
SCP: A Simple Chunk Parser

Philip Brooks
Artificial Intelligence Center
The University of Georgia

Athens, Georgia 30602-7415 U.S.A.
http://www.ai.uga.edu/

May 8, 2003

1 Introduction

1.1 Chunk Parsing

Chunk parsing, also called shallow parsing or partial parsing, is a technique described by
Steven Abney (1991). Intuitively, when one reads a sentence, one deciphers it a piece at
a time. A chunk parser attempts to model human parsing by breaking the text up into
small pieces, each parsed separately. Chunk boundaries correspond roughly to the pauses in
everyday speech.

Abney defines chunks in terms of major heads:

Major heads are all content words except those that appear between a function
word f and the content word that f selects. For example, proud is a major head in
a man proud of his son, but proud is not a major head in the proud man, because
it appears between the function word and the content word man selected by the.
. . . Let h be a major head. The root of the chunk headed by h is the highest
node in the parse tree for which h is the s-head, that is, the ‘semantic’ head.
Intuitively, the s-head of a phrase is the most prominent word in the phrase.
(p. 2)

By this definition, chunks are non-recursive (never containing a phrase of the same category
as itself). It is therefore possible to employ regular expressions to parse them. This approach
is less expensive computationally than a full parser (Abney 1996), but it is not the tactic
SCP uses.

If the non-recursive grammar constraint is enforced, X-Bar theory is not a valid foun-
dation upon which to build a grammar. An X̄ must be able to contain another X̄ as a
constituent, violating the constraint. To get around this limitation, chunk grammars often
employ simplex clauses, flat trees in which the specificer, adjuncts, and complement of a
phrase are sibling daughters to it. For example, the sample grammar included with SCP
defines NP as follows:

1

NP −→ D? AdjP? AdjP? AdjP? N.

where ? indicates the immediately preceding constituent is optional. The result of parsing
the NP

the big red balloon

with the previous rule would produce the tree

[NP [D the] [AdjP [Adj big]] [AdjP [Adj red]] [N balloon]].

Note that the D, AdjPs, and N are all siblings. This eliminates the need for recursion
involving X̄s.

Abney’s chunks are sub-graphs of the entire tree for a sentence. A natural accompaniment
for a chunking parser is an attacher, a parser which takes these sub-graphs and unites them
into a tree for the entire sentence. The two programs could be taken together as a two-pass
parser.

In addition to perhaps being a better model of human behavior than full parsing methods,
other advantages of chunk parsing are as follows:

• Speed. Because a chunk parser only needs to deal with small, non-recursive clauses, it
is able to process text much more quickly.

• Small footprint. Smaller phrases also require much less memory to parse. SCP performs
cuts after each chunk is parsed, so there are no backtrack points between one phrase
and another.

• Robustness. When a full parse fails, it must discard an entire sentence, even if it got
much of the structure correct. A chunk parser only discards a few words when it cannot
figure out how to proceed.

1.2 The Software

SCP is a simple top-down parser able to handle phrases with optional constituents. It takes
a grammar of Prolog clauses and a stream of words as its input, and its output is a stream
of chunk structures. It uses a full-blown parsing algorithm instead of regular expressions for
flexibility. This is slower than a finite-state parser, but does not bind the user to Abney’s
approach. For example, it is possible to use recursive rules without trouble.1

Given an appropriate grammar, it is possible to use SCP as an attacher, something regular
expression parsers cannot do because of their inability to handle recursive structures. SCP
can also refer to an external lexicon such as WordNet (Princeton 2003) instead of a lexicon in-
ternal to the grammar. Finally, SCP includes predicates (most notably flatten_chunks/2)
to extract the text (and optionally the category) from a chunk, which may be interesting to
those wishing to study the similarities between chunks and prosodic patterns of speech.

SCP is loosely based on the top-down parser on page 154 of Covington (1994a) and
materials from his Natural Language Processing class in Spring 2003.

1So long as they are not left-recursive, where a phrase’s first constituent is of the same type as itself. In
these cases the parser enters an infinite loop. This is a limitation common to the top-down parsing algorithm.

