adjunct. The subject and object are marked by the

postpositional case marker and the adjunct can be marked by the adverbial marker. Thus, the

verb stem is the head of the case marker and the adverbial marker (3).

 The particles mentioned in 5.1 attach to either a verb or a noun. In the sentences above,

the case marker and the adverbial marker are obligatory (1), contain inflections (4), and

determine external relations in a sentence (3). Therefore, particles are heads of the noun or verb

to which they attach.

 The overall dependency tree of the sentence in (22) is shown in (24).

(24)

The head and dependent analysis above can lead to controversies. First, in casual speech,

Korean speakers tend to omit the case marker and the hearer can still understand the sentence by

context (Kang, Park, Yoon & Kwon 2002: 10). However, it is usually the case that it is either

the nominative or accusative case marker that is omitted. Moreover, if the verb is intransitive,

 43

then the parser can analyze the noun without any postpositional particle as the subject. If the

verb is transitive, it is normally the case that the accusative case marker is omitted.

(25) a. chulsoo jib eyse ja - n - da
 Chulsoo home at sleep pres dec
 ‘Chulsoo sleeps at home.’

 b. chulsoo ga sagwa mek - nun - da
 Chulsoo nom apple eat pres dec
 ‘Chulsoo eats an apple.’

 c. ?chulsoo sagwa lul mek - nun -da
 Chulsoo apple acc eat pres dec
 ‘Chulsoo eats an apple.’

 d. ??chulsoo sagwa mek - nun -da
 Chulsoo apple eat pres dec
 ‘Chulsoo eats an apple.’

Since the verb ja is intransitive in (25a), the nominative case marker can be omitted and still be

understood as the subject. Similarly in (25b), the verb mek is transitive, thus the accusative case

marker may be omitted and still understood as the object. However, by omitting the nominative

case marker in (25c), the sentence sounds unnatural, and in (25d), the sentence becomes more

unnatural if both case markers are omitted. Therefore, KorPar is implemented to parse a

sentence that is composed of an intransitive verb and a noun without a case marker, as a subject.

Furthermore, a sentence composed of a transitive verb and a noun without a case marker is

parsed as an object.

 The second controversy is that the noun and verb determine the morphosyntactic structure

of the case marker and tense marker, respectively. As mentioned in 5.1, the ending features of

the noun/case marker dependency pair and verb/tense marker dependency pair depend on the

 44

noun or verb. In that case, based on the criterion (5), the noun and verb should be the head of the

postpositional particles.

Therefore, we need to bear in mind that not all criteria can be met, and the main goal is to

establish dependency rules that are efficient and consistent for implementation.

5.2.3. GULPFEATURES AGREEMENT

 Once the head and dependent pairs are linked based on their PartofSpeech, the

GULPFeatures are checked. For example, the ending features of a noun and the postpositional

case marker need to match. As explained in 5.1, the value of the ending feature is decided by the

dependent. For example, if the noun ends with a consonant, then the case marker starts with a

vowel and that case marker has the ending feature value consonant.

(26) % noun/postpositional case marker (pp)
 check_dh([N,_,_,n,X],[NN,_,_,pp,Y]) :- !, X = ending:End, Y = ending:End, NN is N +1.

The GULPFeatures agreement and order restrictions are stated in the Condition (see (21)) of

the dependency rules.

5.2.4. SUBCATEGORIZATIONS

The ListofDependents atom in the Node list of each word plays an important role in

checking subcategorization features. The parser keeps track of the “so far” dependency relation

each time a word enters the parsing loop. The dependency rule checks the ListofDependents for

the number, type, and order of subcategories.

 45

For example, the subcategorizations of intransitive and transitive verbs are checked. As a

result, sentences with two nominative case markers and only one verb are parsed as

ungrammatical sentences. (Sentences with verbs that have the stative verb feature are exceptions:

See (81).)

(27) check_dh([N3,_,_,pp,X],[N2,[[N1,_,_,pp,Z]],_,v,Y]) :- !, Y = subcat:2,
 \+ (X = case:Case, Z = case:Case),
 N2 > N1, N2 > N3.

The dependency rule for a verb that has the subcategorization feature value of 2

(transitive verb) and the case of both the subject and object being realized is shown in (27).

Therefore, when v has pp (in N1 position in a sentence) as a dependent and wants to check if that

v can have pp (in N3 position in a sentence) as another dependent, it will succeed if the values of

case features are not the same between the two pp’s and if the order restrictions are met. The

second atom in the Node list of the verb, [[N1,_,_,pp,Z]], is the ListofDependents and is used to

check subcategorizations.

5.2.5. EXAMPLE OF GRAMMAR RULES

 The dependency grammar rules are categorized in 23 cases based on the categories of the

PartofSpeech in the lexicon. I will provide examples and detail explanation of three cases: rules

related to nouns, verbs, and c (either complementizers or conjunctions).

5.2.5.1. GRAMMAR RULES RELATED TO NOUNS

(28) % noun/postpositional case marker (pp)
check_dh([N,_,_,n,X],[NN,_,_,pp,Y]) :- !, X = ending:End, Y = ending:End,

NN is N +1.

 46

The postpositional case marker is the head of the noun and the ending feature needs to be

matched. There is an “adjacency restriction” for the noun and postpositional case marker pairs.

(Reptition of (26).)

(29) % n/n
check_dh([N,_,_,n,X],[NN,_,_,n,Y]) :- !, NN is N +1.

% num(numeral)/n
check_dh([N,_,_,num,X],[NN,_,_,n,Y]) :- !, NN is N +1.

% adjective/noun
check_dh([N,_,_,adj,_],[NN,_,_,n,_]) :- !, NN is N+1.

There can be three different categories of PartofSpeech modifying a noun: noun (for

consecutive nouns), numeral, and adjective. They all have the order restriction requiring them to

be adjacent to the noun.

(30) hangul gongbu nun jungyoha da
 Korean study nom important dec
 ‘Studying Korean is important.’

There are many cases of compound nouns (consecutive nouns) in Korean, as in (30). To

facilitate consistency in the order of the head and dependent in the grammar rules of KorPar, the

previous noun is the dependent of the following noun.

(31) % n/gen
check_dh([N,_,_,n,X],[NN,_,_,gen,Y]) :- !, X = ending:End, Y = ending:End,

NN is N +1.
check_dh([N,_,_,n,_],[NN,_,_,gen,_]) :- !, NN is N +1.

%gen/n
check_dh([N,_,_,gen,X],[NN,_,_,n,Y]) :- !, NN > N.

 47

In (31), the genitive case marker is the head of the preceding noun, matching the ending feature

if necessary, and the following noun is the head of the genitive marker.

(32) changsoo -euy chingu -dul -i o -n -da
Changsoo gen friend pl nom come pres dec
‘Changsoo’s friends are coming.’

The genitive marker euy is the head of the preceding noun changsoo and in turn, it is the

dependent of the following noun chingu.

(33) % n/advp(adverbial post marker)
check_dh([N,_,_,n,X],[NN,_,_,advp,Y]) :- !, X = ending:End, Y = ending:End,

NN is N +1.
check_dh([N,_,_,n,X],[NN,_,_,advp,Y]) :- !, NN is N +1.

% advp/v
check_dh([N,_,_,advp,X],[NN,_,_,v,Y]) :- !, NN > N.

% advp/p
check_dh([N,_,_,advp,X],[NN,_,_,p,Y]) :- !, NN is N +1.

%advp/pp
check_dh([N,_,_,advp,X],[NN,_,_,pp,Y]) :- !, NN is N +1.

The adverbial postpositional markers attach to a noun with the ending features matched and the

“adjacency restriction” observed. The head of the adverbial postpositional marker can be either

a verb (34a), a postpositional case marker (34c), or a sentence-ending marker (34b).

(34) a. ge -ga hakkyo -ro ga -n -da
 he nom school to(advp) go pres dec
 ‘He goes to school.’

 b. ge -ga senmul -ul bat -un -geut -un emma -robute -da
 he nom present acc get vcn thing nom mom from(advp) dec
 ‘The person he got the present from was mom.’

 48

 c. hakkyo -eyse -nun joyoung -he-ya ha -n -da
 school at(advp) nom quiet must do pres dec
 ‘You need to be quiet at school.’

(35) % v/vnp(post marker that makes verb into noun)

check_dh([N,_,_,v,X],[NN,_,_,vnp,Y]):- !, X = ending:End, Y = ending:End,
NN is N+1.

check_dh([N,_,_,v,X],[NN,_,_,vnp,Y]):- !, NN is N+1.
 % tp/vnp

check_dh([N,_,_,tp,X],[NN,_,_,vnp,Y]):- !, NN is N+1.
%vnp/pp

check_dh([N,_,_,vnp,X],[NN,_,_,pp,Y]):- !, X = ending:End , Y = ending:End,
 NN is N+1.

%n/ nnp
check_dh([N,_,_,n,_],[NN,_,_,nnp,_]):- !, NN is N+1.

 % nnp/v(ha)
check_dh([N,_,_,nnp,_],[NN,_,ha,v,_]):- !, NN is N+1.

%nnp/cp(i)
check_dh([N,_,_,nnp,_],[NN,_,_,cp,_]):- !, NN is N+1.

In (35), the dependency rules for two kinds of postpositional nominalizers, one that attaches to a

verb (vnp) and one that attaches to a noun (nnp), are listed. They both must be adjacent to their

dependents; verb (36a) or tense marker (36b) for vnp and noun (36c) for nnp.

(36) a. galechi -m -un jungyoha -da
 teach vnp nom important dec
 ‘Teaching is important.’

 b. galechi -ss -um -un bunmyoungha -da
 teach past vnp nom sure dec
 ‘It is sure that _ taught.’

 c. saero -un beb -ul hapbeb -wha ha -da
 new vcn law acc legal nnp do dec
 ‘Making the new law legal.’

 49

5.2.5.2. GRAMMAR RULES RELATED TO VERBS

(37) % verb/p
check_dh([N,_,_,v,_],[NN,_,_,p,_]) :- !, NN is N+1.

% tp/p
check_dh([N,_,_,tp,_],[NN,_,_,p,_]) :- !, NN is N +1.

% n/p noun ending in vow only
check_dh([N,_,_,n,X],[NN,_,_,p,_]) :- !, X = ending:vow, NN is N + 1.

% p(sentence-endingmarker)/postpositional marker(pp)
check_dh([N,_,_,p,X],[NN,_,_,pp,Y]) :- !, X = ending:End, Y = ending:End,

NN is N +1.

As mentioned in 5.2.2, the ultimate head (a word that does not have a head) of a sentence

in Korean is the sentence-ending marker. The sentence-ending marker is preceded with either a

tense marker tp or the infinitive verb form v.

 There are two exceptional cases. First, if a noun ends with a vowel, the copular verb -i can

be omitted. Therefore, the sentence-ending marker can be preceded by a noun ending with a

vowel, as in (38a). Second, if there is a subordinate clause, the sentence-ending marker of the

subordinate clause is the dependent of the following postpositional case marker, as in (38b).

(38) a. ge -ga ga -n got -un bada -da
 he nom go vcn place nom sea dec
 ‘The place that he went is the sea.’

 b. ge -ga ha -n -mal -un sarangha -n -da -ga ani -da
 he nom say vcn word nom to love pres dec nom neg dec
 ‘He did not say that he loved me.’

(39) % verb/tp
check_dh([N,_,_,v,X],[NN,_,_,tp,Y]) :- !, X = ending:End, Y = ending:End,

NN is N + 1.
check_dh([N,_,_,v,_],[NN,_,_,tp,_]) :- !, NN is N + 1.

 50

The verb is a dependent of the following tense marker, with the ending features matched and the

order restrictions applied, as listed in (39).

(40) % v/serv & serv/verb
check_dh([N,_,_,v,_],[NN,_,_,serv,_]) :- !, NN is N + 1.
check_dh([N,_,_,serv,_],[NN,_,_,v,_]) :- !, NN is N + 1.

The serial verbs are connected to the postpositional particle, -e/-go, and are the head of the

previous verb and the dependent of the following verb. (See also 5.4.5.)

(41) % n/cp(copular postmarkers)
check_dh([N,_,_,n,_],[NN,_,_,cp,_]) :- !, NN is N +1.

% cp/tp
check_dh([N,_,_,cp,_],[NN,_,_,tp,_]) :- !, NN is N +1.

%cp/p
check_dh([N,_,_,cp,_],[NN,_,_,p,_]) :- !, NN is N +1.

% cp/vcn
check_dh([N,_,_,cp,_],[NN,_,_,vcn,_]) :- !, NN is N +1.

The copular verb cp has a similar meaning to the copular verb be in English. It is a head of a

noun. The heads of copular verbs are similar to that of a verb: tense marker, sentence-ending

marker, or the complementizer vcn, as in (42).

(42) ge -nun haksaeng -i -n geut -euro al -da
 he nom student cp vcn thing as know dec
 ‘I know that he is a student.’

The other kind of copular verb ccp has a similar meaning to the verb become in English.

There are two different dependency relations that categorize this copular verb that are separate

 51

from verbs with the subcat feature value of 1 and the feat value dynamic or verbs with the

subcat feature value of 2.

 First, similar to cp, ccp can be preceded by a noun.

(43) % n/ccp
check_dh([N,_,_,n,_],[NN,_,_,ccp,_]) :- !, NN is N +1.

Second, similar to v with feat value sta, ccp can have two nominative case markers as

dependents.

(44) % two pp/ccp
check_dh([N,_,_,pp,X],[NN,[[L,_,_,pp,Z]],_,M, Y]) :- !,

((M = ccp) ; (M = v , Y = feat:sta)),
\+ (X = case:acc, Z = case:acc),
N < NN, L < NN.

% ccp/tp
check_dh([N,_,_,M,Y],[NN,_,_,tp,_]) :- !, ((M = ccp) ; (M = v , Y = feat:sta)),

NN is N +1.
%ccp/p

check_dh([N,_,_,M,Y],[NN,_,_,p,_]) :- !, ((M = ccp) ; (M = v , Y = feat:sta)),
NN is N +1.

The condition, \+ (X = case:acc, Z = case:acc) means that the two postpositional case markers,

which are dependents of ccp, cannot both be accusative case markers. In other words, they can

both be nominative case markers.

(45) a. ge -ga whalgi-cha -n saram -i dwe -ss -da
 he nom active vcn person nom ccp past dec
 ‘He became an active person.’

 b. ge -nun ki -ga ke -da
 he nom height nom tall(stative v) dec
 ‘He is tall.’

 52

As listed in Section 5.2.2, the verb can be the head of one or two pp(s) and/or the

“optional dependents,” scs, ncv, vcv, serv, pcv, advp, adv, nnp. Therefore, according to the

difference in number and type of subcategorization, verbs are categorized as having either the

subcat feature value of 1 or 2. A verb with a value of 1 can have only one nominative case

marker and/or “optional dependent.” In comparison, a verb with a value of 2 can have either a

nominative and/or accusative case marker as a dependent(s), as well as “optional dependents.”

 A verb with the subcat feature value of 1 is categorized in two different cases: feat value

sta (stative) or dyn (dynamic). As mentioned above, a verb with the value sta can have two

nominative case markers as dependents, similar to ccp. (See also 5.4.6.2.)

Several dependency rules for verbs that are heads of one postpositional case marker

and/or other “optional dependents” are listed in (46). The verb with the subcat feature value of 1

is linked with a nominative case marker and the verb with the value of 2 is linked with either a

nominative or accusative case marker. The order of the postpositional case marker and other

“optional dependent(s)” are free, thus the parser will try all different combinations of orders later

in the algorithm.

(46) %case marker/verb subcat:1 OR subcat:2 that has one dep. realized.

check_dh([N,_,_,pp,X],[NN,[],_,v,Y]) :- !, (((Y = subcat:1 ; Y = subcat:2),
 (X = case:nom ;X = case: nom-topicalization));
 (Y = subcat:2, X = case:acc)), N < NN.

% verb subcat:1 or 2 / pp& adv or advp
check_dh([N,_,_,pp,X],[NN,[[M,_,_,adv,_]],_,v,Y]) :- !,

(((Y = subcat:1 ; Y = subcat:2),
 (X = case:nom ;
 X = case: nom-topicalization;
 X = case:nom-also));
 (Y = subcat:2, X = case:acc)),
 N < NN, M < NN.

% verb subcat:1 or 2 / pp& adv or advp
check_dh([N,_,_,pp,X],[NN,[[M,_,_,advp,_]],_,v,Y]) :- !,

(((Y = subcat:1 ; Y = subcat:2),

 53

 (X = case:nom ;
 X = case: nom-topicalization;
 X = case:nom-also));
 (Y = subcat:2, X = case:acc)),
 N < NN, M < NN.

% verb subcat:1 or 2/ pp & ncv
check_dh([N,_,_,pp,X],[NN,[[M,_,_,ncv,_]],_,v,Y]) :- !,

(((Y = subcat:1 ; Y = subcat:2),
 (X = case:nom ;
 X = case: nom-topicalization;
 X = case:nom-also));
 (Y = subcat:2, X = case:acc)),
 N < NN, M < NN.
 % verb subcat:1 or 2 / pp & advp & ncv

check_dh([N,_,_,pp,X],[NN,[[M,_,_,advp,_],[O,_,_,ncv,_]],_,v,Y]) :- !,
 (((Y = subcat:1 ; Y = subcat:2),
 (X = case:nom ;
 X = case: nom-topicalization));
 (Y = subcat:2, X = case:acc)),
 N < NN, M < NN, O < NN.

(47) a. gwaja -lul gagyae -eyse sa -ss -da
cookie acc store at(advp) buy past dec

 ‘He bought the cookie at the store.’

b. ge -nun san -edo ga -n -da
 he nom mountain also(ncv) go pres dec
 ‘He also goes to the mountain.’

In (47a), the verb sa has the subcat value of 2 and is a head of the accusative case marker lul and

advp eyse. In (44b), the verb ga has the subcat value of 1 and is a head of the nominative case

marker nun and ncv edo.

A verb with the subcategorization feature value of 2 can have both the nominative and

accusative postpositional case marker realized with or without other “optional dependents.” The

two postpositional case markers cannot have the same value of cases, as is stated in the condition

of the example rules below.

 54

(48) \+ (X = case:Case,Z = case:Case)

The following are examples of rules for verbs with the subcat feature value of 2.

(49) %case marker/verb subcat:2(acc & nom)
check_dh([N,_,_,pp,X],[NN,[[M,_,_,pp,Z]],_,v,Y]) :- !, (Y = subcat:2),

 \+ ((X = case:nom,Z = case:nom-topicalization);
 (X = case:nom-topicalization, Z = case:nom)), N < NN, M < NN.

%case marker/verb subcat:2 that has both subject, object, and one of the optional
dependents.

check_dh([N,_,_,pp,X],[NN,[[M,_,_,ZZ,_],[L,_,_,pp,Z]],_,v,Y]) :- !, Y = subcat:2,
 (ZZ = adv; ZZ = advp; ZZ = ncv),
 \+ (X = case:Case,Z = case:Case),
 N < NN, M < NN, L < NN.

%verb subcat:2 that has subject,object,adv,advp
check_dh([N,_,_,pp,X],[NN,[[L,_,_,adv,_],[O,_,_,advp,_],[M,_,_,pp,Z]],_,v,Y]) :- !,

 Y = subcat:2,
 \+ (X = case:Case,Z = case:Case),
 N < NN, M < NN, L < NN, O < NN.

(50) ge -nun sagwa -lul manni mek -ss -da
 he nom apple acc a lot (adv) eat past dec
 ‘He ate a lot of apples.’

The verb mek has the subcat value 2, and is the head of the nominative case marker nun,

accusative case marker lul, and the adverb manni.

5.2.5.3. GRAMMAR RULES RELATED TO C (COMPLEMENTIZER/CONJUNCTION)

As mentioned in 5.1, the postpositional c is categorized into five subcategories based on

their dependency relations. These postpostional particles either introduce a subordinate clause or

connect one word to another.

 55

 (51) %noun/ncv
check_dh([N,_,_,n,X],[NN,_,_,ncv,Y]) :- !, X = ending:End, Y = ending:End,

NN is N +1.
check_dh([N,_,_,n,_],[NN,_,_,ncv,_]) :- !, NN is N +1.

% ncv(complementizer)/v
check_dh([N,_,_,ncv,X],[NN,_,_,v,Y]) :- !, NN > N.

In (52), the noun ganan is a dependent of ncv and the v senggongha is the head. The noun and

the ncv need to agree in ending features, but not in all cases (depending on the lexical item of

ncv).

(52) ganan -edo-bulguhago ge -nun senggongha -ss -da
 poverty in spite of (ncv) he nom succeed past dec
 ‘In spite of his poverty, he succeeded.’

(53) % noun/scs
check_dh([N,_,_,n,X],[NN,_,_,scs,Y]) :- !, X = ending:End, Y = ending:End,

NN is N +1.
check_dh([N,_,_,n,_],[NN,_,_,scs,_]) :- !, NN is N +1.

%scs/noun
check_dh([N,[[M,_,_,n,_]],_,scs,_],[NN,_,_,n,_]) :- !, N is M + 1, N < NN.

%verb/scs
check_dh([N,_,_,v,_],[NN,_,_,scs,_]) :- !, NN is N +1.

%scs/verb
check_dh([N,[[M,_,_,v,_]],_,scs,_],[NN,_,_,v,_]) :- !, N is M + 1, N < NN.

The rules related to scs is listed in (53). The dependent and the head have the same lexical

category for scs: n, v, cp, or vnp. The rules when the scs is a dependent state this condition.

The dependent of the scs has the same lexical category as the head of the scs.

(54) a. gwail -gwa chaeso -nun mom -ey jot -da
 fruit and(scs) vegetable nom body to good dec
 ‘Fruits and vegetables are good for your health.’

 56

b. ge -ga gochi -go ga -ss -da
 he nom fix and(scs) go past dec
 ‘He fixed it and then left.’

The head and dependent of scs in (54a) are the nouns gwail and chaeso, whereas in (54b), they

are the verbs gochi and ga.

The dependency rules related to vcv is shown in (55).

(55) %v/vcv
check_dh([N,_,_,v,X],[NN,_,_,vcv,Y]) :- !, X = ending:End, Y = ending:End,

NN is N +1.
check_dh([N,_,_,v,_],[NN,_,_,vcv,_]) :- !, NN is N +1.

% cp/vcv
check_dh([N,_,_,cp,X],[NN,_,_,vcv,Y]) :- !, NN is N +1.

% ccp/vcv
check_dh([N,_,_,ccp,X],[NN,_,_,vcv,Y]) :- !, NN is N +1.

% vcv/v
check_dh([N,_,_,vcv,X],[NN,_,_,v,Y]) :- !, NN > N.

% vcv/cp
check_dh([N,_,_,vcv,X],[NN,_,_,cp,Y]) :- !, NN > N.

% vcv/ccp
check_dh([N,_,_,vcv,X],[NN,_,_,ccp,Y]) :- !, NN > N.

Since the two kinds of copular verb -i (cp), and -dwe (ccp) are also verbs, they can be the head

and/or the dependent of vcv. The difference with scs is that a single vcv does not need to have

the same lexical category for its dependent and head as (56).

(56) eli -saedae -i - l- surok young-e -lul jal ha -n -da
 young generation be(cp) the more(vcv) English acc well do(v) pres dec
 ‘The younger the generation is, the better they speak English.’

 57

The vcv complementizer l-surok is the head of the copular verb -i and the main verb ha is the

head of the vcv.

(57) %verb/vcn
check_dh([N,_,_,v,X],[NN,_,_,vcn,Y]):- !, X = ending:End, Y = ending1:End,

NN is N +1.
%p/vcn

check_dh([N,_,_,p,X],[NN,_,_,vcn,Y]):- !, NN is N +1.
%vcn/n

check_dh([N,_,_,vcn,_],[NN,_,_,n,_]):- !, NN > N.

The complementizer vcn is similar to “that” in English and is used frequently to modify nouns.

Therefore, there are controversies on the analysis of adjectives and relative clauses introduced by

vcn in Korean (See also 5.4.6). The verb or the sentence-ending marker can be the dependent of

vcn and the modified noun is the head.

(58) a. ge -nun eli -n saram -i -da
 he nom young (verb) vcn person be(cp) dec
 ‘He is a young person.’

b. ge -nun eli -da
 he nom young (verb) dec
 ‘He is young.’

A noun’s modifier can modify either attributively (58a) or predicatively (58b). KorPar

categorizes all modifiers (normally classified as “adjective”) that can modify a noun

predicatively as verbs with the subcat feature value of 1 and the feat feature value sta.

Therefore, eli- is a verb with the subcat feature value of 1 and the feat feature value sta. The

vcn attaches to the verb eli- and modifies the noun saram. In addition, as mentioned above, the

verb eli- can have two nominative case markers as in (59).

 58

(59) ge -nun na-i -ga eli -da
 he nom age nom young dec
 ‘He is young (in age).’

The verb eli is the head of two nominative markers: nun and ga.

(60) %pcv(complementizer)/v
check_dh([N,_,_,pcv,X],[NN,_,_,v,Y]) :- !, NN is N +1.

% p/pcv(complementizer)
check_dh([N,_,_,p,X],[NN,_,_,pcv,Y]) :- !, NN is N +1.

The last subcategory of c is pcv and has the similar meaning and function as “that, although” in

English. The sentence-ending marker of the subordinate clause (da) is the dependent of pcv (go)

and the main verb (malha) is the head of it in (61).

(61) ge -ga ga -n -da -go malha -n -da
 he nom go pres dec that(pcv) say pres dec
 ‘_ says that he is going.’

5.3. ALGORITHM

 The overall algorithm of the parser is shown in Figure 1 in pseudo-code (compare with

Covington 2001 and Covington 2003).

 59

Data Structures

InputList = list of words in a sentence to be parsed

HeadList = empty list to contain nodes (subtrees)

Algorithm

Note 1: Algorithm is implemented nondeterministically in Prolog and can backtrack to any
alternative. Lexical entries, dependency rules, and the algorithm introduce nondeterminism.

For each word w1 in InputList:

 Look up w1 in lexicon

 Create a Node for w1

 For each node w2 in HeadList:

 If w2 can be a dependent of w1:

 Remove w2 from HeadList

 Attach w2 as a dependent of w1

 End if

 End for

 Add w1 Node to the beginning of HeadList

End for

Note 2: HeadList now contains one node, which includes the complete dependency tree. Because
Korean is head-final, the items in the HeadList can only be dependents of w1, not vice versa.

Figure 1. Overall Algorithm of KorPar (in pseudo-code)

 60

 The input of KorPar is a list of words composing the sentence that needs to be parsed. The

output would be a notation of each word, showing the dependency relation by indentation and

displaying the features in GULP syntax. The actual input and output of the sentence (15a) in 4.3

are shown in (62).

(62) ?- try([gang-a-ji,ga,go-yang-i,lul,chot,nun,da]).

 7 [da, p, sem:declarative]
 6 [nun, tp, ending:con..tense:pres]
 5 [chot, v, ending:con..sem:chase..subcat:2..feat:dyn]
 4 [lul, pp, ending:vow..case:acc..num:sing]
 3 [go-yang-i, n, ending:vow..sem:cat]
 2 [ga, pp, ending:vow..case:nom..num:sing]
 1 [gang-a-ji, n, ending:vow..sem:dog]

 The output of the parsing algorithm itself is a Prolog term. The features must be

retranslated from a Prolog term to a readable structure. The built-in predicate of the GULP

system, display_feature_structure, displays the feature structure in a readable tabular format.

Therefore, the number in a sentence is indicated for each word and the phonetic sound, part of

speech, and different GULPFeatures (ending, tense, case, sem, etc) are displayed.

 Figure 2 shows the parsing process of the same sentence (15a) by listing the changes of the

InputList and HeadList.

 61

Figure 2. Parsing Process of Sentence (12a)

The parser starts with an empty HeadList and ends with a HeadList that contains the

complete dependency tree in the ListofDependents atom. The parsing algorithm ends when the

InpuList is empty.

 62

 The algorithm itself has roughly three major predicates. The main predicate, parse,

initializes the parsing algorithm. The second predicate, parse_loop, loops over all the steps. The

third predicate, parse_node, links the dependency pairs.

5.3.1. parse(+InputList, -Result)

(63) parse(InputList,Result) :- parse_loop(1,InputList,[],Result).

 The parsing algorithm begins with the predicate parse. This predicate accepts the input

list of words and returns the result passed back from the predicate parse_loop. The looping

predicate is initialized with a Number of 1 and an empty HeadList (a list of words that seem to

be heads).

5.3.2. parse_loop(+NumberinSentence,+InputList,+HeadList,-Result).

 The predicate parse_loop repeats the looping steps shown in Figure 1 until the InputList is

empty. The loop will stop when only one node in the HeadList remains; this is the ultimate head.

The second argument in this Node, the ListofDependents atom, contains the overall dependency

tree.

(64) parse_loop(Number,[Word|InputList],HeadList,Result) :-
 look_for_word(Number,Word,Node), %look up the lexicon and
 change to a list, Node

 parse_node(Node,HeadList,NewHeadList), %try to find a dependency
 NewNumber is Number + 1, %go to the next word
 parse_loop(NewNumber,InputList,NewHeadList,Result).

parse_loop(_,[],[H],[H]). % no more words to parse; so Result = HeadList.

 63

 As illustrated in Figure 1, KorPar provides a consistent analysis of the order of head and

dependent pairs. Since Korean is a head-final language, the head always follows the dependent.

Specifically, each word in the HeadList can only be a dependent of the following input word and

the dependency pair is linked by the predicate parse_node. Chung (2004) and Kim, Byeon, and

Oh (1999) set the same dependency constraint in order to avoid totally free word order that

results in incorrect analysis.

5.3.3. parse_node(+Node,+HeadList,-NewHeadList).

 The predicate parse_node links the head and dependent pairs based on the dependency

rules. Each time the dependency relation is checked, the HeadList is modified. There are three

cases of “HeadList modification.”

 First, if the HeadList is empty, then current input word is simply added to the beginning of

the HeadList. This case applies to the first input word and the end of the recursive steps of the

predicate parse_node.

(65) parse_node(Node,[],[Node]).

The next word in the InputList is then sent to the parse_loop predicate.

 The second case of HeadList modification arises because the dependency rules in the

grammar state only one kind of order combination for the words in the ListofDependents.

However, since Korean is a partially free-word-order language, almost all dependents of the verb

and the attached particles are free in order. Therefore, when checking dependency relations,

different combinations of the order of dependents must be considered.

 64

(66) %if the current Node does not have any “so far” dependents.
parse_node(Node,[Head|HeadList],NewHeadList) :-

 Node = [N,[],W|X],
 Head = [NN,_,WW|Y],
 check_dh(Head,Node), % Head is the dependent here
 NewNode = [N,[Head],W|X], % Head added to the ListofDependents

parse_node(NewNode,HeadList,NewHeadList).%repeat until HeadList is empty
%if the current Node has 1 “so far” dependent.

parse_node(Node,[Head|HeadList],NewHeadList) :-
 Node = [N,[D1],W|X],
 Head = [NN,_,WW|Y],
 check_dh(Head,Node),
 append([D1],[Head],NewD),
 NewNode = [N,NewD,W|X],
 parse_node(NewNode,HeadList,NewHeadList).

%if the current Node has 2 “so far” dependents.
 parse_node(Node,[Head|HeadList],NewHeadList) :-

 Node = [N,[D1,D2],W|X],
 Head = [NN,_,WW|Y],
 (check_dh(Head,Node);

 check_dh(Head,[N,[D2,D1],W|X]) %try alternative order combination
),

 append([D1,D2],[Head],NewD),
 NewNode = [N,NewD,W|X],
 parse_node(NewNode,HeadList,NewHeadList).