2

2 The Grammar

SCP uses user-defined Prolog predicates word/2 and rule/2 to represent its grammar. Each
such predicate describes a single word or rule. The first argument of either is the category
of the word or phrase being described. The second argument for word/2 is a Prolog term
denoting the word. The second argument of rule/2 is a list. Each of the members of the
list is a constituent of the phrase, in the order given. Brackets around a single constituent
indicate that it is optional. For example, the rule

rule(np, [[d] [adjp] [adjp] [adjp] n]).

would match the big red balloon or dog but not a tiny colorless (because it lacks a noun) or
democratic a government (because it is in a different order).2

The core of an SCP grammar is the chunk meta-phrase. When the chunk parsing pred-
icates such as chunk_parse/3 are called, they attempt to pull the first phrase of category
chunk from the input stream. You must specify what phrases are to be considered chunks.
In the sample grammar, the phrases are NP, PP, and VP, among others. The rules which
specify them as chunks are:

rule(chunk, [np]).

rule(chunk, [vp]).

rule(chunk, [pp]).

It is also a good idea to have unknown words and phrases marked as chunks at the end of
your grammar, like so:

rule(chunk, [unrecognized_word]).

word(unrecognized_word, _).

Otherwise, SCP may fail when it tries to parse a word not in its lexicon.
If you do not wish to use an internal lexicon, you can access an external one by writing

a word/2 clause which calls the interface to the dictionary. For example, if you wish to refer
to WordNet 1.6 or 1.7.1, a crude interface which uses WordNet’s numbers instead of atoms
for categories could be implemented as follows:

word(Category,Word) :-

s(_,_,Word,Category,_,_).

A sample grammar is included in the SCP distribution, in the file grammar.gmr. To use
it, simply consult it. There are four small texts included, stored in the predicate text/2.
Call the predicate test(+Number) to watch SCP in action using the sample texts, where
Number corresponds to the number of the sample text you want to parse.

2Assume that the other words and phrases mentioned are defined appropriately.

3

3 Tree Formation

When SCP matches a word while parsing, it creates a unary (single argument) Prolog struc-
ture with the category of the word as its functor and the word itself as the argument. This
forms a two-node subtree called a word-structure. For example, suppose SCP is looking for
a noun and must match the word meeting. It looks into its grammar and finds the entry

word(n, meeting).

The match succeeds, and the word-structure n(meeting) is formed.
Rules are a bit more complicated, but processed similarly. The right-hand side of a

rule can match any number of constituents. These constituents can themselves be either
categories of words or of other phrases.3 If the match is successful, SCP creates a phrase-
structure, an n-ary Prolog structure where n is the number of constituents the rule matched
(excluding any optional constituents which did not match). The xth argument of the phrase-
structure is the word-structure of the xth matched constituent (if it is a word) or the phrase-
structure of the xth matched constituent (if it is a phrase).

For example, parsing the old grey mare for a chunk with the grammar

rule(chunk, [np]).

rule(np, [[d], [adjp], [adjp], [adjp], n]).

word(d, the).

word(n, mare).

rule(adjp, [adj]).

word(adj, old).

word(adj, grey).

gives you the phrase-structure

chunk(

np(

d(the)

adjp(

adj(old)

)

adjp(

adj(grey)

)

n(mare)

)

).

3Or the same phrase, if you choose to allow recursion in your grammar.

4

4 Limitations

Because SCP is not a regular expression grammar, it is not as fast as a chunk parser po-
tentially could be. It also does not support operations such as the Kleene *, which matches
nothing or any number of occurrences of a pattern.

It also does not support GULP (Covington 1994b) for implementing a unification-based
grammar. This is not a major limitation for chunk parsing because in the interest of speed,
feature matching is often not employed. It does pose an inconvenience to one wishing to use
SCP as an attacher.

5 Predicates

This section documents the public (user-accessible) predicates SCP provides.