% if the current Node has 3 “so far” dependents.
 parse_node(Node,[Head|HeadList],NewHeadList) :-

 Node = [N,[D1,D2,D3],W|X],
 Head = [NN,_,WW|Y],

 (check_dh(Head,Node); %try alternative order combination
 check_dh(Head,[N,[D2,D1,D3],W|X]);

 check_dh(Head,[N,[D2,D3,D1],W|X]);
 check_dh(Head,[N,[D1,D3,D2],W|X]);
 check_dh(Head,[N,[D3,D1,D2],W|X]);
 check_dh(Head,[N,[D3,D2,D1],W|X])
),

 append([D1,D2,D3],[Head],NewD),
 NewNode = [N,NewD,W|X],
 parse_node(NewNode,HeadList,NewHeadList).

 The cases where a single head has, at most, four dependents are listed above. Among the

100 test sentences parsed by KorPar, there were no more than six dependents for a single head.

If there are more than seven dependents for a single head in a sentence, parsing becomes too

complex and ambiguous, which is rare in natural language. Nevertheless, KorPar can easily be

 65

modified to parse long, complex sentences with more than seven dependents for a single head by

adding additional combinations for the predicate parse_node.

 Finally, if the previous conditions were not met, it means that there is no head and

dependent pair for the current Node, thus it is added to the beginning of the HeadList.

(67) parse_node(Node,HeadList,[Node|HeadList]).

By adding the current Node to the HeadList and preventing the parser from trying alternative

cases, the projectivity constraint (no crossing of arcs) is obeyed. (See also 5.4.2.)

 KorPar can also be modified to parse languages with non-projectivity (crossing of arcs) by

substituting (67) with (68).

(68) parse_node(Node,[Head|HeadList],[Head|NewHeadList]) :-
 parse_node(Node,HeadList,NewHeadList).

The modification in (68) allows the current node to look for its dependency pairs by trying

alternative cases and eventually allowing the crossing of arcs.

5.4. TROUBLESHOOTING CASES

 There were several problems that KorPar needed to troubleshoot in order to parse Korean.

This chapter examines these problems and explains how KorPar solves them.

5.4.1. SUBCATEGORIZATION

 Korean exhibits different characteristics in subcategorization from that of English. For

example, if a verb subcategorizes two words (subject and object), this means that in Korean, the

 66

verb can have at most two arguments. The subject and/or object can be omitted. Moreover, in

addition to the numbers of subcategories being free, the orders of the subcategories are partially

free.

 Consequently, KorPar needs to monitor the number, type, and order of the subcategories.

Contrary to the parsing algorithm introduced by Covington (2003), the word changes to a list

Node with the second atom, ListofDependents, instantiated as an empty list, not as an

anonymous variable.

(69) look_for_word(Count,Word,Node) :- word(Word,WordFeatures),
 WordFeatures =.. X, Node = [Count,[],Word|X].

The ListofDependents (the second atom of Node) is instantiated with an empty list at the

beginning of the parsing loop. Each time an input word links to its dependency pair by the

predicate parse_node, the ListofDependents is updated by adding the dependent to the list.

Then, when the next input word is checked for dependency linking, KorPar looks at the

ListofDependents for subcategorization features.

 For example, if a verb has the subcat feature value of 2, and has an accusative marker in

the ListofDependents, KorPar will notice that another accusative case marker is not allowed by

looking at the type, number, and order of the “so far” dependents of the verb in the

ListofDependents atom.

5.4.2. LONG-DISTANCE DEPENDENCY

 67

 Because Korean is a partially free-word-order language, it has many cases of long-distance

dependency. However, in most instances, the dependency links do not cross over each other, as

in (70).

(70)

 (example from Kwon and Yoon (1991))

In (70), there is an ambiguity in the choice of the nominative case marker for the two verbs po

and malha. Since Korean tends to maintain the “no crossing of arcs” rule, the nominative case

marker attached to john links with po and the nominative case marker attached to tom links with

malha.

(71) a.

 b.

 68

As in (71a), if the nominative case marker attached to tom links with the verb po and the one

attached to john links with the verb malha, there will be a “cross of arcs,” and these are not the

correct dependency pairs. However, in (71b), although there is a “cross of arcs,” the dependency

pairs are linked correctly. According to Kwon and Yoon (1991), (71b) is a grammatical sentence.

However, it takes longer to process the meaning of the sentence and it seems unnatural. In

comparison, (70) is the preferred word order and dependency structure when conveying the same

meaning.

Lee (2002) stated that Korean does not allow crossing of dependency links because it

could convey the wrong meaning.

(72) a.

 b.

 69

The dependency arcs in (72a) cross and the dependency pairs are linked incorrectly. Instead, the

nominative topicalization marker nun should link with the verb ha and the nominative case

marker i should link with the verb malha, resulting in no crossing of arcs, as in (72b).

Similarly in (73a), the advp ey links with the verb changjoha, not the verb saerob, since

the noun sege links with the noun jishik. If ey links with saerob, then there would be two

crossing arcs, as in (73b) and these are not the correct dependency pairs.

(73) a.

 b.

 KorPar manages to correctly link the head and dependent pairs without having any crossed

arcs. In 5.3.3, the predicate parse_node has three cases of “HeadList modification”. In the third

case, where there are no head and dependent pairs to link, the current input word is added to the

beginning of the HeadList. Adding it to the beginning of the HeadList allows the following

input word to search for its dependent starting from the closest word.

 70

For example, in (70), the closest nominative case marker of the verb po is the one that is

attached to john, and they will therefore link together as a pair. In turn, the verb malha will be

linked to the remaining nominative case marker, which is the one attached to tom. As a result,

the arcs do not cross over one another.

 Also, in (73a), the grammar rules do not link the verb saerob with the noun sege, and so

the HeadList will have sege as the first item and the advp ey as the second item. By adding the

input word to the beginning of the HeadList, the verb saerob and the advp ey are blocked from

being linked as a pair and ey can later be linked with the verb changjoha. Figure 3 shows the

parsing process of (73a).

 Therefore, the right-to-left search process for head and dependent pairs not only prevents

incorrect long-distance dependency, but also allows KorPar to be more efficient in time and

space complexities.

 71

Figure 3. Parsing Process of Sentence (73a)

 72

5.4.3. COMMON NOUNS, PROPER NOUNS AND PRONOUNS

 Common nouns, proper nouns, and pronouns are categorized as nouns, since their

syntactic relation and function are similar to nouns. In Korean, there can also be consecutive

nouns without any “connector” to create compound words.

(74) seoul-dae enoh-hak ggwa I-hoyoung gyosoo eungu tim -i balpyoha-ess -da
 seoul-univ. linguistics dept. I-hoyoung prof. research team nom announce past dec
 ‘The research team of I-hoyoung professor in the linguistics department of Seoul

University announced _.’

KorPar parses the sentence in (74) as (75). The overall dependency structure is shown by

indentation and the part of speech and meaning are displayed for each word.

(75) ?- try([seoul-dae, enoh-hak,ggwa,i-hoyoung,gyosoo,eungu,tim,i,balpyoha,ss,da]).

11 [da, p, sem:declarative]
 10 [ss, tp, ending:vow..tense:past]
 9 [balpyoha, v, ending:vow..sem:announce..subcat:2..feat:dyn]
 8 [i, pp, ending:con..case:nom..num:sing]
 7 [tim, n, ending:con..sem:team]
 6 [eungu, n, ending:vow..sem:research]
 5 [gyosoo, n, ending:vow..sem:professor]
 4 [i-hoyoung, n, ending:con..sem:lee-hoyoung]
 3 [ggwa, n, ending:vow..sem:department]
 2 [enoh-hak, n, ending:con..sem:linguistics]
 1 [seoul-dae, n, ending:vow..sem:seoul-university]

5.4.4. SERIAL VERB CONSTRUCTIONS

 According to Stewart (2001), there are three descriptive definitions of serial verb

construction (SVC): 1) two or more verbs and their arguments co-occur without any

conjunction; 2) these verbs must share the same subject and (sometimes) the same object; and 3)

there is usually a single tense or aspect specification for the verb.

 73

Choi (2003) and Kang (1997) argued that the SVC is shown in Korean and the first verb

in this construction changes its form by attaching a postpositional particle such as -e or -go.

(76) ge -ga sagwa -lul kkak -e -mek -nun -da

he nom apple acc peel serv eat pres dec
‘He is peeling and then eating an apple.’

In (76), two verbs, kkak and mek, occur without any connector and the first verb changes its form

by attaching -e. The two verbs share the subject ge and they are in the present tense.

 Therefore, the lexicon of KorPar has a part of speech serv for SVCs in Korean. The

dependent of serv is the preceding verb and the head is the following verb.

5.4.5. ADJECTIVES AND STATIVE VERBS IN KOREAN

 Adjectives are parts of speech that modify a noun. It is believed that this part of speech is

not universal (Beck 1999). Many researchers posit that Korean does not have a distinct and open

class of adjectives (Choi 1971; Sohn 1999).

 There are several morphosyntactic behaviors of the words that seem to modify nouns. For

example, they can modify nouns attributively. However, they require a postpositional marker

vcn (-n, -nun, -l, etc.) that has the structure of a relative clause (Kang, Park, Yoon & Kwon 2002:

10).

(77) a. eli -n saram
 young vcn person
 ‘A young person’

 b. ttena -n saram
 leave vcn person
 ‘A person who left.’

 74

The verbs eli and ttena modify the noun saram with the help of the postpositional particle -n.

 The words can also modify nouns predicatively.

(78) a. ge - ga eli - da
 he nom young dec
 ‘He is young.’

 b. ge – ga ttena - da

 he nom leave dec
 ‘He leaves.’

In sentences (77a) and (78a), what is the part of speech of the word eli, which modifies the noun?

KorPar categorizes eli as a stative verb. Verbs can be classified as dynamic verbs or stative

verbs. According to the definitions in Wikipedia (http://en.wikipedia.org/wiki/Stative_verb;

http://en.wikipedia.org/wiki/Dynamic_verb), a dynamic verb is a verb that shows continued or

progressive action on the part of the subject. In comparison, a stative verb is a verb that asserts

that one of its arguments has a particular property. As mentioned in 5.1, the verbs in the lexicon

have either a dyn or sta value for the feature feat. The morphological structure differs depending

on these features and as a result, the dependency relation differs. According to Kim (2005), the

dynamic verb can be attached to a present progressive tense marker, whereas the stative verb

cannot.

(79) a. ge -ga ttena -n -da
 he nom leave pres dec
 ‘He is leaving.’

 b. *ge -ga eli -n -da

 he nom young pres dec
‘He is being young.’ (ungrammatical sentence)

http://en.wikipedia.org/wiki/Stative_verb
http://en.wikipedia.org/wiki/Dynamic_verb

 75

In (79), the verb ttena is a dynamic verb and can be attached to a present progressive tense

marker, whereas eli is a stative verb, making it ungrammatical to be attached to the same tense

marker. Thus, is a stative verb simply an adjective that cannot have any tense marker attached?

No. Stative verbs can attach other tense markers, similar to dynamic verbs as in (80).

(80) a. ge -nun yaet-nal -ey ttena -ss -da
 he nom long ago at leave pres dec
 ‘He left a long time ago.’

b. ge -nun yaet-nal -ey eli -ss -da
 he nom long ago at young pres dec
 ‘He was young a long time ago.’

Therefore, both dynamic verbs and stative verbs can modify a noun attributively using

the postpositional particle vcn. Stative verbs can also modify a noun predicatively, followed by

the sentence-ending marker. KorPar categorizes words that can modify nouns both attributively

(with the vcn particle attached) and predicatively as verbs.

 There are, however, closed classes of words that modify a noun attributively without using

vcn. These limited numbers of words are categorized as the PartofSpeech, adj, in the lexicon

and include, for example, iben (this time), ulma (some amount), and yeoro (various).

5.4.5.1. PREDICATIVELY USED STATIVE VERBS

 Stative verbs that modify nouns predicatively have a unique dependency structure

allowing them to link two nominative case markers.

(81) ge -nun noon -i yaeppe -da
 he nom eye nom pretty dec
 ‘His eyes are pretty.’

 76

In (81), the stative verb yaeppe is the head of two nominative markers, nun and i. Therefore, the

rule for stative verbs linked with two nominative case markers is stated in (82).

(82) % two nom pp/v
 check_dh([N,_,_,pp,X],[NN,[[M,_,_,pp,Y]],_,v,Z]) :- !, Z =feat:sta,

 (X = case:nom ; X=case:nom-topicalization; X=case:nom-also),
 (Y = case:nom; Y=case:nom-topicalization; X=case:nom-also),

 N < NN, M < NN .

5.4.5.2. ATTRIBUTIVELY USED STATIVE VERBS

If either a dynamic verb or a stative verb is attached to a postpositional vcn, these verbs

can modify a noun attributively, yet there is a difference in the syntactic dependency relation

between the preceding words and the following verbs. In the case of dynamic verbs, there is a

dependency relation with the preceding words. However, in the case of stative verbs, there are

some sentences in which the preceding words do have a dependency relation and some that do

not. This presents a problem for KorPar and, as a result, there are sentences that are parsed

incorrectly.

(83) a. ge -nun na -ege eli -n gang-a-ji -lul ju -ss -da
 he nom me to young vcn dog acc give past dec
 ‘He gave a young dog (puppy) to me.’

b. aju eli -n gang-a-ji -lul ju -ss -da
 very young vcn dog acc give past dec
 ‘_ gave a very young dog (puppy).’

Sentence (83a) illustrates the case where the stative verb eli modifies the noun gang-a-ji

attributively with the help of a vcn. The preceding nominative case marker nun and

postpositional adverbial marker ege are dependents of the verb ju, not the closer verb eli. On the

 77

other hand, (83b) shows the same stative verb eli modifying a noun attributively. In this case,

the preceding adverb aju is a dependent of the verb eli, not the further verb ju.

 There is no rule to capture the different dependency relations and KorPar will parse (83a)

incorrectly by linking nun and ege with the verb eli. It is only the case that sentences with stative

verbs such as (84) can be correctly parsed in any cases. To prevent crossing of arcs, KorPar uses

the predicate parse_node of (67) instead of (68) in 5.3.3. Now, let’s assume that the sentence

(73a) in 5.4.2, repeated in (84), has the structure of:

A B stative verb vcn n

(84) 21 segi -ey sege saerob -un jishik -ul gajang manni changjoha - n -da
 21 century in world new(v) vcn knowledge acc mostly many invent(v) pres dec
 ‘In the 21st century, the new worldwide knowledge is invented most actively.’

If there is a previous word (B: sege) that is not a dependent of the stative verb (saerob), which

modifies the noun attributively, then the words (A: ey) that come before the previous word (B:

sege) of the stative verb, will not be linked with the stative verb in order to have no crossing of

arcs as the predicate (67) states.

 A possible solution to the problem of linking stative verbs and the preceding words is to

use probability. If the probability of a sentence such as that in (83a) is higher than that of (83b),

then KorPar can have an additional “HeadList modification” case in the predicate parse_node.

(85) parse_node([N,D,W,v|X],[Head|HeadList],[Head|NewHeadList]) :- member(feat:sta,X),
 parse_node([N,D,W,v|X],HeadList,NewHeadList).

 78

The grammar rule in (85) states that if the current input word is a stative verb, it should be placed

in the HeadList. In other words, if the current input word is a stative verb, it should not be linked

with the previous words.

5.4.6. OPTIONAL CASE MARKERS

 As mentioned in 5.2.2, in casual Korean speech, case markers are often omitted. This can

present a problem for KorPar since the case markers are the heads of nouns they attach to and the

verb stem subcategorizes case markers based on the grammar rules in KorPar.

It is very important to establish a boundary for the term “natural language.” KorPar is

designed to parse Korean natural language used in articles of the media or in textbooks.

Therefore, KorPar parses sentences with an intransitive verb and a subject without a case marker

(25a) or sentences with a transitive verb and an object without a case marker (25b). However,

sentences with a transitive verb and a subject without a case marker (25c) or sentences with a

transitive verb and no case markers (25d) can be produced and perceived in casual speech only if

given plenty of context and KorPar does not parse these sentences.

5.4.7. PROBABILITY CASES

 KorPar uses hand-coded heuristic rules to parse a given sentence. There are several

troubleshooting cases that could not be solved with rules. Among them, I have pointed out a

possible solution to homophonous words and unrecognized words by using probability method.

 79

5.4.7.1. HOMOPHONOUS WORDS

Korean language has several cases of homophonous words (Kang, Park & Kwon 2001).

There are two different approaches to address these words. One is to assume that the

morphological tagger can differentiate one from the other(s) by the surrounding sounds,

including whitespace. For example, the word “이” can be a pronoun, a nominative case marker,

or a copular verb with the same phonetic transcription [i]. In the lexicon, the pronoun is

represented as ii, the case marker as i, and the copular verb as -i. In a similar approach, the

morphological tagger, POSTAG, tags the three homophonous words with different tags.

(http://isoft.postech.ac.kr/research/POMLIP/pomlip.html)

There is also an alternative approach to this problem. We can determine the probability

of each part of speech and use the word with the highest probability first. Kim, Kwon and Yoon

(1996) combined a rule-based approach with a statistical method in morphological

disambiguation. First, the system tries to disambiguate words by applying rules. If it fails, the

system disambiguates words based on the frequency of a morpheme in the corpus. The accuracy

rate of a method based only on rules was 95.3%, and the rate increased to 97.1% when both rules

and a statistical method were used.

5.4.7.2. UNRECOGNIZABLE WORDS

 If the input word is not in the lexicon, the probability approach can be used. Considering

that Korean is a head-final language and assuming that the average length of the 100 test

sentences is 20 words, any word with a Number value lower than 15 has a high probability of

being a noun, while any word with a Number value higher than 15 is most likely a verb.

http://isoft.postech.ac.kr/research/POMLIP/pomlip.html

 80

 Furthermore, an unrecognized word would normally be an open class part of speech rather

than a finite closed class. The predicate look_for_word stated in (69) can be modified for

unrecognized words, as stated in (86).

(86) %To allow words that are not in the lexicon to be considered as a noun or verb.
 look_for_word(Number,Word,Node) :- \+ word(Word,_), Number < 15,

 Node = [Number, [] , Word , n |_].
 look_for_word(Number,Word,Node) :- \+ word(Word,_), Number > 15,

 Node = [Number ,[] , Word , v |_].

 81

CHAPTER 6

RESULTS AND EVALUATIONS

 The lexicon has approximately 703 words and the dependency rules are categorized into

23 cases based on the parts of speech listed in Table 1. KorPar has been tested with consecutive

100 sentences (more than 2000 words) taken from articles in the daily newspaper, Chosun Ilbo.

The average length of the sentences is approximately 19 words.

 Accuracy is evaluated by counting the number of correct links of head and dependent pairs

in precision rate, recall rate, and calculating the F-score. (Jäarvinen & Tapanainen 1997, Goutte

& Gaussier 2005).

Precision = [(# of received correct links) ÷ (# of received links)] × 100

Recall = [(# of received correct links) ÷ (# of desired links)] × 100

F-score = the harmonic mean of the precision and recall

The evaluation of the overall head and dependent pairs in the test sentences is shown is

Table 4.

Table 4. Evaluation of the Overall Dependencies

Precision Recall F-score
97.6 % 95 % 96.3 %

 82

The number of test sentences was small (100 sentences), therefore the overall accuracy

rate is high. We can predict that if given more test sentences, the accuracy rates will decrease.

However, the 100 test sentences are composed of almost all possible dependency structures in

Korean, thus we can also predict that the accuracy rate will not decrease dramatically.

The performance of linking head and dependent pairs based on different troubleshooting

cases in Korean are evaluated in Table 5.

Table 5. Evaluation of Different Dependencies

Dependency Precision
Subcategorization 99.9 %

Long-Distance Dependency 98.9 %
Stative Verb & Dependents 79.7 %

Optional Case Marker 75 %
Unrecognized Words 25 %

The subcategorizations and long-distance dependencies are parsed with a very high precision rate.

The precision rate for the optional case marker is low because there were only eight sentences

where the accusative case marker was omitted, six of which were linked correctly. KorPar

demonstrated difficulty linking the correct head for the dependents preceding the stative verbs

that are used in relative clauses. In addition, the cases where probability was used for

unrecognized words show poor precision rate, which seems unreliable.

 The following examples are the input and output of the first five sentences in one of the

tested articles.

 83

?- try([hyundae-in,euy, jil-byung, un,eu-nenal,gap-jagi, balseng-dwe,-nun,geut,i,ani,da]).

12 [da, p, sem:declarative]
 11 [ani, ccp, sem:not-be]
 10 [i, pp, ending:con..case:nom..num:sing]
 9 [geut, n, ending:con..sem:thing-or-fact]
 8 [-nun, vcn, ending:vow..tense:pres..ending1:vow]
 7 [balseng-dwe, v, ending:vow..sem:be-occured..subcat:1..feat:dyn]
 6 [gap-jagi, adv, sem:suddenly]
 5 [eu-nenal, adv, sem:one-day]
 4 [un, pp, ending:con..case:nom-topicalization..num:sing]
 3 [jil-byung, n, ending:con..sem:disease]
 2 [euy, gen, ending:con..sem:of]
 1 [hyundae-in, n, ending:con..sem:the-moderns]

Yes

‘The disease of the moderns does not occur suddenly in one day.’

?- try([imi,jen,bute, saeng-gi,-go-serv,it,ess,-deun,geut,-i,n-dae,daman,bon-in,i,molu,-go-
serv,it,ess,da]).

19 [da, p, sem:declarative]
 18 [ess, tp, ending:con..tense:past]
 17 [it, v, ending:con..sem:be-or-exist..subcat:1..feat:dyn]
 16 [-go-serv, serv, sem:serial-verb-connector]
 15 [molu, v, ending:vow..sem:not-know..subcat:2..feat:dyn]
 14 [i, pp, ending:con..case:nom..num:sing]
 13 [bon-in, n, ending:con..sem:oneself]
 12 [daman, adv, sem:simply-or-however]
 11 [n-dae, vcv, ending:vow..sem:although-or-compared-to]
 10 [-i, cp, sem:be]
 9 [geut, n, ending:con..sem:thing-or-fact]
 8 [-deun, vcn, tense:past]
 7 [ess, tp, ending:con..tense:past]
 6 [it, v, ending:con..sem:be-or-exist..subcat:1..feat:dyn]
 5 [-go-serv, serv, sem:serial-verb-connector]
 4 [saeng-gi, v, ending:vow..sem:come-into-existence..subcat:1..feat:dyn]
 3 [bute, advp, ending:con..sem:since]
 2 [jen, n, ending:con..sem:before-or-past-entire]
 1 [imi, adv, sem:already]

Yes

‘It has already started to exist a long time ago, however, we were not aware of it.’

 84

?- try([am,sae-po,nun,mae-il,uli,mom,eyse, balsaengha,-go,salaji,-e,-ga,n,da]).
14 [da, p, sem:declarative]
 13 [n, tp, ending:vow..tense:pres]
 12 [-ga, v, ending:vow..sem:go..subcat:1..feat:dyn]
 11 [-e, serv, sem:serial-verb-connector]
 10 [salaji, v, ending:vow..sem:disappear..subcat:1..feat:dyn]
 9 [-go, vcv, ending:vow..sem:also-or-as-or-for]
 8 [balsaengha, v, ending:vow..sem:occur..subcat:1..feat:dyn]
 7 [eyse, advp, ending:con..sem:at-or-in-that]
 6 [mom, n, ending:con..sem:body]
 5 [uli, n, ending:vow..sem:us]
 4 [mae-il, adv, sem:everyday]
 3 [nun, pp, ending:vow..case:nom-topicalization..num:sing]
 2 [sae-po, n, ending:vow..sem:cell]
 1 [am, n, ending:con..sem:cancer]

Yes

‘The cancer cell appears and disappears in our body everyday.’

?- try([bal-am, gwa-jeng,un, shi-jak,gwa,whak-san, gwa-jeng,euro,nanu,-e, sel-myungha,l-su,it,da]).
14 [da, p, sem:declarative]
 13 [it, v, ending:con..sem:be-or-exist..subcat:1..feat:dyn]
 12 [l-su, vcv, ending:vow..sem:can]
 11 [sel-myungha, v, ending:vow..sem:explain..subcat:2..feat:dyn]
 10 [-e, serv, sem:serial-verb-connector]
 9 [nanu, v, ending:vow..sem:divide..subcat:2..feat:dyn]
 8 [euro, advp, ending:con..sem:to-or-as-or-with]
 7 [gwa-jeng, n, ending:con..sem:process]
 6 [whak-san, n, ending:con..sem:spreading]
 5 [gwa, scs, ending:con..sem:and]
 4 [shi-jak, n, ending:con..sem:start]
 3 [un, pp, ending:con..case:nom-topicalization..num:sing]
 2 [gwa-jeng, n, ending:con..sem:process]
 1 [bal-am, n, ending:con..sem:carcinogenesis]

Yes

‘The carcinogensis process can be explained by dividing into intial starting stage and spreading
stage.’

 85

?- try([shi-jak, gwa-jeng,un,sae-po,euy, u-jenja,ey,sonsang,i, saeng-gi,e(se),sae-po,euy,seng-
jil,i,jeng-sang,eyse,ii-talha,-nun, byunwha,lul, whi-miha,n,da]).
24 [da, p, sem:declarative]
 23 [n, tp, ending:vow..tense:pres]
 22 [whi-miha, v, ending:vow..sem:mean..subcat:2..feat:dyn]
 21 [lul, pp, ending:vow..case:acc..num:sing]
 20 [byunwha, n, ending:vow..sem:change]
 19 [-nun, vcn, ending:vow..tense:pres..ending1:vow]
 18 [ii-talha, v, ending:vow..sem:to-breakaway..subcat:2..feat:dyn]
 17 [eyse, advp, ending:con..sem:at-or-in-that]
 16 [jeng-sang, n, ending:con..sem:normality]
 15 [i, pp, ending:con..case:nom..num:sing]
 14 [seng-jil, n, ending:con..sem:temper-or-nature]
 13 [euy, gen, ending:vow..sem:of]
 12 [sae-po, n, ending:vow..sem:cell]
 11 [e(se), vcv, ending:vow..sem:because-or-then]
 10 [saeng-gi, v, ending:vow..sem:come-into-existence..subcat:1..feat:dyn]
 9 [i, pp, ending:con..case:nom..num:sing..feat:sta]
 8 [sonsang, n, ending:con..sem:damage]
 7 [ey, advp, ending:vow..sem:of-or-to-or-on-or-at-or-in-or-in-addition-to..case:nom]
 6 [u-jenja, n, ending:vow..sem:gene]
 5 [euy, gen, ending:vow..sem:of]
 4 [sae-po, n, ending:vow..sem:cell]
 3 [un, pp, ending:con..case:nom-topicalization..num:sing]
 2 [gwa-jeng, n, ending:con..sem:process]
 1 [shi-jak, n, ending:con..sem:start]

Yes

‘The intial stage is a stage where the the cell gene gets damaged and the natures of the cell
breakaway from normal cells.’

 86

CHAPTER 7

CONCLUSION

KorPar is a rule-based parser for the partially free-word-order language, Korean. It is

based on dependency grammar for efficiency and unification-based grammar for separation of

the grammar rules and the algorithm itself. It is implemented non-deterministically in Prolog,

and can therefore backtrack to any alternative in the lexicon, grammar rules, or algorithm section.

 The input of the parser is a list of basic morphemes (simply stated as “word” in previous

chapters) that have either a meaning or a function. The output is a dependency structure,

represented with indentation and composed of information including case, number, tense,

meaning, and so forth.

 The overall accuracy rate of linking the correct dependency pairs resulted in an F-score of

96.3%, precision of 97.5% and recall of 95%, using sample sentences from a newspaper. It is

often the case that a rule-based parser would have a high precision rate and a relatively low recall

rate (Sagae, MacWhinney and Lavie 2004; Lim, Lee and Jang 2005). However, KorPar manages

to maintain high rates for both. If the dependency pairs that are not indicated in the grammar

rule were forced to be linked together, then the rate of recall would increase and that of precision

would decrease.

KorPar has a very high precision rate in linking correct subcategorizations and detecting

long-distance dependencies. However, its weakness is a low precision rate in linking the correct

head(s) for the words preceding the stative verbs that modify nouns with the complementizer vcn.

 87

In addition, although the precision rate is fairly low when using probability for unrecognized

words, KorPar can easily add probability methods to other difficult structures that the rules could

not parse, because the grammar and the algorithm itself are separated.

7.1. CONTRIBUTIONS OF KORPAR

 KorPar is a rule-based parser for Korean based on dependency grammar. Unlike other

dependency parsers, KorPar is implemented in Prolog for automatic backtracking and

unification procedures. Although the number of test sentences is small, KorPar shows

relatively high precision and recall rates. Since the test sentences include various possible

dependency structures of Korean, this result provides a positive perspective of the performance

of KorPar.

Korean is a partially free-word-order language and there are many cases of ambiguities in

the decision of head and dependent pairs, particularly in long-distance dependency relations.

KorPar shows a successful precision rate of 98.9% for these cases, simply by the grammar rules

and the unique searching algorithm of the parser.

The dependency grammar represents partially free-word-order of Korean and facilitates

the implementation of the parser. The unification-based grammar enables the grammar to

identify head and dependent relations in a simple manner and separates the algorithm from the

grammar for easy maintenance.

7.2. POSSIBLE FUTURE IMPROVEMENTS

 KorPar can be improved by enlarging the lexicon and testing more sentences. In addition,

the probability method can be used for other kinds of troubleshooting cases that the grammar

 88

rules could not capture. For example, the dependency relation between the words that precede

the stative verb in a relative clause can be parsed with a better precision rate by using statistics.

This is especially true since there are cases where all of the preceding words are dependents of

the stative verb, cases where none of them are dependents, and even worse cases where some of

the preceding words are dependents and some are not. The probability rates of these three

different cases can be examined and used for better performance.

A further possible step would entail applying KorPar to other free-word-order languages.

This could be accomplished by simply substituting the lexicon and grammar rules sections

without necessitating a change in the algorithm section.

 89

REFERENCES

Abney, Steven P. (1989) A computational model of human parsing. Journal of Psycholinguistic
Research 18:129-144.

Agel, V.; Eichinger, L.M.; Eroms, H.W.; Hellwig, Peter; Heringer, Hans Jürgen; and Lobin,
Henning (2003) Dependency and valency: an international handbook of contemporary research.
Portico Publications

Arnola, Harri and Oy, Kielikone (1998) On parsing binary dependency structures
deterministically in linear time. Workshop on dependency-based grammars, COLING-ACL'98,
Montreal, 68-77.

Bauer, L. (1979) Some thoughts on dependency grammar. Linguistics 17:301-315.

Barton, Berwick, and Ristad (1987) Computational complexity and natural language.
MIT Press.

Beck, David (1999) The typology of parts of speech system: the markedness of adjectives.
Doctoral dissertation,University of Toronto.

Cha, Jeongwon; Lee, Geunbae; and Lee, Jonghyeuk (2002) Korean combinatory categorial
grammar and statistical parsing. Computers and the Humanities 36.4:431-453.

Charniak, Eugene (1997) Statisitical techniques for natural language parsing. AI Magazine, 18.4:
33-44.

Cho, Hyung Joon and Park, Jong (2000) Informed parsing for coordination with combinatory
categorial grammar, Proceedings of the International Conference on Computational Linguistics.
593-599.

Choi, Hyen-Pay (1971). Wuli Malpon (‘Our Grammar’). Seoul: Jengumsa.

Choi, Seongsook (2003) Serial verbs and the empty category. Proceedings of the workshop on
Multi-Verb constructions. Trondheim Summer School 2003.

Chomsky, Noam (1995) Bare Phrase Structure. In Gert Webelhuth, ed., Government and Binding
Theory and the Minimalist Program.Oxford: Blackwell, pp. 383-439.

 90

Chung, Hoojung and Rim, Hae-Chang (2004) Unlexcialized dependency parser for variable
word order languages based on local contextual pattern. CICLing. Lecture note in Computer
Science 2945:112-124.

Chung, Hoojung (2004) Statistical Korean dependency parsing model based on the surface
contextual information. Ph.D. dissertation of Korea University.

Clark, Stephen; Hockenmaier , Julia; and Steedmean, Mark (2002) Building deep dependency
structures with a wide-coverage CCG parser. In Proceedings of the 40th Meeting of the ACL.
327-334.