5.1 Parsing Predicates

chunk parse(+Stream, −Rest, −Tree)

This predicate takes Stream, which must be a list of words, and parses the first chunk from
it. Tree is instantiated to the tree of the chunk, and Rest is the rest of the stream once the
chunk is removed.

chunk parse text(+Stream)

This predicate calls chunk_parse/3 until the stream of words Stream is exhausted. It then
displays the results as indented structures using show_tree/1. Here is one of the sample
texts from sample.gmr run through as an example (this is equivalent to calling test(4)):

?- chunk_parse_text([this, is, max, smith, ’.’]).

chunk

np

pronoun

this

chunk

vp

vaux

is

chunk

np

name

first_name

max

last_name

5

smith

chunk

separator

unspoken_separator

chunk parse text(+Stream, −List)

As chunk_parse_text/2 above, except instead of writing the stream of chunks, it fills List
with them. Here’s another sample text, run through this predicate:

?- chunk_parse_text([this,is,the,cat,

that,chased,the,rat,

that,lived,in,the,house,

that,jack,built],X).

X = [chunk(np(pronoun(this))), chunk(vp(vaux(is))), chunk(np(d(the),

n(cat))), chunk(separator(spoken_separator(that))), chunk(vp(v(chased))),

chunk(np(d(the), n(rat))), chunk(separator(spoken_separator(that))),

chunk(vp(v(lived))), chunk(pp(p(in), np(d(the), n(house)))),

chunk(separator(spoken_separator(that))), chunk(np(name(first_name(jack)))),

chunk(vp(v(built)))]

parse(?Category, +Stream, ?Rest, ?Tree)

This is the heart of the parser. It requires a stream of words Stream from the beginning of
which it parses a phrase or word of the category Category with Rest remaining. Tree is
unified with the tree of the parsed graph. All the other parsing predicates call this one.

parse/4 can be used for more than just parsing whole chunks. For example, to pull the
initial NP off the big dog lived using sample.gmr, do the following:

?- parse(np, [the,big,dog,lived], Rest, Tree).

Rest = [lived]

Tree = np(d(the), adjp(adj(big)), n(dog))

5.2 Miscellaneous Predicates

show tree(+Tree)

show_tree/1 takes a graph Tree as its argument and writes it one node per line, with
indentation indicating dominance. For example:

?- show_tree(chunk(np(d(the),n(dog)))).

chunk

np

6

d

the

n

dog

flatten chunks(+Chunks,−List)

Chunks must be instantiated to a list of chunk trees. The text from each chunk is extracted
into a list. Each of these is placed into the list List in order. An example:

?- flatten_chunks([chunk(np(d(the),n(dog))),

chunk(vp(v(ate))),

chunk(np(d(the),n(shoe)))

], X).

X = [[the, dog], [ate], [the, shoe]] ;

flatten chunk(+Chunk,−List)

This predicate takes Chunk to be the tree of a chunk and extracts the words from it, in-
stantiating List to them. It calls flatten_chunk/3 and discards the third argument. An
example:

?- flatten_chunk(chunk(pp(p(to),np(d(the),n(batcave)))),X).

X = [to, the, batcave]

flatten chunk(+Chunk,−List,−Type)

flatten_chunk/3 takes a chunk tree Chunk and instantiates Type to the category of the
chunk (syntactically, the functor of X in chunk(X)) and List to the list of the words in the
chunk. For example:

?- flatten_chunk(chunk(np(d(the),n(cat))),List,Type).

List = [the, cat]

Type = np

References

[1] Abney, Steven (1991) Parsing by Chunks.
http://www.vinartus.net/spa/publications.html.

[2] Abney, Steven (1996) Partial Parsing via Finite-State Cascades.
http://www.vinartus.net/spa/publications.html.

7

[3] Covington, Michael (1994a) Natural Language Processing for Prolog Programmers. Pren-
tice Hall: 1994.

[4] Covington, Michael (1994b) GULP 3.1: An Extension of Prolog for Unification-Based
Grammar. Research Report AI-1994-06, Artificial Intelligence Center, The University of
Georgia.

[5] Princeton (2003) WordNet 1.7.1. http://www.cogsci.princeton.edu/∼wn/.

8