Covington, Michael A. (1990) Parsing discontinuous constituents in dependency grammar.
Computational Linguistics 16:234-236.

Covington, Michael A. (1992) GB Theory as Dependency Grammar. Research Report AI-1992-
03.

Covington, Michael A. (1994a) GULP 3.1: An extension of Prolog for unification-based
grammar. Research Report AI-1994-06, Artificial Intelligence Programs, University of Georgia.

Covington, Michael A. (1994b) Natural language processing for Prolog programmers. Prentice-
Hall, NJ.

Covington, Michael A. (2001) A fundamental algorithm for dependency parsing. In Proceedings
of 39th Annual ACM Southeast Conference.

Covington, Michael A. (2003) A free-word-order dependency parser in Prolog. University of
Georgia. http://www.ai.uga.edu/mc/ProNTo.

Germann, Ulrich (1999) A deterministic dependency parser for Japanese. In Proceedings of the
MT Summit VII. Singapore.

Goutte, Cyril and Gaussier , Eric (2005) A probabilistic interpretation of precision, recall and F-
score, with implication for evaluation. ECIR 27th European Conference on Information
Retrieval, Santiago de Compostela, Spain, 21-23 March.

Han, Chung-hye; Yoon, Juntae; Kim, Nari; and Mee-sook Kim (2000) A feature-based
lexicalized tree-adjoining grammar for Korean. IRCS 4.

Hays, D. (1964) Dependency theory: a formalism and some observations. Language 40.4:511-
525.

Hudson, R.A. (1980) Constituency and dependency. Linguistics 18:179-198.

Hudson, R.A. (1984) Word grammar. Basil Blackwell.

 91

Hudson, R.A. (1993) Do we have heads in our minds? In Corbett, Greenville; McGlashen, Scott;
Fraser, Norman, eds., Heads in Grammatical Theory, 266-291. Cambridge University Press.

Jackendoff, Ray (1977) X-bar syntax: a study of phrase structure. The MIT Press.

Jackendoff, Ray (2002) Foundations of Language: Brain, Meaning, Grammar, Evolution.
Oxford University Press.

Jäarvinen, Timo and Tapanainen, Pasi (1997) A non-projective dependency parser. In
Proceedings of 5th Conference on Applied Natural Language Processing, ANLP-1995,
Washington, D.C. 64-71

Jäarvinen, Timo and Tapanainen, Pasi (1998) Towards an implementable dependency grammar.
Processing of Dependency-Based Grammars, Kahane and Polguere, eds., pp.1-10.

Kang, Mi-young; Park, Su-Ho; and Kwon, Hyuk-chul (2001) A pattern analysis of lexical
ambiguities and the Korean grammar checker with partial parsing. In Proceedings of CKITOP
2001. pp.45-52.

Kang, Mi-young; Park, Su-ho; Yoon, Ae-sun; and Kown, Hyuk-chul (2002) Potential governing
relationship and a Korean grammar checker using partial parsing. IEA/AIE, pp.692-702.

Kang, Seungman (1997) A comparative analysis of SVCs and Korean V-V Compounds. The 40th

Anniversary of Generativism. Proceedings of electronic conference Dec pp.1-12.

Kim, Changhyun; Kim, Jae-hoon; Seo, Jungyun; and Kim, Gil Chang (1994) A right-to-left chart
parsing with headable paths for Korean dependency grammar. Computer Processing of Chinese
and Oriental Languages 8:105-118.

Kim, Minjoo (2005) The absence of adjective category in Korean. Under revision for
resubmission for Journal of East Asian Linguistics.

Kim, Min-jung; Kwon, Hyuk-chul; and Yoon, Ae-sun (1996) Rule-based approach to Korean
morphological disambiguation supported by statistical method. In Proceedings of the Eleventh
PACLIC: 237-246.

Kim, Mi-Young; Kang, Sin-Jae; and Lee, Jong-Hyeok (2001) Resolving ambiguity in inter-
chunk dependency parsing. Natural Language Processing Pacific Rim Symposium pp.263-270.

Kim, Seongyong and Choi,Key-sun (2003) Automatic generation of composite labels using part-
of-speech tags for parsing Korean. International Journal of Computer Processing of Oriental
Languages 16.3:197-218.

Kim, Yeon-Jun; Byeon, Heo-Jin; and Oh, Yung-Hwan (1999). Prosodic phrasing in Korean;
determine governor, and then split or not. In Proceedings of Eurospeech ’99, Budapest.pp. 539-
542.

 92

Kornai and Pullum (1990) The X-bar theory of phrase structure. Language 66.1

Kruijff, Geert-Jan M. (2002) Formal and computational aspects of dependency grammar. From
ESSLLI Summer School 2002.

Kwon, Hyuk-chul and Yoon, Ae-sun (1991) Unification-based dependency parsing of governor-
final languages. In Proccedings of IWPT. pp.172-192.

Kwon, Hyuk-chul; Yoon, Aesun; and Kim, Yunk-taek (1990) A Korean analysis system based
on unification and chart. In Proceedings of Pacific Rim International Conference on Artificial
Intelligence '90.pp. 251-256.

Lee, Geunbae and Lee, Jong-Hyeuk (1995) SKOPE: A connectionist/symbolic architecture of
spoken Korean processing. Learning for Natural Language Processing. pp.102-116.

Lee, Geunbae; Lee, Jong-Hyeuk; and Yoo, Jinhee (1997) Multi-level post-processing for Korean
character recognition using morphological analysis and linguistic evaluation. Pattern
Recognition 30.7:1347-1360.

Lee, Ikseb (2005) Korean Grammar. Seoul National University. (In Korean)

Lee, Kihwang (2003) Yet Another Statistical Case Assignment in Korean. Student Workshop,
North American Summer School of Logic, Language and Computation (NASSLLI '03). 17-21
Jun, Bloomington (IN), USA.

Lee, Kong Joo; Kim, Jae-Hoon; and Kim, Gil Chang (1997) An efficient parsing of Korean
sentences using restricted phrase structure grammar. International Journal of Computer
Processing of Oriental Languages 11.1:49-61.

Lee, S. (2002) A statistical model for identifying grammatical relations in Korean sentences.
Ph.D. thesis, Dept. of Computer Science. Sogang University.

Lee, Seungmi and Choi, Key-Sun (1997) Reestimation and best-first parsing algorithm for
probablistic dependency grammars. In Proceedings of the Fifth Workshop on Very Large
Corpora. pp41-55.

Lee, Won-il; Lee, Geunbae; and Lee, Jong-hyeuk (1995) Chart-driven connectionist categorial
parsing of spoken Korean. In Proceedings of the ICCPOL95 (Hawaii).

Lim, Soojong; Lee, Changki; and Jang, Myoungkil (2005) Restoring an Elided Entry Word in a
Sentence for Encyclopedia QA System. Second International Joint Conference on Natural
Language Processing

Mel’čuk, I. (1988) Dependency Syntax: Theory and Practice. SUNY Press, Albany NY.

 93

Mel’čuk, I. (2003) Levels of dependency in linguistic description: concepts and problems. In
dependency and valency: an international handbook of contemporary research. Portico
Publications

Nam, HyeonSook; So, Kilja; Kim, SuNam; and Kwon, Hyuk-chul (1998) Resolving lexical and
syntactic ambiguities using heuristic rules for Korean grammar checker. Proceedings of
Association for Intelligent Machinery.3: 454-457.

Noord, Gertjan van (1993) Reversibility in Natural Language Processing. PhD thesis, University
of Utrecht.

Park, So-young; Kwak, Yong-jae; and Rim, Hae-chang (2005) Feature-based Korean grammar
utilizing learned constraint rules. Computational Intelligence 21.1:69-89.

Radford, Andrew (1997) Syntactic theory and the structure of English: A minimalist approach .
Cambridge: Cambridge University Press.

Rayner, Manny; Boullion Pierrette; Hockey, Beth A.; Chatzichresafis, Nikos; and Starlander,
Marianne (2004) Comparing rule-based and statistical approaches to speech understanding in a
limited domain speech translation system. Proceedings of the 10th International Conference on
Theoretical and Methodological Issues in Machine Translation, Baltimore, MD.

Richardson, Stephen D. (1994) Bootstrapping statistical processing into a rule-based natural
language parser. Submitted to ACL-94, February.

Sagae, K.; MacWhinney, B.; and Lavie, A. (2004) Adding syntactic annotations to transcripts of
parentchild dialogs. In LREC 2004 pp. 1815-1818. Lisbon:LREC.

Samuelsson , Christer. (2000) A statistical theory of dependency syntax. In Proceedings of the
18th International Conference on Computational Linguistics. pp.684-690.

Schneider, Gerold. (2003) Extracting and using trace-free functional dependencies from the Penn
Treebank to reduce parsing complexity. In Proceedings of Treebanks and Linguistic Theories.

Schneider, Gerold. (1998) A linguistic comparison of consitituency, dependency and link
grammars. Lizentiatsarbeit, Institut für Informatik der Zürich.
http://www.ifi.unizh.ch/cl/study/lizarbeiten/lizgerold.pdf.

Shieber, S. M. (1986) An introduction to unification-based approaches to grammar. (CSLI
Lecture Notes, 4.) Stanford: Center for the Study of Language and Information (distributed by
University of Chicago Press).

Sohn, H. (1999) The Korean language. Cambridge University Press.

Steedman, M. (1993) Categorial Grammar (tutorial overview). Lingua. 90:221-258.

http://www.ifi.unizh.ch/cl/study/lizarbeiten/lizgerold.pdf

 94

Stewart, Osamuyimen T. (2001) The Serial Verb Construction Parameter. (Outstanding
dissertations in linguistics). Garland Publishing Inc.

Venable, Peter. (2001) Lynx: building a statistical parser from a rule-based parser. In
Proceedings of NAACL.

Voll, Kimberly D.; Yeh, Tom P.; and Dahl, Veronica (2001) An assumptive logic programming
methodology for parsing. International Journal of Artificial Intelligence 10.4:573-588.

Yoon, Juntae (2002) Efficient semi-deterministic parsing for Korean using lexical co-occurrence
data from a corpus. International Journal of Computer Processing of Oriental Languages
15.4:493-516.

Yoon, J.;C.H. Han; N. Kim; and M. Kim (2000). Customizing the XTAG system for
efficient grammar development for Korean. In Proceedings of the 5th International
Workshop on Tree Adjoining Grammars and Related Formalisms, pp.221–226.

Yoon, J., C. Lee, S. Kim, and M. Song (1999) “Morphological Analyzer of Yonsei Univ.,
Morany: Morphological analysis based on large lexical database extracted from corpus. In
Proceedings of Korean Language Information Processing. (In Korean)

Zeman, Daniel. 2002. How to decrease the performance of a statistical parser: on the negative
influence on some outside factors. The Prague Bulletin of Mathematical Linguistics 78. 53-62.

 95

APPENDICES

A. PROLOG CODE OF KORPAR

% korean parser KorPAR: Soyoung Kwon
% This is a dependency parser for Korean that uses unification-based gramamar
% last modified: May 24 2006

:- ensure_loaded('c://Program Files//pl//bin//GULP3swi-old.pl').

%%lexicon word(phonetic sound, partofspeech(features)).
%% n(noun)/pp(subject & object case marker)/pro(pronoun)/advp(adverbial post
marker)/v(verb)/p(sentence ending marker)/tp(tense post marker)/cp(copular post marker)/ccp(other kind of
copular marker)/adj(adjective)/gen(genitive)/num(numeral)/ncv(complementizer:noun dep& verb
head)/scs(complementizer:same kind of dep&head)/pcv(complementizer:p dep& verb
head)/vcv(complementizer:v dep&head)/adv(adverb)/vadjp(verb to adj post marker)/vnp(verb to noun
marker)/nnp(noun to noun marker)/serv(serial verb marker)/qm(quotational marker)

%% n(noun)
word(a-be-ji,n(ending:vow..sem:father)).
word(am,n(ending:con..sem:cancer)).
word(baekje,n(ending:vow..sem:baekje)).
word(baksa,n(ending:vow..sem:doctor)).
word(bal-am,n(ending:con..sem:carcinogenesis)).
word(baldal,n(ending:con..sem:growth-or-progress-or-advancement)).
word(bal-eum,n(ending:con..sem:pronunciation)).
word(bal-seng,n(ending:con..sem:occurence-or-outbreak)).
word(bande,n(ending:vow..sem:opposite)).
word(bang-e,n(ending:vow..sem:defense)).
word(bang-il,n(ending:con..sem:visit-to-japan)).
word(ban-young,n(ending:con..sem:reflection)).
word(bel-lae,n(ending:vow..sem:insect)).
word(bi-sok-e,n(ending:vow..sem:slang)).
word(bitamin,n(ending:con..sem:vitamin)).
word(bo-geup,n(ending:con..sem:popularization)).
word(bon-in,n(ending:con..sem:oneself)).
word(bu-chin,n(ending:con..sem:father)).
word(bujok,n(ending:con..sem:insufficiency)).
word(bun,n(ending:con..sem:person-honorific)).
word(bun-rang,n(ending:con..sem:amount)).
word(byung,n(ending:con..sem:disease)).
word(byunwha,n(ending:vow..sem:change)).
word(chae-so,n(ending:vow..sem:vegetable)).
word(chingu,n(ending:vow..sem:friend)).
word(cho-dung-hakgyo,n(ending:vow..sem:elementary-school)).
word(chu-kikyung,n(ending:con..sem:cardinal)).
word(dae,n(ending:vow..sem:when-or-at)).

 96

word(dae-bubun,n(ending:con..sem:majority)).
word(daehak-kyo,n(ending:vow..sem:university)).
word(daejung-wha,n(ending:vow..sem:massification)).
word(dang-bun,n(ending:con..sem:amount-of-sugar)).
word(dae-wha,n(ending:vow..sem:conversation)).
word(dan-e,n(ending:vow..sem:vocabulary)).
word(ddae,n(ending:vow..sem:when)).
word(ddaemun,n(ending:con..sem:reason)).
word(ddal,n(ending:con..sem:daughter)).
word(ddet,n(ending:con..sem:meaning-or-philosophy)).
word(deng-e-li,n(ending:vow..sem:lump-or-mass)).
word(dna,n(ending:vow..sem:dna)).
word(dogu,n(ending:vow..sem:tool)).
word(dong-mul,n(ending:con..sem:animal)).
word(dwen-sori,n(ending:vow..sem:strong-sounds)).
word(e-linhi,n(ending:vow..sem:child)).
word(em-ma,n(ending:vow..sem:mom)).
word(enoh-hak,n(ending:con..sem:linguistics)).
word(eu-je,n(ending:vow..sem:yesterday)).
word(eun-e,n(ending:vow..sem:jargon)).
word(eungu,n(ending:vow..sem:research)).
word(euy-mi,n(ending:vow..sem:meaning)).
word(gae-tong,n(ending:con..sem:system)).
word(gaji,n(ending:vow..sem:type)).
word(gaji,n(ending:vow..sem:kind)).
word(gal-geun,n(ending:con..sem:no)).
word(gap,n(ending:con..sem:price)).
word(gang-a-gi,n(ending:vow..sem:dog)).
word(gan-pan,n(ending:con..sem:signboard)).
word(gaseum,n(ending:con..sem:heart)).
word(gel,n(ending:con..sem:character)).
word(gengang,n(ending:con..sem:health)).
word(geut,n(ending:con..sem:thing-or-fact)).
word(ggwa,n(ending:vow..sem:department)).
word(gisul,n(ending:con..sem:skill)).
word(giwhoo,n(ending:vow..sem:climate)).
word(gong-bu,n(ending:vow..sem:study)).
word(got,n(ending:con..sem:place)).
word(go-u-e,n(ending:vow..sem:pure-native-language)).
word(go-yang-i,n(ending:vow..sem:cat)).
word(gubyul,n(ending:con..sem:distinction)).
word(gukne,n(ending:vow..sem:domestic)).
word(gwahak,n(ending:con..sem:science)).
word(gwa-il,n(ending:con..sem:fruit)).
word(gwa-jeng,n(ending:con..sem:process)).
word(gwa-mok,n(ending:con..sem:subject)).
word(gwang-sen,n(ending:con..sem:beam-or-light)).
word(gwang-woo-byung,n(ending:con..sem:mad-cow-disease)).
word(gyosoo,n(ending:vow..sem:professor)).
word(gyue-jae,n(ending:vow..sem:textbook)).
word(haek,n(ending:con..sem:nucleas)).
……..
……..
word(yeul,n(ending:con..sem:heat)).
word(yeum-jung,n(ending:con..sem:aversion)).
word(yeun-guso,n(ending:vow..sem:research-center)).

 97

word(yeun-gwan,n(ending:con..sem:connection-or-relation)).
word(yoin,n(ending:con..sem:main-cause)).
word(pero,n(sem:percentage)).

%% pro (pronoun)
word(ge,pro(ending:vow..sem:he-or-she-or-him-or-her-or-the)).
word(je,pro(ending:vow..sem:that)).
word(ii,pro(ending:vow..sem:this-or-it)).

%% pp(subject & object case marker)
word(ga,pp(case:nom..ending:vow..num:sing)).
word(i,pp(case:nom..ending:con..num:sing)).
word(lul,pp(case:acc..ending:vow..num:sing)).
word(ul,pp(case:acc..ending:con..num:sing)).
word(nun,pp(case:nom-topicalization..ending:vow..num:sing)).
word(un,pp(case:nom-topicalization..ending:con..num:sing)).
word(do,pp(case:nom-also..num:sing)).
word(lan,pp(case:nom-meaning..ending:vow..num:sing)).
word(i-lan,pp(case:nom-meaning..ending:con..num:sing)).

%% plp(plural marker)
word(dul,plp(num:pl..ending:con)).

%%advp(adverbial post marker)
word(euro,advp(ending:con..sem:to-or-as-or-with)).
word(ro,advp(ending:vow..sem:to-or-as)).
word(ey,advp(sem:of-or-to-or-on-or-at-or-in-or-in-addition-to)). %%% ending of the noun does not matter.
word(eyse,advp(sem:at-or-in-that)).
word(ggaji,advp(sem:uptil)).
word(igido,advp(sem:might-also-be)).
word(chelem,advp(sem:like)).
word(ege,advp(sem:to)).
word(mada,advp(sem:every)).
word(ddae,advp(sem:when)).
word(bute,advp(sem:since)).
word(man-keum,advp(sem:as-much)).
word(dul-ro,advp(sem:with)).
word(ey-euyhe,advp(sem:by)).
word(jung,advp(among-or-during)).
word(gwa-hamkkae,advp(ending:con..sem:together)).
word(wa-hamkkae,advp(ending:vow..sem:together)).

%% v(verb)
word(al,v(ending:con..subcat:2..sem:know..feat:dyn)).
word(alum-dab,v(ending:con..subcat:1..sem:be-beautiful..feat:sta)).
word(alyu-ji,v(ending:vow..subcat:1..sem:become-known..feat:dyn)).
word(anta-ggab,v(ending:con..subcat:1..sem:pity..feat:dyn)).
word(appdu,v(ending:vow..sucat:2..sem:have-ahead..feat:dyn)).
word(appseu,v(ending:vow..subcat:2..sem:before..feat:dyn)).
word(bae-u,v(ending:vow..subcat:2..sem:learn..feat:dyn)).

 98

word(baggu,v(ending:vow..subcat:2..sem:change..feat:dyn)).
word(baggwui-e-ga,v(ending:vow..subcat:1..sem:be-changed..feat:dyn)).
word(bala,v(ending:vow..subcat:2..sem:wish..feat:dyn)).
word(balki,v(ending:vow..subcat:2..sem:lighten-or-express..feat:dyn)).
word(balpyoha,v(ending:vow..subcat:2..sem:announce..feat:dyn)).
word(balsaengha,v(ending:vow..subcat:1..sem:occur..feat:dyn)).
word(balseng-dwe,v(ending:vow..subcat:1..sem:be-occured..feat:dyn)).
word(balumha,v(ending:vow..subcat:2..sem:pronounce..feat:dyn)).
word(battel,v(ending:con..subcat:2..sem:follow..feat:dyn)).
word(bigyu-dwe,v(ending:vow..subcat:2..sem:be-compared..feat:dyn)).
word(bo-i,v(ending:vow..subcat:2..sem:to-show..feat:dyn)).
word(bokjab-heji,v(ending:vow..subcat:1..sem:become-complicated..feat:dyn)).
word(bone,v(ending:vow..subcat:2..sem:send..feat:dyn)).
word(bulgwaha,v(ending:vow..subcat:1..sem:no-more-than..feat:dyn)).
word(bul-pyenha,v(ending:vow..subcat:1..sem:be-uncomfortable..feat:sta)).
word(bun-yelha,v(ending:vow..subcat:2..sem:breakup-or-division..feat:dyn)).
word(byunha,v(ending:vow..subcat:1..sem:change..feat:dyn)).
word(chajabo,v(ending:vow..subcat:2..sem:try-to-find..feat:dyn)).
word(changjoha,v(ending:vow..subcat:2..sem:create..feat:dyn)).
word(chot,v(ending:con..subcat:2..sem:chase..feat:dyn)).
word(chuguha,v(ending:vow..subcat:2..sem:seek..feat:dyn)).
word(daechi,v(ending:vow..subcat:2..sem:parboil..feat:dyn)).
word(dala-ju,v(ending:vow..subcat:2..sem:put-on-or-hang..feat:dyn)).
word(dale,v(ending:vow..subcat:1..sem:be-different..feat:sta)).
word(dal-laji,v(ending:vow..subcat:1..sem:become-different..feat:sta)).
word(danhoha,v(ending:vow..subcat:1..sem:firm-or-decisive..feat:dyn)).
word(dayangha,v(ending:vow..subcat:1..sem:diverse..feat:sta)).
word(ddae-muni,v(ending:vow..subcat:1..sem:because-of..feat:dyn)).
word(ddale,v(ending:vow..subcat:1..sem:follow..feat:dyn)).
word(ddalu,v(ending:vow..subcat:2..sem:follow..feat:dyn)).
word(dde-geb,v(ending:con..subcat:1..sem:be-hot..feat:sta)).
……..
……..
word(silchenha,v(ending:vow..subcat:2..sem:practice..feat:dyn)).
word(silhem-hebo,v(ending:vow..subcat:2..sem:try-out..feat:dyn)).
word(ssa,v(ending:vow..subcat:1..sem:be-cheap..feat:sta)).
word(sse,v(ending:vow..subcat:2..sem:use..feat:dyn)).
word(tanseng-siki,v(ending:vow..subcat:2..sem:give-birth-or-bring-about..feat:dyn)).
word(tek-byelha,v(ending:vow..subcat:1..sem:be-special..feat:sta)).
word(un-youngha,v(ending:vow..subcat:2..sem:manage..feat:dyn)).
word(whe-woo,v(ending:vow..subcat:2..sem:memorize..feat:dyn)).
word(whi-miha,v(ending:vow..subcat:2..sem:mean..feat:dyn)).
word(wiha,v(ending:vow..subcat:2..sem:value-or-serve..feat:dyn)).
word(yae-chuk-ha,v(ending:vow..subcat:2..sem:predict..feat:dyn)).
word(yaeppe,v(ending:vow..subcat:1..sem:be-pretty..feat:sta)).
word(yeli,v(ending:vow..subcat:1..sem:be-opened..feat:dyn)).
word(yeppe,v(ending:vow..subcat:1..sem:be-pretty..feat:sta)).
word(yuriha,v(ending:vow..subcat:1..sem:be-in-advantage-of..feat:dyn)).

%% p(sentence ending)
word(da,p(sem:declarative)).

%% tp(tense ending)
word(nun,tp(tense:pres..ending:con)).

 99

word(n,tp(tense:pres..ending:vow)).
word(go-iss,tp(tense:pres-prog)).
word(go-iss-b-ni,tp(tense:pres-prog-honorific)).
word(b-ni,tp(tense:pres-honorific..ending:vow)).
word(seb-ni,tp(tense:pres-honorific..ending:con)).
word(ess,tp(tense:past..ending:con)).
word(ss,tp(tense:past..ending:vow)).
word(ess-b-ni,tp(tense:past-honorific..ending:con)).
word(ss-b-ni,tp(tense:past-honorific..ending:vow)).
word(l-geut-i,tp(tense:future..ending:vow)).
word(ul-geut-i,tp(tense:future..ending:con)).
word(gaet,tp(tense:future-will)).

%% serv (serial verb)
word(-e,serv(sem:serial-verb-connector)).
word(-go-serv,serv(sem:serial-verb-connector)).

%% cp(copular postmarkers)
word(-i,cp(sem:be)).

%% ccp(other kind of copular verb)
word(dwe,ccp(sem:become)).
word(ani,ccp(sem:not-be)).

%% adj(adjective)
word(iben,adj(sem:this-time)).
word(ulma,adj(sem:some-amount)).
word(yeoro,adj(sem:various)).
word(saege-jek,adj(sem:global)).
word(moden,adj(sem:every)).
word(changjo-jek,adj(sem:creative)).
word(on-gat,adj(sem:various)).
word(on,adj(sem:entire)).
word(musun,adj(sem:some)).

%% gen(genitive)
word(euy,gen(sem:of)).
word(la-nun,gen(ending:vow..sem:so-called)).
word(i-la-nun,gen(ending:con..sem:so-called)).

%% num(numeral)
word(myut,num(sem:several)).
word(13,num(sem:thirteen)).
word(21,num(sem:twenty-one)).
word(7,num(sem:seven)).
word(han,num(sem:one)).
word(30,num(sem:thirty)).
word(1,num(sem:one)).
word(du,num(sem:two)).
word(5,num(sem:five)).
word(10,num(sem:ten)).

 100

%%ncv(complementizer that follows a noun and heads verb)
word(edo,ncv(subcat:1..sem:also)).
word(edo-bulgu-hago,ncv(subcat:1..sem:although)).
word(la-go,ncv(subcat:1..ending:vow..sem:says-that)).
word(i-la-go,ncv(subcat:1..ending:con..sem:says-that)).
word(boda,ncv(subcat:1..sem:compared-to)).
word(boda-nun,ncv(subcat:1..sem:compared-to)).
word(wehese,ncv(subcat:1..sem:for)).
word(e-bihe,ncv(subcat:1..sem:compared-to)).
word(mada,ncv(subcat:1..sem:each)).

%% scs(complementizer that taked the same part of speech(n or v or cp) as head & dep
word(ha-go,scs(sem:and)).
word(gwa,scs(ending:con..sem:and)).
word(wa,scs(ending:vow..sem:and)).
word(a-nila,scs(sem:not)).
word(i-na,scs(ending:con..sem:or)).
word(na,scs(ending:vow..sem:or)).
word(gat-eun,scs(sem:like-or-such-as)).
word(mit,scs(sem:as-well-as)).

%% pcv(complementizer that follows a sentence ender p)
word(go,pcv(sem:that)).
word(he-do,pcv(sem:although)).

%% vcv(complementizer that follows a verb & takes v as head)
word(a(se),vcv(sem:because-or-then)).
word(a-ya,vcv(ending:con..sem:conditional)).
word(do-rok,vcv(sem:in-order-to)).
word(e(se),vcv(sem:because-or-then)).
word(eu-myue,vcv(ending:con..sem:also)).
word(eu-myun,vcv(ending:con..sem:if)).
word(eu-myun-se,vcv(ending:con..sem:as-or-whole)).
word(eu-ryue-myun,vcv(ending:con..sem:if)).
……..
……..
word(n-dae,vcv(ending:vow..sem:although-or-compared-to)).
word(nun-dae,vcv(ending:con..sem:although-or-compared-to)).
word(nun-ji,vcv(sem:if)).
word(ryue-myun,vcv(ending:vow..sem:if)). %'a-ya' or 'ya'
word(ul-su,vcv(ending:con..sem:can)).
word(ul-surok,vcv(ending:con..sem:the-more)).
word(ya,vcv(ending:vow..sem:conditional)).

%% vcn (complementizers that take a verb as dep. and noun as head)
word(-n,vcn(ending:vow..tense:past)).
word(-un,vcn(ending:con..tense:past)).
word(-nun,vcn(ending:vow..tense:pres)).
word(-nun,vcn(ending:con..tense:pres)).%%%%%%%%%nun different!!!!!!!
word(-l,vcn(ending:vow..tense:future)).
word(-ul,vcn(ending:con..tense:future)).

 101

word(-l- manhan,vcn(ending:vow..sem:similar-to)).
word(-ul- manhan,vcn(ending:con..sem:similar-to)).
word(-deun,vcn(tense:past)).

%%adv(adverb)
word(bballi,adv(sem:quickly)).
word(bel-ddek-bel-ddek,adv(sem:quickly)).
word(daa,adv(sem:all)).
word(daman,adv(sem:simply-or-however)).
word(de,adv(sem:more)).
word(debul-e,adv(sem:with-or-together)).
word(ddalase,adv(sem:therefore)).
………..
………..
word(sero,adv(sem:newly)).
word(sil-je-ro,adv(sem:in-reality)).
word(sashil,adv(sem:in-reality)).
word(son-shipgae,adv(sem:easily)).
word(teuk-hi,adv(sem:especially)).
word(tong-jje-ro,adv(sem:as-a-whole)).
word(whel-shin,adv(sem:a-lot)).
word(wi-he-se,adv(sem:for)).
word(yak-kan,adv(sem:a-little)).
word(yek-shi,adv(also)).

%%tadv(tense adverb)
word(euje-adv,tadv(tense:past..sem:yesterday)).
word(naeil-adv,tadv(tense:future..sem:tomorrow)).
word(geum-bang,tadv(tense:past..sem:a-while-ago)).
word(goud,tadv(tense:future..sem:soon)).
word(ap-euro,tadv(tense:future..sem:in-the-future)).

%% vnp(verbs to nouns)
word(gi,vnp(ending2:vow)).
word(eum,vnp(ending1:con..ending2:con)).
word(m,vnp(ending1:vow..ending2:con)).

%% nnp(noun to noun)
word(wha,nnp(sem:conversion-or-ization)).

%% quotation mark
word(-qm,qm(sem:quotationmark)).

%% dependency rule : the order in a sentence needs to be considered.
%% each word is represented as,
%% [NumberInSentence,DependentList,PhoneticSound,PartofSpeech,GULPfeatures]

/**************NOUN***/
% noun/postpositional marker(pp)
check_dh([N,_,_,n,X],[NN,_,_,pp,Y]) :- !, X = ending:End, Y = ending:End,NN is N +1.

 102

% n/n
check_dh([N,_,_,n,X],[NN,_,_,n,Y]) :- !, NN > N.

% num(numeral)/n
check_dh([N,_,_,num,X],[NN,_,_,n,Y]) :- !, NN > N.

/**************QM**/
% anything/qm
check_dh([N,_,_,_,_],[NN,_,_,qm,_]) :- !, NN is N + 1.

% qm/pp
check_dh([N,_,_,qm,_],[NN,_,_,pp,_]) :- !, NN is N + 1.

/**************PRO**/
%adj/pro
check_dh([N,_,_,adj,X],[NN,_,_,pro,Y]) :- !, NN is N +1.

%pro/pp
check_dh([N,_,_,pro,X],[NN,_,_,Z,Y]) :- !, (Z = pp; Z = n; Z = advp; Z = gen; Z = ncv; Z = scs), NN is N +1.

%pro/n
check_dh([N,_,_,pro,_],[NN,_,_,n,_]) :- !, NN > N.

/*********************PLP**/
%n/plp
check_dh([N,_,_,n,X],[NN,_,_,plp,Y]) :- !, NN is N +1.

%plp/pp
check_dh([N,_,_,plp,X],[NN,_,_,pp,Y]) :- !, X = ending:End, Y = ending:End, NN is N +1.

%plp/advp
check_dh([N,_,_,plp,X],[NN,_,_,advp,Y]) :- !, NN is N +1.

/***************NCV**/
% ncv(complementizer)/v
check_dh([N,_,_,ncv,X],[NN,_,_,v,Y]) :- !, NN > N.

%noun/ncv
check_dh([N,_,_,n,X],[NN,_,_,ncv,Y]) :- !, X = ending:End, Y = ending:End, NN is N +1.
check_dh([N,_,_,n,_],[NN,_,_,ncv,_]) :- !, NN is N +1.

/***************SCS**/
% noun/scs
check_dh([N,_,_,n,X],[NN,_,_,scs,Y]) :- !, X = ending:End, Y = ending:End, NN is N +1.
check_dh([N,_,_,n,_],[NN,_,_,scs,_]) :- !, NN is N +1.

%verb/scs
check_dh([N,_,_,v,_],[NN,_,_,scs,_]) :- !, NN is N +1.

%cp/scs
check_dh([N,_,_,cp,_],[NN,_,_,scs,_]) :- !, NN is N +1.

%scs/noun
check_dh([N,[[M,_,_,n,_]],_,scs,_],[NN,_,_,n,_]) :- !, N is M + 1, N < NN.

 103

%scs/verb
check_dh([N,[[M,_,_,v,_]],_,scs,_],[NN,_,_,v,_]) :- !, N is M + 1, N < NN.

%scs/cp
check_dh([N,[[M,_,_,cp,_]],_,scs,_],[NN,_,_,cp,_]) :- !, N is M + 1, N < NN.

%vnp/scs
check_dh([N,_,_,vnp,_],[NN,_,_,scs,_]) :- !, NN is N +1.

%scs/vnp
check_dh([N,[[M,_,_,vnp,_]],_,scs,_],[NN,_,_,vnp,_]) :- !, N is M + 1, N < NN.

/******************PCV**/
% pcv(complementizer)/v
check_dh([N,_,_,pcv,X],[NN,_,_,v,Y]) :- !, NN is N +1.

% p/pcv(complementizer)
check_dh([N,_,_,p,X],[NN,_,_,pcv,Y]) :- !, NN is N +1.

/*****************VCV**/
%v/vcv
check_dh([N,_,_,v,X],[NN,_,_,vcv,Y]) :- !, X = ending:End, Y = ending:End, NN is N +1.
check_dh([N,_,_,v,_],[NN,_,_,vcv,_]) :- !, NN is N +1.

% cp/vcv(complementizer)
check_dh([N,_,_,cp,X],[NN,_,_,vcv,Y]) :- !, NN is N +1.

% ccp/vcv(complementizer)
check_dh([N,_,_,ccp,X],[NN,_,_,vcv,Y]) :- !, NN is N +1.

% vcv(complementizer)/v
check_dh([N,_,_,vcv,X],[NN,_,_,v,Y]) :- !, NN > N.

% vcv(complementizer)/cp
check_dh([N,_,_,vcv,X],[NN,_,_,cp,Y]) :- !, NN > N.

% vcv(complementizer)/ccp
check_dh([N,_,_,vcv,X],[NN,_,_,ccp,Y]) :- !, NN > N.

/***************VCN**/
%tp/deun
check_dh([N,_,_,X,_],[NN,_,-deun,vcn,Y]):- !, (X = v; X = tp), NN is N +1.

%verb/vcn
check_dh([N,_,_,v,X],[NN,_,_,vcn,Y]):- !, X = ending:End, Y = ending1:End, NN is N +1.

%p/vcn
check_dh([N,_,_,p,X],[NN,_,_,vcn,Y]):- !, NN is N +1.

%vcn/n
check_dh([N,_,_,vcn,_],[NN,_,_,X,_]):- !, (X = n; X = pro), NN > N.

/*****************TP**/
% verb/tp
check_dh([N,_,_,v,X],[NN,_,_,tp,Y]) :- !, X = ending:End, Y = ending:End, NN is N + 1.
check_dh([N,_,_,v,_],[NN,_,_,tp,_]) :- !, NN is N + 1.

 104

/***************P**/
% p(verbal ending)/postpositional marker(pp)
%check_dh([N,_,_,p,X],[NN,_,_,vcn,Y]) :- !, X = ending:End, Y = ending:End, NN is N +1.

% verb/p
check_dh([N,_,_,v,_],[NN,_,_,p,_]) :- !, NN is N+1.

% tp/p
check_dh([N,_,_,tp,_],[NN,_,_,p,_]) :- !, NN is N +1.

% n/p Noun ending in vow only
check_dh([N,_,_,n,X],[NN,_,_,p,_]) :- !, X = ending:vow, NN is N + 1.

/***************SERV**/
check_dh([N,_,_,v,_],[NN,_,_,serv,_]) :- !, NN is N + 1.
check_dh([N,_,_,serv,_],[NN,_,_,v,_]) :- !, NN is N + 1.

/**************CP**/
% n/cp(copular postmarkers)
check_dh([N,_,_,n,_],[NN,_,_,cp,_]) :- !, NN is N +1.

% adj/cp
check_dh([N,_,_,adj,_],[NN,_,_,cp,_]) :- !, NN is N +1.

% cp/tp
check_dh([N,_,_,cp,_],[NN,_,_,tp,_]) :- !, NN is N +1.

%cp/p
check_dh([N,_,_,cp,_],[NN,_,_,p,_]) :- !, NN is N +1.

% cp/vcn
check_dh([N,_,_,cp,_],[NN,_,_,vcn,_]) :- !, NN is N +1.

%pp/cp
check_dh([N,_,_,pp,_],[NN,[[M,_,_,n,_]],_,cp,_]) :- !, N < NN, NN is M + 1.

/****************CCP ***/
% n/ccp
check_dh([N,_,_,n,_],[NN,_,_,ccp,_]) :- !, NN is N +1.

% advp/ccp
check_dh([N,_,_,advp,X],[NN,_,_,ccp,_]) :- !, N < NN.

% pp/ccp
check_dh([N,_,_,pp,X],[NN,_,_,ccp,_]) :- !, N < NN.

% one pp/ccp
check_dh([N,_,_,pp,X],[NN,[],_,ccp,_]) :- !, X = case:nom, N < NN.

% two pp/ccp
check_dh([N,_,_,pp,X],[NN,[[M,_,_,pp,Y]],_,ccp,_]) :- !, \+ (X = case:acc, Y = case:acc), N < NN, M < NN.

% pp & advp/ccp
check_dh([N,_,_,advp,X],[NN,[[M,_,_,pp,Y]],_,ccp,_]) :- !, M is N + 1, N < NN.

 105

/******************v:sta***/
% advp/v
check_dh([N,_,_,advp,X],[NN,[],_,v,Y]) :- !,(Y = feat:sta; Y=feat:dyn), N < NN .

% one pp/v
check_dh([N,_,_,pp,X],[NN,[],_,v,Y]) :- !, (((Y = feat:sta;Y=feat:dyn; Y =subcat:2), (X = case:nom; X
=case:nom-also)); (X= case:acc, Y = subcat:2)), N < NN.

% two pp/v
check_dh([N,_,_,pp,X],[NN,[[M,_,_,pp,Y]],_,v,Z]) :- !,\+ (Z = feat:sta, (X = case:acc ; Y = case:acc)),
 \+ (Z = feat:dyn, (X = case:nom ; X=case:nom-topicalization; X=case:nom-
also),
 (Y = case:nom; Y=case:nom-topicalization; Y=case:nom-
also)), NN > M, NN > N.

% two pp&ncv /v
check_dh([N,_,_,pp,X],[NN,[[M,_,_,pp,Y],[O,_,_,ncv,_]],_,v,Z]) :- !,\+ (Z = feat:sta, (X = case:acc ; Y =
case:acc)),
 \+ (Z = feat:dyn, (X = case:nom ; X=case:nom-topicalization; X=case:nom-
also),
 (Y = case:nom; Y=case:nom-topicalization; Y=case:nom-
also)),
 N < NN, M < NN ,O < NN.

% pp & advp/v
check_dh([N,_,_,advp,X],[NN,[[M,_,_,pp,Y]],_,v,Z]) :- !, (((Y = feat:sta;Y=feat:dyn; Y =subcat:2), X =
case:nom);
 (X= case:acc, Y = subcat:2)), M <NN, N < NN.

% n (without case marker) / v
check_dh([N,_,_,n,_],[NN,[],_,v,Y]) :- !,(Y = subcat:2), NN is N + 1.

check_dh([N,_,_,pp,Z],[NN,[[M,_,_,n,_]],_,v,Y]) :- !,(Y = subcat:2), Z = case:nom, N < NN , M < NN.

/******************GEN**/
% n/gen
check_dh([N,_,_,n,X],[NN,_,_,gen,Y]) :- !, X = ending:End, Y = ending:End, NN is N +1.
check_dh([N,_,_,n,_],[NN,_,_,gen,_]) :- !, NN is N +1.

%gen/n
check_dh([N,_,_,gen,X],[NN,_,_,n,Y]) :- !, NN > N.

/*******************ADVP**/
% n/advp(adverbial post marker)
check_dh([N,_,baldal,n,_],[NN,_,_,advp,Y]) :- !, Y = ending:vow, NN is N+1.
check_dh([N,_,_,n,X],[NN,_,_,advp,Y]) :- !, X = ending:End, Y = ending:End, NN is N +1.
check_dh([N,_,_,n,X],[NN,_,_,advp,Y]) :- !, NN is N +1.

% advp/v
check_dh([N,_,_,advp,X],[NN,_,_,v,Y]) :- !, NN > N.

% advp/p
check_dh([N,_,_,advp,X],[NN,_,_,p,Y]) :- !, NN is N +1.

%advp/pp
check_dh([N,_,_,advp,X],[NN,_,_,pp,Y]) :- !, NN is N +1.

 106

/****************verb subcat :2**/
%case marker/verb subcat:2 that has both subject, object, and adverb.
check_dh([N,_,_,pp,X],[NN,[[M,_,_,ZZ,_],[L,_,_,pp,Z]],_,v,Y]) :- !, Y = subcat:2, (ZZ = adv; ZZ = advp; ZZ =
ncv; ZZ = vcv),
 \+ (X = case:Case,Z = case:Case),
 N < NN, M < NN, L < NN.

check_dh([N,_,_,ZZ,_],[NN,[[M,_,_,pp,X],[L,_,_,pp,Z]],_,v,Y]) :- !, Y = subcat:2, (ZZ = adv; ZZ = advp; ZZ =
ncv; ZZ = vcv),
 \+ (X = case:Case,Z = case:Case),
 N < NN, M < NN, L < NN.

%verb subcat:2 that has subject,object,adv,advp
check_dh([N,_,_,pp,X],[NN,[[L,_,_,adv,_],[O,_,_,advp,_],[M,_,_,pp,Z]],_,v,Y]) :- !, Y = subcat:2,
 \+ (X = case:Case,Z = case:Case),
 N < NN, M < NN, L < NN, O < NN.

%verb subcat:2 / nom&acc&vcv&adv
check_dh([N,_,_,pp,X],[NN,[[M,_,_,pp,Z],[L,_,_,adv,_],[O,_,_,ZZ,_]],_,v,Y]) :- !, Y = subcat:2,
 \+ (X = case:Case,Z = case:Case),(ZZ = vcv; ZZ = ncv),
 N < NN, M < NN, L < NN, O < NN.

%case marker/verb subcat:2(nom & complementizer)
check_dh([N,_,_,pp,X],[NN,[[M,_,_,pcv,_]],_,v,_]) :- !, X = case:nom, N < NN, M < NN.

/********verb subcat:1**/
% 'because of verb'
check_dh([N,_,_,n,X],[NN,[],ddae-muni,v,_]) :- !,X = ending:vow, NN is N + 1.
check_dh([N,_,i,pp,_],[NN,[],ddae-muni,v,_]) :- !, NN is N + 1.

check_dh([N,_,_,pp,X],[NN,[[M,_,_,Z,_]],ddae-muni,v,_]) :- !,X = case:nom-topicalization, (Z = n ; Z = pp),
 NN is M + 1, NN > N.

%case marker/verb subcat:1 OR subcat:2 that has one dep. realized.
check_dh([N,_,_,pp,X],[NN,[],_,v,Y]) :- !, (Y = subcat:2, X = case:acc);
 (Y = subcat:1 ,
 (X = case:nom ;X = case: nom-topicalization)),

 N < NN.

% two nom marker / verb subcat:1 & feat:sta
check_dh([N,_,_,pp,X],[NN,[[M,_,_,pp,Z]],_,v,Y]) :- !, (Y = sucat:1 , Y = feat:sta),
 (X = case:nom ;X = case: nom-topicalization;X = case:nom-also),
 (Z = case:nom ;Z = case: nom-topicalization;Z = case:nom-
also),
 N < NN, M < NN.

% verb subcat:1 / nom & adv or advp
check_dh([N,_,_,pp,X],[NN,[[M,_,_,adv,_]],_,v,Y]) :- !, (((Y = subcat:1 ; Y = subcat:2),
 (X = case:nom ;X = case: nom-topicalization;X = case:nom-also));
 (Y = subcat:2, X = case:acc)),
 N < NN, M < NN.

 107

% verb subcat:1 / nom & adv or advp
check_dh([N,_,_,pp,X],[NN,[[M,_,_,advp,_]],_,v,Y]) :- !, (((Y = subcat:1 ; Y = subcat:2),
 (X = case:nom ;X = case: nom-topicalization;X = case:nom-also));
 (Y = subcat:2, X = case:acc)),
 N < NN, M < NN.

% verb subcat:1 / nom & ncv
check_dh([N,_,_,pp,X],[NN,[[M,_,_,ncv,_]],_,v,Y]) :- !, (((Y = subcat:1 ; Y = subcat:2),
 (X = case:nom ;X = case: nom-topicalization;X = case:nom-also));
 (Y = subcat:2, X = case:acc)),
 N < NN, M < NN.

% verb subcat:1 / nom & advp & ncv
check_dh([N,_,_,pp,X],[NN,[[M,_,_,advp,_],[O,_,_,ncv,_]],_,v,Y]) :- !, (((Y = subcat:1 ; Y = subcat:2),
 (X = case:nom ;X = case: nom-topicalization));
 (Y = subcat:2, X = case:acc)),
 N < NN, M < NN, O < NN.

%verb subcat:1 / nom& adv& advp
check_dh([N,_,_,pp,X],[NN,[[M,_,_,adv,_],[L,_,_,advp,_]],_,v,Y]) :- !, (((Y = subcat:1 ; Y = subcat:2),
 (X = case:nom ;X = case: nom-topicalization));
 (Y = subcat:2, X = case:acc)),
 N < NN, M < NN, L < NN.

%verb subcat:1 /pcv & nom
check_dh([N,_,_,pp,_],[NN,[[M,_,_,pcv,_]],_,v,Y]) :- !, (((Y = subcat:1 ; Y = subcat:2),
 (X = case:nom ;X = case: nom-topicalization));
 (Y = subcat:2, X = case:acc)),
 N < NN, M < NN.

%verb subcat:1 /nom & vcv
check_dh([N,_,_,pp,X],[NN,[[M,_,_,vcv,_]],_,v,Y]) :- !, (((Y = subcat:1 ; Y = subcat:2),
 (X = case:nom ;X = case: nom-topicalization));
 (Y = subcat:2, X = case:acc)),
 N < NN, M < NN.

%verb subcat:1 / nom % vcv &adv
check_dh([N,_,_,pp,X],[NN,[[M,_,_,adv,_],[L,_,_,vcv,_]],_,v,Y]) :- !, (((Y = subcat:1 ; Y = subcat:2),
 (X = case:nom ;X = case: nom-topicalization));
 (Y = subcat:2, X = case:acc)),
 N < NN, M < NN, L < NN.

%case marker/verb subcat:2 that has either subject or object, and an adverb/advp/ncv.
check_dh([N,_,_,adv,_],[NN,[[M,_,_,pp,O]],_,v,Y]) :- !, (Y = subcat:2),O = case:acc,
 N < NN, M < NN.
check_dh([N,_,_,advp,_],[NN,[[M,_,_,pp,O]],_,v,Y]) :- !, (Y = subcat:2),O = case:acc,
 N < NN, M < NN.
check_dh([N,_,_,ncv,_],[NN,[[M,_,_,pp,O]],_,v,Y]) :- !, (Y = subcat:2),O = case:acc,
 N < NN, M < NN.
check_dh([N,_,_,vnp,_],[NN,[[M,_,_,pp,O]],_,v,Y]) :- !, (Y = subcat:2),O = case:acc,
 N < NN, M < NN.
/***/
/*************ADV**/
%adv/verb
check_dh([N,_,_,adv,_],[NN,[],_,v,_]) :- !, NN > N.

 108

%adv/verb.
check_dh([N,_,_,adv,_],[NN,X,_,v,_]) :- !, N < NN, \+ (member([M,_,_,adv,_],X)).

%adv/adv
check_dh([N,_,_,adv,X],[NN,_,_,adv,Y]) :- !, NN is N +1.

%adv/adj
check_dh([N,_,_,adv,X],[NN,_,_,adj,Y]) :- !, NN is N +1.

/***************ADJ***/
% adjective/noun
check_dh([N,_,_,adj,_],[NN,_,_,n,_]) :- !, NN is N+1.

/********************VNP**/
% v/vnp(post marker that makes verb into noun)
check_dh([N,_,_,v,X],[NN,_,_,vnp,Y]):- !, X = ending:End, Y = ending1:End, NN is N+1.
check_dh([N,_,_,v,X],[NN,_,_,vnp,Y]):- !, NN is N+1.

% tp/vnp
check_dh([N,_,_,tp,X],[NN,_,_,vnp,Y]):- !, NN is N+1.

%vnp/pp
check_dh([N,_,_,vnp,X],[NN,_,_,pp,Y]):- !, X = ending2:End , Y = ending:End, NN is N+1.

%vnp/n
check_dh([N,_,_,vnp,X],[NN,_,_,n,Y]):- !, NN is N+1.

/********************NNP**/
%n/ nnp
check_dh([N,_,_,n,_],[NN,_,_,nnp,_]):- !, NN is N+1.

% nnp/v(ha)
check_dh([N,_,_,nnp,_],[NN,_,ha,v,_]):- !, NN is N+1.

%nnp/cp(i)
check_dh([N,_,_,nnp,_],[NN,_,_,cp,_]):- !, NN is N+1.

%%%%%parsing algorithm itself%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

parse(InputList,Result) :-
 parse_loop(1,InputList,[],Result).

% parse_loop(+Count,+InputList,+WordList,+HeadList,-Result)
% Called by parse/2, to loop through the list.

parse_loop(Count,[Word|InputList],HeadList,Result) :-
 look_for_word(Count,Word,Node),
 parse_node(Node,HeadList,NewHeadList), % Try to attach it
 NewCount is Count + 1,

 109

 parse_loop(NewCount,InputList,NewHeadList,Result).

%%%%To allow words that are not in the lexicon to be considered as a noun or verb.

look_for_word(Count,Word,Node) :- word(Word,WordFeatures),
 WordFeatures =.. X,
 Node= [Count,[],Word|X].

look_for_word(Count,Word,Node) :- \+ word(Word,_), Count < 15, Node = [Count,[],Word,n|_].

look_for_word(Count,Word,Node) :- \+ word(Word,_), Count > 15, Node = [Count,[],Word,v|_].

% No more words to parse; so Result := HeadList.
% The pp,p,and v cannot come alone in a sentence.
parse_loop(_,[],[H],[H]).

parse_node(Node,[],[Node]).
 % No more elements of HeadList to look at.

parse_node(Node,[Head|HeadList],NewHeadList) :-
 % Insert Node above Head, and remove Head from HeadList.
 Node = [N,[],W|X],
 Head = [NN,_,WW|Y],
 check_dh(Head,Node), % Head is the dependent here

 NewNode = [N,[Head],W|X], %Everytime the head%dependent relation has been checked, the Node
changes.
 parse_node(NewNode,HeadList,NewHeadList).

parse_node(Node,[Head|HeadList],NewHeadList) :-
 % Insert Node above Head, and remove Head from HeadList.
 Node = [N,[D1],W|X],
 Head = [NN,_,WW|Y],
 check_dh(Head,Node), % Head is the dependent here
 append([D1],[Head],NewD),
 NewNode = [N,NewD,W|X], %Everytime the head%dependent relation has been checked, the Node
changes.

 parse_node(NewNode,HeadList,NewHeadList).

parse_node(Node,[Head|HeadList],NewHeadList) :-
 % Insert Node above Head, and remove Head from HeadList.
 Node = [N,[D1,D2],W|X],
 Head = [NN,_,WW|Y],
 (check_dh(Head,Node);
 check_dh(Head,[N,[D2,D1],W|X])
),% Head is the dependent here
 append([D1,D2],[Head],NewD),
 NewNode = [N,NewD,W|X], %Everytime the head%dependent relation has been checked, the Node
changes.

 110

 parse_node(NewNode,HeadList,NewHeadList).

parse_node(Node,[Head|HeadList],NewHeadList) :-
 % Insert Node above Head, and remove Head from HeadList.
 Node = [N,[D1,D2,D3],W|X],
 Head = [NN,_,WW|Y],
 (check_dh(Head,Node);
 check_dh(Head,[N,[D2,D1,D3],W|X]);
 check_dh(Head,[N,[D2,D3,D1],W|X]);
 check_dh(Head,[N,[D1,D3,D2],W|X]);
 check_dh(Head,[N,[D3,D1,D2],W|X]);
 check_dh(Head,[N,[D3,D2,D1],W|X])
),% Head is the dependent here
 append([D1,D2,D3],[Head],NewD),
 NewNode = [N,NewD,W|X], %Everytime the head%dependent relation has been checked, the Node
changes.

 parse_node(NewNode,HeadList,NewHeadList).

%%"projectivity constraint" ;not allowing projectivity
%when there is no link, add to the front of HeadList
parse_node(Node,HeadList,NewHeadList):- NewHeadList = [Node|HeadList].

%"projectivity" ;allowing projectivity
%when there is no link, add to the front of HeadList.
%parse_node(Node,[Head|HeadList],[Head|NewHeadList]) :-
% parse_node(Node,HeadList,NewHeadList).

% Output utilities

write_list([First|Rest]) :-
 var(First),
 !,
 write('_ '),
 write_list(Rest).

write_list([First|Rest]) :-
 write(First),
 write(' '),
 write_list(Rest).

write_list([]) :-
 nl.

write_dep(Node) :-
 write_dep2(Node,0).

write_dep2([N,Dependents|Rest],Indentation) :-
 tab(Indentation),
 write(N),

 111

 write(' '),
 NewIndentation is Indentation + 3,tab(Indentation),
 display_feature_structure(Rest), %% displays the GULP features
 write_dep3(Dependents,NewIndentation).

write_dep3([First|Rest],N) :- write_dep2(First,N), write_dep3(Rest,N).

write_dep3([],_):- !.

% tests

try(List) :- parse(List,[Head]),
 write_dep(Head).
 % nl,
 % fail.

try(_) :- write('No (more) parses.'), nl.

B. SEVERAL EXAMPLES OF INPUT AND OUTPUT OF TEST SENTENCES

?- try([ulma,jen,ggaji,nun,son,euro,ilha,-nun,sawhe,-i,ss-b-ni,da]).
12 [da, p, sem:declarative]
 11 [ss-b-ni, tp, ending:vow..tense:past-honorific]
 10 [-i, cp, sem:be]
 9 [sawhe, n, ending:vow..sem:society]
 8 [-nun, vcn, ending:vow..tense:pres..ending1:vow]
 7 [ilha, v, ending:vow..sem:work..subcat:1..feat:dyn]
 6 [euro, advp, ending:con..sem:to-or-as-or-with]
 5 [son, n, ending:con..sem:hand]
 4 [nun, pp, ending:vow..case:nom-topicalization..num:sing]
 3 [ggaji, advp, ending:con..sem:uptil]
 2 [jen, n, ending:con..sem:before-or-past-entire]
 1 [ulma, adj, sem:some-amount]

Yes

?- try([intenet,gisul,euy,baldal,ro,sege,nun,jemjem,de,gaggawhe-ji,-go,jengbo,yang,do,emchung-
nage,nul,ess,da]).
18 [da, p, sem:declarative]
 17 [ess, tp, ending:con..tense:past]
 16 [nul, v, ending:con..sem:increase..subcat:1..feat:dyn]
 15 [emchung-nage, adv, sem:enormously]
 14 [do, pp, ending:con..case:nom-also..num:sing]
 13 [yang, n, ending:con..sem:quantity]
 12 [jengbo, n, ending:vow..sem:information]
 11 [-go, vcv, ending:vow..sem:also-or-as-or-for]
 10 [gaggawhe-ji, v, ending:vow..sem:become-close..subcat:1..feat:dyn]
 9 [de, adv, sem:more]
 8 [jemjem, adv, sem:gradually]
 7 [nun, pp, ending:vow..case:nom-topicalization..num:sing]
 6 [sege, n, ending:vow..sem:world]
 5 [ro, advp, ending:vow..sem:to-or-as]
 4 [baldal, n, ending:con..sem:growth-or-progress-or-advancement]
 3 [euy, gen, ending:con..sem:of]

 112

 2 [gisul, n, ending:con..sem:skill]
 1 [intenet, n, ending:con..sem:internet]

Yes

?- try([tom,i,susan,ul,john,i,po,ss,da,go,malha,n,da]).

13 [da, p, sem:declarative]
 12 [n, tp, ending:vow..tense:pres]
 11 [malha, v, ending:vow..sem:say..subcat:2..feat:dyn]
 10 [go, pcv, sem:that]
 9 [da, p, sem:declarative]
 8 [ss, tp, ending:vow..tense:past]
 7 [po, v, ending:vow..sem:see..subcat:2..feat:dyn]
 6 [i, pp, ending:con..case:nom..num:sing]
 5 [john, n, ending:con..sem:john]
 4 [ul, pp, ending:con..case:acc..num:sing]
 3 [susan, n, ending:con..sem:susan]
 2 [i, pp, ending:con..case:nom..num:sing]
 1 [tom, n, ending:con..sem:tom]

Yes

?- try([teuk-hi,nam-nye,euy,pyung-kyun, kyung-umwha,senho-do,nun,yeuja,ga,dwen-sori,bal-
eum,ul,de,senhoha,-nun,geut,euro,deule-na,ss,da]).
20 [da, p, sem:declarative]
 19 [ss, tp, ending:vow..tense:past]
 18 [deule-na, v, ending:vow..sem:be-revealed..subcat:1..feat:dyn]
 17 [euro, advp, ending:con..sem:to-or-as-or-with]
 16 [geut, n, ending:con..sem:thing-or-fact]
 15 [-nun, vcn, ending:vow..tense:pres..ending1:vow]
 14 [senhoha, v, ending:vow..sem:prefer..subcat:2..feat:dyn]
 13 [de, adv, sem:more]
 12 [ul, pp, ending:con..case:acc..num:sing]
 11 [bal-eum, n, ending:con..sem:pronunciation]
 10 [dwen-sori, n, ending:vow..sem:strong-sounds]
 9 [ga, pp, ending:vow..case:nom..num:sing]
 8 [yeuja, n, ending:vow..sem:woman]
 7 [nun, pp, ending:vow..case:nom-topicalization..num:sing]
 6 [senho-do, n, ending:vow..sem:preference]
 5 [kyung-umwha, n, ending:vow..sem:change-to-strong-sounds]
 4 [pyung-kyun, n, ending:con..sem:average]
 3 [euy, gen, ending:vow..sem:of]
 2 [nam-nye, n, ending:vow..sem:boys-and-girls]
 1 [teuk-hi, adv, sem:especially]

Yes

?- try([gang-a-gi,nun,ho-rang-i,ga,chot,-nun,geut,ul,al,ess,da]).
11 [da, p, sem:declarative]
 10 [ess, tp, ending:con..tense:past]

 113

 9 [al, v, ending:con..sem:know..subcat:2..feat:dyn]
 8 [ul, pp, ending:con..case:acc..num:sing]
 7 [geut, n, ending:con..sem:thing-or-fact]
 6 [-nun, vcn, ending:vow..tense:pres..ending1:con]
 5 [chot, v, ending:con..sem:chase..subcat:2..feat:dyn]
 4 [ga, pp, ending:vow..case:nom..num:sing]
 3 [ho-rang-i, n, ending:vow]
 2 [nun, pp, ending:vow..case:nom-topicalization..num:sing]
 1 [gang-a-gi, n, ending:vow..sem:dog]

Yes

?- try([21,segi,ey, jen,sege,saerob,-un,jishik,ul,gajang,manni, changjoha,-nun,nara,ga,sege,lul, ii-ggule-ga,-
l,geut,i-la-go,yae-chuk-ha,b-ni,da]).
24 [da, p, sem:declarative]
 23 [b-ni, tp, ending:vow..tense:pres-honorific]
 22 [yae-chuk-ha, v, ending:vow..sem:predict..subcat:2..feat:dyn]
 21 [i-la-go, ncv, ending:con..sem:says-that..subcat:1]
 20 [geut, n, ending:con..sem:thing-or-fact]
 19 [-l, vcn, ending:vow..tense:future..ending1:vow]
 18 [ii-ggule-ga, v, ending:vow..sem:lead..subcat:2..feat:dyn]
 17 [lul, pp, ending:vow..case:acc..num:sing]
 16 [sege, n, ending:vow..sem:world]
 15 [ga, pp, ending:vow..case:nom..num:sing]
 14 [nara, n, ending:vow..sem:country]
 13 [-nun, vcn, ending:vow..tense:pres..ending1:vow]
 12 [changjoha, v, ending:vow..sem:create..subcat:2..feat:dyn]
 11 [manni, adv, sem:a-lot]
 10 [gajang, adv, sem:the-most]
 9 [ul, pp, ending:con..case:acc..num:sing]
 8 [jishik, n, ending:con..sem:knowledge-or-information]
 7 [-un, vcn, ending:con..tense:past..ending1:con]
 6 [saerob, v, ending:con..sem:be-new..subcat:1..feat:sta]
 5 [sege, n, ending:vow..sem:world]
 4 [jen, n, ending:con..sem:before-or-past-entire]
 3 [ey, advp, ending:vow..sem:of-or-to-or-on-or-at-or-in-or-in-addition-
to]
 2 [segi, n, ending:vow..sem:century]
 1 [21, num, sem:twenty-one]

Yes

?- try([21,segi,euy,ju-yek,i,dwe,-l,uli,e-linhi,dul,i,ii,jeun-mang,ul,gaseum,ey,jal, saegye-du,-l,pil-yo,ga,it,seb-
ni,da]).
24 [da, p, sem:declarative]
 23 [seb-ni, tp, ending:con..tense:pres-honorific]
 22 [it, v, ending:con..sem:be-or-exist..subcat:1..feat:dyn]
 21 [ga, pp, ending:vow..case:nom..num:sing]
 20 [pil-yo, n, ending:vow..sem:necessity]
 19 [-l, vcn, ending:vow..tense:future..ending1:vow]
 18 [saegye-du, v, ending:vow..sem:keep-in-mind..subcat:2..feat:dyn]
 17 [jal, adv, sem:well]
 16 [ey, advp, ending:con..sem:of-or-to-or-on-or-at-or-in-or-in-addition-to]
 15 [gaseum, n, ending:con..sem:heart]
 14 [ul, pp, ending:con..case:acc..num:sing]
 13 [jeun-mang, n, ending:con..sem:foresight-or-perspective]

 114

 12 [ii, pro, ending:vow..sem:this-or-it]
 11 [i, pp, ending:con..case:nom..num:sing]
 10 [dul, plp, ending:con..num:pl]
 9 [e-linhi, n, ending:vow..sem:child]
 8 [uli, n, ending:vow..sem:us]
 7 [-l, vcn, ending:vow..tense:future]
 6 [dwe, ccp, sem:become]
 5 [i, pp, ending:con..case:nom..num:sing]
 4 [ju-yek, n, ending:con..sem:leading-part]
 3 [euy, gen, ending:vow..sem:of]
 2 [segi, n, ending:vow..sem:century]
 1 [21, num, sem:twenty-one]

Yes

%%%% The Appendices will be modified by probably abbreviating the code of KorPar and
listing examples of test sentences that were mentioned in the previous chapters. %%%%%%

	final(part1).pdf
	final(part2).pdf

